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ABSTRACT

Retinal vessel keypoint detection and classification is a funda-
mental step in tracking the physiological changes that occur
in the retina which is linked to various retinal and systemic
diseases. In this paper, we propose a novel Vessel Keypoint
Detector (VKD) which is derived from the projection of
log-polar transformed binary patches around vessel points.
VKD is used to design a two stage solution for junction de-
tection and classification. In the first stage, the keypoints
detected using VKD are refined using curvature orientation
information to extract candidate junctions. True junctions
from these candidates are identified in a supervised manner
using a Random Forest classifier. In the next stage, a novel
combination of local orientation and shape based features
is extracted from the junction points and classified using a
second Random Forest classifier. Evaluation results on five
datasets show that the designed system is robust to changes
in resolution and other variations across datasets, with av-
erage values of accuracy/sensitivity/specificity for junction
detection being 0.78/0.79/0.75 and for junction classification
being 0.87/0.85/0.88. Our system outperforms the state of the
art method [1] by at least 11%, on the DRIVE and IOSTAR
datasets. These results demonstrate the effectiveness of VKD
for vessel analysis.

Index Terms— Retinal images, Keypoint detection, Ves-
sel landmarks, Junction classification.

1. INTRODUCTION

Retinal vessel analysis is of interest to detect and assess dis-
eases such as diabetes, hypertension, stroke, and arterioscle-
rosis which bring about structural and geometrical changes
in retinal vasculature [2, 3]. Changes in vascular patterns at
the vessel bifurcation and crossover points provide vital infor-
mation for diagnosis of various systemic and cardiovascular
diseases. Hence, an analysis of keypoints on a vessel tree is of
interest. Detecting keypoints is challenging as junctions may
appear close to each other, or at extremely low contrast re-
gions. When vessels that appear parallel to each other change
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courses, they create a virtual bifurcation or crossover. More
generally, the spatially varying nature of vessel calibre and
density in an image poses a challenge to accurate detection of
keypoints and their characterization.

Automatic detection of junctions, which are a specific
type of keypoint has attracted much interest. Junction detec-
tion and classification have been attempted in the past using
vessel maps or models. Skeletonization of vessel maps in
[4, 5, 6, 1] is followed by analysis in a window around a ves-
sel pixel to assess if the pixel is a keypoint such as bifurcation
or crossover. Both circular [5] and square shaped windows
[4] have been considered. Evidence gathering by pixel voting
followed by a refinement based on distance between pixels
is typically used to locate bifurcations and crossovers. In
contrast, the model-based techniques employ shifted Gabor
filters [7] or eigen analysis of Hessian at the vessel point
[8]. More recently, orientation scores derived by correlating
image patches with anisotropic wavelets [6, 1] have been pro-
posed as a basis to detect junctions and subsequently classify
them as bifurcations or crossovers. This approach was quite
successful in modelling different kinds of complex junction
locations. Existing approaches for detecting keypoints model
the orientation of the vessel in a local neighborhood without
explicitly considering the larger context or shape informa-
tion which might aid in handling ambiguities. In our work,
we propose a learning based approach that combines orien-
tation and shape information for detecting and classifying
keypoints. Our strategy is shown to be robust, accurate and
reliable.

The major contributions of our work are the following:
i) a novel vessel keypoint detector which is useful in detect-
ing interest points on the vessel tree, ii) an end-to-end retinal
vessel junction detection and classification system, and iii) a
thorough validation on five publicly available retinal datasets.
We next present the method and the experiments conducted
along with the results obtained.

2. VESSEL KEYPOINT DETECTOR

One of the basic tasks in vessel tree analysis is identifying
keypoints such as junctions, as they serve as landmarks useful
in the registration of retinal images and in biometrics. Clin-
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ically, vessel keypoints such as bifurcation points are of in-
terest in assessing diseases such as retinopathy of prematurity
via the branch angle at these points. Retinal vessels vary sig-
nificantly in their size, shape, and orientation. Further, in de-
tecting keypoints local as well contextual information is use-
ful in resolving ambiguities and overcoming problems due to
the variability in morphology and orientation.

We propose a novel Vessel Keypoint Detector (VKD)
which is designed to operate on a binary vessel map and
extract points of interest in the vessel tree. All vessel maps
are skeletonized first to handle varying vessel calibre within
and across images. Next, around every vessel point p, we
consider a region of interest (ROI) Rp(x, y) and apply a
log-polar transform to obtain Rp(r, θ). The log mapping pre-
serves information close to a vessel point while increasingly
compressing the information as one moves away from the
vessel point in a non-linear fashion. Fig. 1 shows sample
ROI’s with different vessel patterns of interest and the corre-
sponding log-polar mapped results. The number of vertical
lines depends on the pattern (straight vessel segment, crossing
vessels, branching vessels etc.) and their position depends on
the orientation of the vessels in Rp(x, y).

We next do a vertical projection of Rp(r, θ) to obtain a
vector Rp(θ). In order to build robustness to spurious vessels
and varying vessel calibre, the range of r is limited to an in-
terval [R1, R2] where as θ ∈ [0◦, 360◦]. Since r and θ have
to be discrete variables (say m,n) we do so with sampling
rates of ∆r and ∆θ. The obtained projection Rp(θ) provides
a count of the number of pixels in a vessel fragment at a spe-
cific θ. This is binarized with a threshold set at 1 to obtain
a vessel keypoint descriptor Vp(n) which is shown as a 1D
function (for a typical junction and non-junction) in Fig. 1.
Since a cluster of responses in Vp(n) correspond to only 1
vessel fragment, we locate the vessel edges by computing a
first order difference of Vp(n) as follows:

V ′p(n) = abs(Vp(n+ 1)− Vp(n)) (1)

Fig. 1. Illustration of VKD. Column 1 (from top to bottom):
sample bifurcation, crossover and a non-junction patch; Col-
umn 2: the corresponding Log-Polar maps (with x-axis being
θ); Column 3: the final descriptor Vp(n).

The number of vessel branches N at a point p is found as:

N(p) =
1

2

∑
n

V ′p(n) (2)

We finally obtain a set of key points C = {pi|N(pi) > 2}.

(a) (b) (c) (d)

Fig. 2. Challenges in keypoint detection. Red ellipses point
to artefacts due to segmentation and skeletonization. (a),(c)
Skeletonized vessel maps; (b),(d) Keypoints detected with
VKD.

Figs. 2(a) and 2(c) show two challenging segmented ves-
sel patches where complex vessel patterns can be seen. The
detected keypoints are marked in blue in Figs. 2(b) and 2(d).
These are seen mostly in the vicinity of junctions. A common
type of artefact produced by segmentation are spurs appear-
ing as a part of a vessel segment which lead to noisy key-
points. These are handled by setting R1 > k pixels with
k = 2 or higher value. The effect of skeletonization also pro-
duces an artefact at vessel crossovers, namely a structure that
resembles two closely placed bifurcations as depicted in Fig.
2(d). These are also tackled with a judicious choice of R1

and R2. It should be noted that since the vessel map is about
1 pixel thick, the parameters need to be fixed only once. We
empirically found that R1 = 3px, R2 = 8px, ∆r = 0.1,
∆θ = 5◦ produce the best results. A sample sub-image, the
corresponding thinned vessel map and detected keypoints are
shown in Figs. 4(a) through 4(c).

3. A SYSTEM FOR JUNCTION DETECTION AND
CLASSIFICATION

The proposed keypoint detector is used to design a system
for vessel analysis. The input to this system is a skeletonised
vessel map and output is a set of bifurcation and crossover
points. The system design consists of the following steps:
candidate junction selection, junction detection followed by
classification. Details are presented next.

3.1. Junction candidates selection

Given a skeletonized vessel map, a set of keypoints are ex-
tracted using VKD as described in the above section. The ob-
tained keypoints C appear as clusters of points close to junc-
tions (as shown in Fig. 4(c)). These are refined to obtain
the desired candidate junction points by noting that a junction
point is where vessels of 2 or 3 different orientations meet.
This can be characterised by the entropy of the histogram of
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vessel orientations; points close to a junction will exhibit a
higher entropy than those away [9]. For each point in C, a
3 × 3 neighborhood ω is considered and a Hessian matrix
is computed for every pixel in ω and its second eigenvector
is used to construct a curvature orientation histogram (COH)
hp. Finally, the entropy of COHE(hp) is obtained and a non-
maximum suppression with a radius of 12 pixels is done to
obtain the set of final candidate junctionsCj which are shown
in Fig. 4(d).

3.2. Junction detection

We propose a supervised learning technique for detecting true
junctions. The VKD (V ) and COH (h) features are extracted
at every candidate points. These two features capture the ves-
sel orientation information in a local neighborhood. Hence,
they exhibit an excellent discriminative ability in distinguish-
ing between a true junction Jn and a non-junction NJn. For
each Cj , features are extracted from a 17× 17 neighborhood
and concatenated into a 1-D long vectorXJ = (V, h). A Ran-
dom Forest (RF) classifier of 200 trees was trained. A sample
result of the detected junctions is shown in Fig. 4(e).

3.3. Junction classification

Bifurcation versus crossover classification is a non-trivial task
since it poses several challenges, which include ambiguity
due to proximal presence of bifurcation and crossover points,
multiple bifurcations/crossovers in a small region and paral-
lel vessels. These are addressed by using a combination of
features: orientation based (V, h) and shape based (response
of basic Line Detector (LD) [10] and Histogram of Oriented
Gradients (HOG) features. The LD (L) and HOG (O) primar-
ily capture the local vessel shape information and can be used
to accurately identify bifurcations and crossovers as shown
in Fig. 3. For each detected true junction Jn, we compute
(V, h, L,O) features in a 17× 17 neighborhood. The line re-
sponse at each pixel is obtained as explained in [10], which
is vectorized to form a 1-D vector L. These features are con-
catenated to derive the final feature vector. A RF classifier
with 500 trees is trained with these features to classify junc-
tions Jn into bifurcations Jb and crossovers Jc. A sample
result of the junction classification is shown in Fig. 4(f).

(a) (b) (c) (d) (e) (f)

Fig. 3. Visualization of LD and HOG feature descriptors for
sample bifurcation (a) and crossover (d) patches. (b), (e) and
(c), (f) are the corresponding line response and the HOG map,
respectively.

(a) (b) (c) (d) (e) (f)

Fig. 4. Junction detection and junction classification results.
(a) A region of interest; (b) Skeletonized vessel map; (c) Re-
sult of VKD; (d) Candidate junctions; (e) Detected true junc-
tions; (f) Identified bifurcations (green) and crossovers (red).

4. EXPERIMENTAL RESULTS

Experiments were done on five publicly available datasets.
The details are provided in Table. 1. Ground truth (GT) la-
bels for bifurcations and crossovers were derived for ARIA
and CHASE DB1 from two independent markers while for
DRIVE, IOSTAR and STARE were shared by [5], [1]. As
three independent markings exist for DRIVE [5], [1], [7], a
majority consensus was taken to derive the GT. A half ran-
dom split was done to generate the training and test sets from
each dataset. The number of vessel junctions (bifurcations
and crossovers) considered for evaluation is listed in Table.
1. The performance of the proposed approach was evaluated
with the following metrics: sensitivity/recall (Se), specificity
(Sp), accuracy (Acc), precision (Pr), F1 score (F ) and area
under the ROC curve (AUC). Detected junctions within a ra-
dius of 4 pixels of GT points were taken to be true positives
(TPs).

Table 1. Dataset split used in experiments. Jn denotes the
number of junctions. Subscripts denote the type: bifurcations
(b) and crossovers (c).

Dataset Images Training Testing

Jn(Jb/Jc) Jn(Jb/Jc)

DRIVE [11] 40 2684 (1923/761) 2064 (1513/551)

IOSTAR [1] 24 757 (550/207) 939 (663/276)

STARE [12] 20 2561 (1266/1295) 2489 (1291/1198)

CHASE DB1 [13] 28 1575 (698/877) 1335 (580/755)

ARIA [14] 40 972 (682/290) 1168 (815/353)

Total 152 8549 7995

4.1. Junction detection results

A class imbalance exists between junctions and non-junctions
classes in the set of candidates. This was handled with over-
sampling by rotating the patches in arbitrary directions. A
RF classifier of 200 trees was used for classification. The ob-
tained values for different performance metrics are listed for
the proposed method and the state-of-the-art method [1] in
Table. 2. Our approach can be seen to outperform BICROS
[1] on both DRIVE and IOSTAR, while it achieved the best
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Se, Sp and F on all datasets. The higher Se is due to the dis-
criminative power of VKD in differentiating vessel junctions
from the complex background. The COHD is able to elimi-
nate the false positives among the clusters of C leading to a
higher Sp. Results reported by [4] on DRIVE and STARE are
only on a subset of images precluding a thorough comparison.
The GRAID method in [15] is evaluated using two different
GT’s on DRIVE whereas the data provided in [7] is the only
one publicly available. Hence, we restrict our comparison to
[7]. The results on CHASE DB1 and ARIA data sets are also
consistently high. Overall, the obtained results indicate that
the proposed method is robust to changes in image resolution.

Table 2. Comparative evaluation of junction detection.
Method Dataset AUC Acc Se Sp Pr F

BICROS DRIVE - - 0.74 - 0.81 0.67
IOSTAR - - 0.65 - 0.77 0.61

Our method

DRIVE 0.79 0.75 0.79 0.66 0.81 0.80
IOSTAR 0.90 0.85 0.87 0.81 0.94 0.90
STARE 0.83 0.78 0.80 0.73 0.89 0.85

CHASE DB1 0.90 0.81 0.80 0.84 0.93 0.86
ARIA 0.79 0.71 0.70 0.74 0.87 0.78

Table 3. Comparative evaluation of junction classification.
Method Dataset AUC Acc Se Sp Pr F

BICROS DRIVE - 0.83 0.59 0.91 - -
IOSTAR - 0.83 0.67 0.93 - -

Our
method

DRIVE 0.93 0.87 0.86 0.87 0.70 0.77
IOSTAR 0.94 0.89 0.88 0.89 0.76 0.82
STARE 0.91 0.85 0.88 0.84 0.62 0.73

CHASE DB1 0.91 0.87 0.83 0.88 0.67 0.74
ARIA 0.93 0.90 0.84 0.92 0.81 0.83

4.2. Junction classification results

Once again, a class imbalance is observed between the bi-
furcation and crossover classes which was handled by over-
sampling, by rotating the patches in arbitrary directions. An
RF classifier with 500 trees was trained. Table. 3 depicts
the bifurcation versus crossover classification performance.
There is a boost in Se of ≈ 20% relative to BICROS method.
[7] reports only vessel bifurcation performance without tak-
ing into account the complex bifurcation/crossover struc-
tures. Similarly [4, 5] have reported the bifurcation/crossover
classification performance independently against the back-
ground. Hence, the proposed approach cannot be directly
compared with those methods. In general, most of the pre-
vious techniques are not able to model the complex bifurca-
tion/crossover points whereas the proposed approach is able
to better discriminate even a complex bifurcation/crossover
points which have not been addressed previously in the lit-
erature. Hence, our method is more robust and reliable for
junction classification task.

5. CONCLUSION

We have proposed a fully automatic, end-to-end solution for
vessel keypoint analysis. This is based on a novel keypoint

detector (VKD) which operates on a thinned vessel map and
uses local orientation information to extract keypoints. The
detected keypoints are in the vicinity of vessel junctions. The
inclusion of shape information in addition to orientation aids
in localizing junctions and classifying them accurately. Ex-
perimental results show the proposed system to be capable
of handling the challenges posed by the thinning algorithms
and robust to variations across datasets. It also outperforms
state-of-the-art techniques on five publicly available retinal
datasets. The proposed VKD has potential for extension to
3D and supporting further analysis of the vessel tree. These
are some directions to be explored in the future.
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