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ABSTRACT
Advancement in the field of 3D capture, owing to use of consumer
depth sensors, has reinvigorated the research interest for scalable
shape classification and recognition algorithms. Majority of recent
deep learning pipelines for 3D shapes uses volumetric represen-
tation, extending the concept of 2D convolution to 3D domain.
Nevertheless, the volumetric representation poses a serious com-
putational disadvantage as most of the voxel grids are empty and
results in redundant computation. Moreover, a 3D shape is deter-
mined by its surface and hence performing convolutions on the
voxels inside the shape is sheer wastage of computation.

In this paper, we focus on constructing a novel, fast and robust
characterization of 3D shapes that accounts for local geometric
variations as well as global structure. We built up on the learning
scheme of [19] by introducing sets of B-spline surfaces instead of
point filters, in order to sense complex geometrical structures (large
curvature variations). The locations of these surfaces are initialized
over the voxel space and are learned during training phase. We
propose SplineNet, a deep network consisting of B-spline surfaces
for classification of input 3D data represented in volumetric grid.We
derive analytical solutions for updates of B-spline surfaces during
back propagation. We show results on publicly available dataset
and achieve superior performance as compared to state-of-the-art
method.

CCS CONCEPTS
• Computing methodologies→ Computer vision.
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1 INTRODUCTION
3D shape acquisition and analysis is an active research area in both
computer vision and graphics. Advancement in the field of 3D cap-
ture, owing to use of consumer depth sensors, has reinvigorated the
research interest for scalable shape classification and recognition
algorithms. Recently, deep neural networks have emerged as key
learning framework for various computer vision tasks [18]. Majority
of existing works on deep learning on 3D data are proposed in vol-
umetric representation where shapes are represented as occupancy
grid which is analogous to pixels in the image, thereby directly
extending concept of 2D convolution to 3D domain [2, 5, 24, 36].

Figure 1: In case of planar surfaces, sampling anywhere on
the surface results in the same vector field. To capture non-
planar surfaces, estimating field value along the red curve
captures the local variations. Points on the blue line will not
capture the local topology

Nevertheless, the volumetric representation poses a serious com-
putational disadvantage as most of the voxel grids are empty and
results in redundant computation. Moreover, a 3D shape is deter-
mined by its surface and hence performing convolutions on the
voxels inside the shape is sheer wastage of computation. This issue
has been recently addressed in [19] by introducing field probing
filters which effectively sense informative locations in the 3D space.
This enables intelligent and sparse sampling in the grid space. How-
ever, the filters proposed in [19] are point-based, which evaluate
functional value at a given point without accounting for geometrical
information over the neighborhood. Hence this approach captures
only global representation of voxelized 3D data for shape classi-
fication. As shown in Figure 1, the object has regions with flat as
well as significantly varying curvature. In case of flat structures,
sampling anywhere for estimating functional value (e.g., distance
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transform) is acceptable. However, for regions with complex ge-
ometrical variations, point based sampling may not be sufficient.
Hence, we introduce higher order B-spline surfaces to capture com-
plex geometrical variations in the data.

In this paper, we focus on constructing a novel, fast and robust
characterization of 3D shapes that accounts for local information as
well as global geometry. We built up on the learning scheme of [19]
by introducing sets of B-spline surfaces instead of point filters,
in order to sense complex geometrical structures (large curvature
variations). The locations of these surfaces are initialized randomly
over the voxel space and are learned over training phase. Wemodify
the dot product layer of [19] to aggregate local sensing and provide
the global characterization of the input data. Our key contribution
are listed as follows.
• We propose SplineNet, a deep network consist of B-spline
surfaces for classification of input 3D data represented in
volumetric fields. To the best of our knowledge, parametric
curves and surfaces are not proposed in a learning setup in
deep neural network for classification applications.
• We derive analytical solutions for updates of B-spline sur-
faces during back propagation.
• Our algorithm generates local-geometry aware global char-
acterization of 3D shape using neural network.
• We show results on ModelNet[37] dataset and achieve supe-
rior performance to state-of-the-art method.

The remainder of the paper is organized as follows. In section 2,
we present brief survey of themost relevant works on rigid 3D shape
analysis, in particular, classification. Section 3 provide background
details of B-spline curves and surfaces. Subsequently, in section 4we
outline our proposed B-spline neural network followed by details
of experiments and results in Section 4.3.

2 RELATEDWORK
Here we present solutions for 3D shape analysis using traditional
hand-crafted features and recent learning representations from data
via deep neural networks.

2.1 Shape descriptors
3D feature description using global and local analysis has drawn
its inspiration from 2D images algorithms where features are rep-
resented using the sparse or dense set of local feature , e.g. SIFT
[21]. The existing local feature descriptors are broadly categorized
into extrinsic and intrinsic based on how they evaluate local ge-
ometry around a feature point. Extrinsic descriptors capture the
local Euclidean geometry. Surface normals is one such descriptor
used in many applications including 3D shape reconstruction, plane
extraction, and point set registration [8, 12]. Point descriptors [9, 38]
encode local features on the surface mesh by defining relative local
surface normal at a sample point with respect to a superimposed
plane or line segment at the sample points. Local surface normal
vectors are computed at discrete points on the surface mesh to
capture the local surface features in [11]. Other popular extrinsic
descriptors are [13, 16]. Intrinsic descriptors capture pose invari-
ant intrinsic geometry of the underlying manifold. However, these
descriptors are confined to articulated 3D shapes. Another class of
local shape descriptors are ring-based [25, 26] which are based on

local sampling of a predefined metric over the discrete 3D surface
mesh.

Global shape descriptors are quite popular for shape retrieval
tasks where a single representation is used for shape retrieval.
The Laplacian-Beltrami operator [29] is proposed to compute the
diffusion-based shape descriptors. Heat Kernel Signature(HKS) uses
eigen spectrum of the Laplacian operator to extract intrinsic proper-
ties by evaluating heat distribution on vertices of a mesh. The Wave
Kernel Signature (WKS) [3] is another popular category of global
descriptors that employ principles of quantum mechanics instead
of heat diffusion on eigen spectrum to characterize the shape. Simi-
larly, [32] proposed to characterize global representation of a shape
which is robust against isometric deformations. This is achieved by
computing the geodesic distances between sample points on the
3D surface mesh.

2.2 Deep learning on 3D data
Majority of deep learning works on 3D data are based on the idea
of partitioning the 3D space into regular voxels and extending 2D
CNNs to voxels. A deep belief network is trained for classification
of ModelNet dataset in [37]. Voxel based variational auto-encoder
is trained in [6] for shape modeling and object classification tasks.
3D object is recognized[30] by predicting the pose of the object
in addition to the class label as a parallel task. However, these
methods cannot be scaled to high resolutions due to inherent in-
crease in computational complexity. The issue has been addressed
by [19] defining field probing scheme. Nevertheless, only global
representation of the object is learned.

Extensive literature on 2D CNNs has prompted many works
to render images of a 3D object and use these images for fea-
ture description through CNNs. Each 3D shape is converted into a
panoramic view and recognized in [31]. Information from multiple
views of the object [33] is combined through novel view-pooling.
[14] is also proposed on similar lines where they treat viewpoints
as latent variables. 3D object is generated from a single 2D image
[35] by generating images of surface normals, depth from various
camera view points.

Other section of works operate directly on point cloud. Point-
Net [27] is a pioneering work in this direction that is proposed
for raw point cloud as input and generate a permutation-invariant
representation of the object. PointNet++ [28] proposed to use hier-
archical neural network where PointNet is applied recursively on
a nested partitioning of input point set. This approach addresses
the drawback of local structure sensing of PointNet. A new archi-
tecture is proposed in [15] performs multiplicative transformations
and shares parameters of these transformations according to the
subdivisions of the point clouds imposed onto them by kdtrees.
Similarly, OCNN [34] is proposed which is built upon the octree
representation of 3D shapes. Challenges in unsupervised learning
on point clouds is addressed by [39] by training an auto-encoder
where decoder deforms a canonical 2D grid onto the underlying
3D object surface of a point cloud.

Graph-based approaches characterizes point clouds as graphs.
A 3D point cloud can be represented as a polygon mesh or con-
nectivity graph which is converted to the spectral representation
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and apply convolution in spectral domain employing analogy be-
tween the classical Fourier transforms and projections onto the
eigen basis of the graph Laplacian operator [7]. Recurrent Cheby-
shev polynomials to circumvent the problem of computation of the
Laplacian eigenvectors is proposed in [10]. The first work in this
approach is Geodesic CNN [22] where local patches represented in
geodesic polar coordinates were applied with filters. Anisotropic
heat kernels were used as an alternative way of extracting intrinsic
patches on manifolds [4]. [23] provides a good overview of recent
advancement in the field of graph deep learning for non-Euclidean
data.

3 BACKGROUND
In this section, we discuss various properties of B-spline surfaces
that are exploited for efficient feature representation using neural
network. Parametric curves and surfaces are most commonly used
in computer graphics for generation of 3D objects. A parametric
surface in 3D is defined by three bivariate functions as

α (u,v) = (αx (u,v),αy (u,v),αz (u,v)) (1)

B-spline surfaces share similar properties to that of B-spline curves.
Since curves are easier to visualize, we discuss about B-spline curve,
a parametric polynomial curve which is defined as

α (u) =
n∑
i=0

Ni,k (u)xi (2)

0 ≤ u ≤ n − k + 2
wherek is the order of the curve andwe haven+1 control points and
Ni,k are termed as SplineBasis (refer to A.1.1 for calculating spline
basis). The curve/surface is obtained by the blending of its control
points and the blending functions are provided by spline basis. The
most important properties of B-spline curves and surfaces include:
• The curve can be defined using arbitrarily large number of
points without increasing the degree of the curve.
• The curve is a piecewise curve with each component a curve
of degree k − 1.
• A B-spline curve is enclosed in the convex hull of its control
polyline. Specifically, if u is in knot span [ui ,ui+1), then α (u)
is in the convex hull of control points xi−k ,xi−k+1, ...,xi .
• The continuity of the curve/surface isk−2 in each parametric
dimension and hence is differentiable and derivatives can be
computed analytically.
• Local Modification: By changing the position of control point
xi , only affects the curve α (u) on interval [ui ,ui+k+1) as
shown in Figure 2. This property is primarily exploited in
our method for the calculation of local surface information.

4 OUR METHOD
We design a novel learning scheme for classification of rigid 3D
objects which is learned using deep neural network. Figure 3 out-
lines the architecture of the proposed SplineNet. The input to our
network is a 3D distance field or any differentiable vector field. Sub-
sequently, we process this vector field input with novel SplinePatch
layer for capturing local geometric variations. Later on, we pass the
output of this layer to either Gaussian layer or directly to LocalAg-
gregration layer. As explained in [19], Gaussian layer ensures that

function values around object surface are retained. LocalAggrega-
tion layer accumulates sensing done by spline surfaces to recover
the global characterization of object structure. Finally, the output is
fed to a FC (Fully Connected) layer to be able to learn and predict
final classifications labels.
4.1 SplinePatch Layer
This layer is accountable to sense the local information and pass it to
LocalAggregation layer. It consists of N sets of surfaces. Each set is
initialized with a line in the 3D grid space as described in Section 5.1.
On each line, we randomly sample P points. At every sampled point,
a B-spline patch is initialized withm + 1(n + 1) control points along
U (V ) directions. Essentially, this layers contains N × P patches.
Each control point is three dimensional and the total number of
parameters in this layer are N × P × ((m + 1) × (n + 1)) × 3.

Each point on the surface is expressed as

α (u,v)(x ) =
m+1∑
i=0

n+1∑
j=0

Ni,k (u) ∗ Nj,l (v) ∗ xi, j (3)

0 ≤ u ≤ m − k + 2

0 ≤ v ≤ n − l + 2
The parametric space ofU ,V is divided intoD = M×N divisions

i.e. if 3 and 2 divisions, the parametric space is (0 − 0.33; 0.33 −
0.66; 0.66 − 1.0) and (0 − 0.5; 0.5 − 1) along U and V directions
respectively. It is illustrated on a spline curve for better visualization
in Appendix A.2. In each division, we randomly sample s sampling
points. We evaluate the differentiable functional value at these
sampling points f (α (u,v)), for instance, distance transform. Notice
that the functional value at sampled points depend on the control
points xi, j . Hence, during back-propagation, the functional value
affects the location of control points. The gradient allows these
locations to drift for effective sensing. The analytical solution for
updates is discussed in back propagation section.

These sampling points provide local sensing. We introduce min-
pooling in each division for distance transform function which is
forwarded to LocalAggregation layer. Since the sensing is done in
all divisions of a patch, the network tries to approximate the surface
over the region.

f (α (u,v))di ,p,n =min(f (α (us ,vs )))∀s ∈ di (4)

where di is ith division of pth patch in nthset .

4.2 LocalAggregation Layer
The LocalAggregation layer attempts to perform a two-level aggre-
gation. Firstly, this layer aggregates the functional values sensed
from each of the divisions of a patch (output of SplinePatch layer).
This operation helps the network to analyze the local geometry.
The input to this layer is the output of SplinePatch/Gaussian layer
which is of dimension N × P × D × C where C is the number of
channels in the function and concatenates the local information of
all divisions around each patch. Essentially, the feature of a patch
is D dimensional. We have also used various other operations such
as average of the functional values of all the divisions. However,
concatenation results in better performance.

Second level aggregation attempts to generate global charac-
terization which is obtained by performing dot product operation
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Figure 2: The curve at left is deformed at position 2. The resulting curve at right is deformed around 2nd position

SplinePatch Layer

Gaussian

LocalAggregation

FC

class label

Distance Field

LocalAggregation

Figure 3: Overview of our SplineNet architecture. In-
put shapes represented in volumetric fields are fed to
SplinePatch layer for effective local sensing which is then
optionally passed toGaussian layer to retain values near sur-
face boundaries. LocalAggregation layer accumulates local
sensing to give local geometry aware global characterization
of input shapes. Resulting characterization is fed to Fully
Connected(FC) layers from which class label is predicted.

across the set.

fnet,n =
P∑
p=0

D∑
di=0

C∑
c=0

f (α (u,v))di ,p,c × βdi ,p,c (5)

where fnet is the net global and local contribution of thenth set and
βdi ,p,c is the weight of d

th
i division of pth patch and cth channel.

The output of this layer is of dimension N and is connected to Fully
connected (FC) layers. The final FC layer is connected loss layer to
predict the label of the input shape.

4.3 Back-Propagation
For training SplineNet trainable, it is necessary to compute gra-
dients with respect to update the location of control points and
the weights to perform dot product operation in the LocalAggrega-
tion layer. Let E be the error function. Analytical solutions can be
derived as

∂E

∂ fnet,n
=

[ ∂E
∂f (α (u,v ))di ,p,c

∂E
∂βdi ,p,c

]
=

[
βdi ,p,c

f (α (u,v))di ,p,c

]
(6)

The update of control points can be derived as

∂E

∂xi, j
=

D∑
di=0

C∑
c=0

(
∂E

∂ f (α (um ,vm ))di ,p,c
∗
∂ f (α (um ,vm ))di ,p,c
∂α (um ,vm )di ,,p,c

∗
∂α (umin ,vm )di ,p,c

∂xi, j

)
=

D∑
di=0

C∑
c=0

(βdi ,p,c ∗ f
′

(α (um ,vm ))di ,p,c )∗Ni,k (um )∗Nj,l (vm )

(7)

From Eq. 3,
∂α (um ,vm )di ,p,c

∂xi, j
= Ni,k (um ) ∗ Nj,l (vm ) (8)

(um ,vm )di ,p,c = argmin
us ,vs

(f (α (us ,vs )))di ,p,c (9)

Similarly, ∂E
∂yi, j

and ∂E
∂zi, j

are updated. During training, while
computing the functional value of a division, the indices (um ,vm ) of
min pooling operation are stored. The detailed algorithm is provided
below in Algorithm 1.

5 EXPERIMENTS AND RESULTS
We used Nvidia’s GTX 1080Ti, with 11 GB of VRAM to train our
network. The point clouds are converted into distance fields. We
used a batch size of 32, learning rate of 0.01 with SGD solver and
momentum 0.75 and weight decay of 10−5.
Baseline: We show our results on ModelNet40 [37] dataset which
has 40 classes of rigid 3D CAD models. As mentioned in Section 2,
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Result: Updated locations of control points of each surface.
Initialize: Number of sets of surfaces N, number of candidates
in each set P, number of sampling points S, randomly
initialize locations of control points of each surface
xi, j ,yi, j , zi, j , Degree of the curve along both parametric
directions K, number of divisions in parametric space D,
number of iterations T;

while iterations ≤ T do
Forward Pass:
for p := 0 to P do

for d := 0 to D do
for s := 0 to S do

evaluate α (us ,vs ) using Eq 3
f (α (us ,vs ))di ,p ←min(f (α (us ,vs )))∀s ∈ S
um ,vm ← argminus ,vs f (α (us ,vs ))

end
end
fnet,n = concat (f (α (us ,vs ))di ,p ))∀di ∈ D

end
Calculate global value by Eq 5
Backward Pass:
for p := 0 to P do

for d := 0 to D do
Compute ∂E

∂xi, j
, ∂E
∂yi, j

and ∂E
∂zi, j

by using Eq 6 and 7 with um ,vm
end

end
end

Algorithm 1: The learning scheme

there are several works for classification of ModelNet datasets.
However, the input formats are different for each of these works.
We will compare our results with volumetric input, in particular,
the FPNN [19].

We train our SplineNet with varied parameters and settings
and compare the results with FPNN. To argue that constructing
local geometry aware global characterization greatly enhances the
classification performance on ModelNet40 dataset, we perform ex-
periments where the locations of the control points of each surface
are updated and not updated. For this evaluation, we have used
1024 sets of surfaces wherein each set has 8 surfaces and each sur-
face has 9 control points. The number of divisions in each surface
are 6. In each division, the sampling points are 5. The order of the
polynomial is fixed to 4 along each of the parametric direction. We
show the quantitative results of both the experiments in Table 1.

It is evident that local sensing is adding more essential informa-
tion and the performance is increased from 79.1% to 82.94%. FPNN
constructs a robust global representation which can be improved
by adding local geometry to achieve a better performance as shown
in Table 1 on 64 resolution data.

5.1 Initialization of surfaces
A surface is defined by the locations of its control points. For ini-
tialization of these control points, we assume the volumetric grid
to be unit dimensional. We initialize a line of random length l and

Method without updating locations Updated locations
FPNN [19] 79.1 85.0
OURS 82.94 86.8

Table 1: A comparison of accuracy on ModelNet40 [37] in
1FC setting on 64 resolution input.

Figure 4: Initialization of control points of each surface. A
single set of four surfaces i.e. their control points are visual-
ized. Please refer Section 5.1 for more details.

orientation varying from 0.1 − 0.9. On the line, we randomly chose
8 points. With the chosen points as center, we initialize cuboid
which has random length, breadth, height and orientation with not
exceeding 0.4 ∗ l .

This procedure of initialization ensures that each set of surfaces
has a different span in the volumetric grid and the range of sensing
is maintained. Within each cuboid we initialize uniformly sam-
pled control points for each of the surface. We demonstrate only
four candidates in Figure 4 for better visualization. However, in
experiments we used 8 surfaces.

5.2 Hyper-parameter Estimation
The network has many hyper parameters which include number
of surface sets to be initialized, order of the surfaces, number of
divisions of the parametric space etc. In order to estimate these
parameters, we train the SplineNet under different settings without
updating the locations of the control points. We performed experi-
ments with varying number of sets of b-spline surfaces initialized.
The quantitative results are shown in Figure 5. It is to be observed
that 256 sets of surfaces with 8 surfaces in each set is required to
match the performance of FPNN which has 1024 filters and 8 points
in a filter.

The smoothness of the surface is dependent on the order of the
curve. If the order i.e. (degree+1) of the curve is 2, we get piecewise
continuous planes. Increasing in the order of the surface results in
a much smoother surface. In all our experiments, we use the same
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Figure 5: Accuracy of SplineNet with varied number of sur-
face sets

order along U,V directions. Table 2 show the results of experiments.

order (3,3) (4,4)
accuracy 82.17 82.94

Table 2: Evaluation of our approach by varying the order of
the curve. We keep the order of curve same along U,V direc-
tions

To sense the surface information locally, we divide each patch
into several divisions in parametric space. From each division, we
evaluate the functional value at n = 5 random locations. We take
minimum of these values and forward to LocalAggregation layer.
Increase in the number of divisions results in dense sampling on the
surface. Hence, the performance is increased with the increase of
number of divisions.We train our network with number of divisions
set to 6 further in all experiments.

Divisions 4 6 9
accuracy 82.3 82.94 82.96

Table 3: Performance of number of parametric divisions on
128 resolution data

To study the importance of various functions on local geometry
of 3D shapes, we tested with several functions in the LocalAg-
gregation layer apart from concatenation. From each of the patch
initialized, we take the mean of the functional values of randomly
sampled points instead of concatenating. We consider this mean
value as the contributed functional value for of the patch which
is fed to further layers. We have achieved an under-par accuracy
of 78.3 accuracy when the locations are not updated. Similarly, we
also used standard deviation in the functional values as the net
contribution and learned that concatenation greatly influences the
performance.

We also observe that our method performs better when the reso-
lution of the input is high as shown in Table 4. This is essentially
because of the fact that in forward propagation, we evaluate the
functional value at a point by performing tri-linear interpolation.
Increasing the resolution results in effective sensing in local neigh-
borhood which the surface attempts to exploit.

Resolution 32 64 128
accuracy 84.8 86.8 87.4

Table 4: Classification accuracy of our method on varying
input resolutions

Method Accuracy
Aravind et al. [1] 86.5
3D-CapsNets [17] 82.73

VSL [20] 84.5
Ours 86.28

Table 5: Classification accuracy (%) on ModelNet40 compari-
son of our model and other recent volumetric methods

5.3 Visualization of SplineNet features
We show tSNE features of the fully connected layer of our SplineNet
in Figure 6. It is easy to infer that SplineNet is able to efficiently em-
bed similar class candidates in one neighborhood. This embedding
suggests that the learned features are generalizable for retrieval
tasks whereas the network is trained for classification.

Figure 6: tSNE feature visualization

6 CONCLUSION AND FUTUREWORK
We propose SplineNet, a novel learning paradigm to address the
challenging issues of efficient and effective 3D volumetric data clas-
sification. In particular, to account for local geometric variations
while generating global representation of 3D data, we introduce
B-spline surfaces in SplineNet. The locations of these surfaces are
learned from data and analytical solutions to perform back propa-
gation are derived. We show results on publicly available dataset
and show superior over state-of-the-method. We also demonstrate
the robustness of features learned by SplineNet While the spline
surfaces are used for classification in this paper, reconstructing 3D
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shapes by generating surfaces is a feasible future direction that has
many potential applications.

A APPENDIX
A.1 B-spline Curves and Surfaces
A.1.1 B-spline basis calculation. Ni,k in Equation 2 can be com-
puted recursively as

Ni,k (u) =
(u − ti )Ni,k−1(u)

ti+k−1 − ti
+
(ti+k − u)Ni+1,k+1(u)

ti+k − ti+1
(10)

where ti are knot values. The number of knot values is equal
to sum of number of points and degree of the curve. They are
computed as follows

ti =


0 if i < k

i − k + 1 if k ≤ i ≤ n

n − k + 2 if i > n

Ni,k (u) =

{
1 if ti ≤ u ≤ ti+1
0 otherwise

A.2 B-spline Neural Network
The division of parametric space is illustrated in Fig 7. The curve is
generated by 12 control points represented in black dots. The red
dots represents knot values. B-spline curve is piece-wise continuous
in every consecutive knot interval. For instance, each knot interval
can be assumed as a division of parametric space. We randomly
evaluate the functional values in each segment and the minimum
value f (ui ) is sent to further layers. We perform similar operations
in surface which is a natural extension of the curve

Figure 7: Quartic Curve generated by 12 control points. Knot
values are shown. Parametric divisions are visualized.
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