
An Empirical Study of Effectiveness of
Post-processing in Indic Scripts

V S Vinitha, Minesh Mathew and C V Jawahar
CVIT, KCIS

International Institute of Information Technology
Hyderabad, India, 500032

Email: vinitha.vs@research.iiit.ac.in, minesh.mathew@research.iiit.ac.in, jawahar@iiit.ac.in

Abstract—This paper explores the effectiveness of statistical
language model (SLM) and dictionary based methods for detec-
tion and correction of errors in Indic OCR output. In SLM, we
use unicode level ngrams for building the language model. We
compare its performance with akshara level ngrams and find that
akshara level ngrams perform better in detecting the errors when
compared to unicode level ngrams. We experimentally analyze
the performance of Indic OCR post-processing using dictionary
method, compare the performance with English and analyze
the reasons for the under-performance in Indic scripts. We use
four major Indian languages for our experiments, namely Hindi,
Gurumukhi, Telugu and Malayalam.

I. INTRODUCTION AND RELATED WORK

Errors in OCR system are largely unavoidable and occur
due to issues like poor-quality images, complex font etc. A
post-processing system can help in improving the accuracy by
using the information about the patterns and constraints in the
word and sentence formation to identify the errors and correct
them. Indic OCRs have trailed behind in achieving accuracy
comparable to English OCRs [1], [2], which have claimed
accuracy close to 99%. The errors persisting in the recognized
text, after the shape classifier has done the recognition task,
are handled by a post-processing module. This module uses
the language information to improve the accuracy of text rec-
ognized further. First we explore the effectiveness of an SLM
based error correction technique, for post-processing. We have
used character (unicode) level bigram and trigram language
models to find the errors in the OCR output. Since aksharas
form a more meaningful sub-unit of a word, we evaluate the
performance of SLM based method using akshara level ngram
Model. It is often assumed that a simple dictionary method, if
employed can increase the accuracy significantly. We perform
experiments to understand the efficacy of dictionary based
method for error correction. We analyze if the dictionary based
method is able to correct the errors in Indic OCR output as well
as it perform in English.

Both SLM and dictionary based methods can only detect
error words which are not valid words in the language, known
as non-word errors. For example, consider the sentence “Take
a break”. If the OCR recognizes this sentence as “Tale a break”,
both the above mentioned approaches are bound to fail as Tale
is a valid word in English. These class of errors known as real
word errors require context information and can be corrected

by using a word level statistical language model [3]. Non-
word errors form a major portion of errors in the OCR output
and detecting and correcting them should itself improve the
OCR error rate significantly. Hence we restrict our work to
only non-word errors at present.

Most early spell checking and OCR error correction systems
were based on the simple technique of using a dictionary
for error correction [4]. Every word recognized is checked
for its presence in a dictionary and if not present is tagged
as an error word. This error word is then replaced by a
suitable word which is present in the dictionary. With the
advances in natural language processing (NLP) techniques,
especially the use of statistical language models (SLM) and
noisy channel models opened doors for alternate methods
for error detection and correction [3], [5]. In [3], Tong uses
letter ngrams and character confusion probabilities to find
possible word candidates for replacement of an error word.
A word-bigram model along with Viterbi algorithm is used
to predict the correct word which would fit in the sentence.
For the detection of real word errors, a trigram based noisy-
channel model is employed in [5]. Packer [6] used a dictionary
matching approach along with variations of Hidden Markov
Models (HMMs) for detecting OCR errors. In [7], Smith uses
a shape classifier model, a word ngram model and a binary
ngram dictionary model to detect the errors in English. In [8],
the Google Web 1T 5-gram data set was used for candidate
spellings generation and error correction.

The earliest works in error detection and correction were
mainly done in English and other Latin languages. When
the same techniques when adopted in Indic language OCRs
were less successful. There have been some attempts made
to develop post-processing modules for Indian languages to
improve the overall OCR accuracy. The scope of applying
part of speech taggers and other NLP techniques in Indic
OCR post-processing is restricted due to the unavailability
of such reliable models for these languages. Hence we can
find most early works focusing on individual languages and
their specific features such as the morphology of the words
or size and shape of the words. One such attempt is a shape
based post-processing system for Gurumukhi OCR [9] in which
size and shape of Gurumukhi words were used to create
partitions of words. This approach made use of the visual
similarity between words to correct them. An error correction



system for Bangla language is proposed in [10]. In this work,
morphological parsing of the word is done to split the word
into its root and suffix. Then a check is done to know if the root
and suffix part of the word can exist together grammatically.
An error detection scheme is proposed in [11], in which the
author uses an SVM classifier which is trained to learn the
error patterns. An ngram based error detection scheme is
also employed in which each ngram is validated by using
a precompiled table of ngram statistics. In a recent error
detection work, [12], a bidirectional RNN based method was
used to learn the patterns of correct and error words.

II. METHODOLOGY

We have conducted experiments using SLM and dictio-
nary, to analyze the performance of post-processing in Indic
scripts with English OCR output. In our experiments, we have
not included shape classifier accuracy information such as
the probability of recognized characters and next probable
character information. We also do not take into account the
character confusion information, which depends on the OCR
system used for recognition. Assuming that the OCR output
text is available, we use ngram probabilities to detect the errors
and find possible replacement words for correcting the errors
detected.

A. SLM based Post-Processing

1) Language Model Creation: The goal of using language
modeling here is to learn a probability distribution over a
sequence of tokens in a word. Tokens used here are characters
and aksharas in a word [13]. In SLM based error correction,
we have used the probability of bigrams and trigrams in
words for error detection and correction. Bigrams provide the
conditional probability of a token given the preceding token.
Bigram probability is equal to the probability of their bigram,
or the co-occurrence of the two tokens P (Wn−1,Wn) divided
by the probability of the preceding token. This is shown in
the equation below.

P (Wn|Wn−1) =
P (Wn−1,Wn)

P (Wn−1)

where Wn is the nth token and Wn−1 is the token preceding
it, i.e (n−1)th token. Similarly, a trigram uses the probability
of a character, given the previous two characters in a word.
We have created the language model using SRILM [14].
We have combined the corpus created from the 5K books
[15] and crawled corpus [16] to create the language model.
Smoothing is done to take into account those words which
have not appeared in the corpora, in which case a probability
of zero will be assigned to them. Many smoothing techniques
are available today like Additive smoothing, Good Turing
Estimate, Kneser-Ney smoothing etc [13] in which we have
used the Good Turing Estimate.

2) Error Detection using SLM: In this approach, we use
a unicode level language model which gives the bigram and
trigram probabilities of unicodes in a word. This is used as a
look-up table. We then find the average of bigram and trigram
probabilities of unicodes in the input word using the look-up
table. If this value is less than a threshold, we declare the
word as error and correct word otherwise. The basis of this
method is the assumption that all the non-word errors have
a probability (calculated from its constituent ngrams) much
less than that of the correct words. For each word which is
fed into the error detection module, we split the word into
its constituent unicode characters and obtain the bigram and
trigram probabilities of its characters. If a bigram or trigram is
not found in the bigram or trigram list, it is given a very low
probability value, indicative of the presence of an error. The
computation of the word probability is as follows. Consider a
word ”bags”. We begin by splitting it into ”b-a-g-s”. We then
append a start-of-word (< s >) and end-of-word (< /s >)
marker at the beginning and end of word. Now we identify
bigrams in the word, which in our case are {< s >b, ba, ag,
gs, s< /s > }. We find the product of these bigrams which
gives bigram probability of the word. The trigrams in this case
are {< s >ba, bag, ags, gs< /s > }. We also find the trigram
probability of the word. We compute the average of these two
probabilities, which is then used to decide if the word is error
or not. This is done by comparing the probability value with
a threshold previously estimated from a list of correct words
in the language.

3) Error Correction: The assumption behind this approach
is that the error in a word exists at the lowest probability
ngram. Now, to replace this ngram we find a list of ngrams
which are at least distance from the ngram to be replaced.
From the candidates for replacement, we choose that ngram
which maximizes the probability of the word. Repeat the
above steps on the result for a fixed number of times (for
correcting multiple errors) or till average of bigram and trigram
probability obtained is above a threshold. To replace an ngram,
we search both these bigram and trigram list because a deletion
error or an insertion error can be taken care of by looking in
both the lists. There are two possible issues we face in this
method. Even with many ngram replacements we may not get
a word probability which is satisfactory. In this case we stop
the replacement after a fixed number of iterations. The second
issue is that different ngram replacements can give us different
words which are all valid words in the language. In this case
we choose the word whose probability is the highest.

B. Dictionary based Post-Processing

1) Dictionary Creation: Generally, the success of dictio-
nary method depends on the size of the dictionary. In our case,
to create a large dictionary in English is a fairly easy task as
there are huge corpus like Google dataset [17] etc. In case of
Indian languages we have the limitation of corpus availability.
The only large corpus we can depend on is the crawled corpus
which is abundantly available [16]. However, the variation of
data you observe in books cannot be found in the crawled



data. Hence, we have used the words present in 5K book
corpus [15] to create a dictionary in all the five languages.
The words in the test book may have overlap with words in
the dictionary, but is not guaranteed. Let us call this dictionary
1. The details of the number of words in the dictionary 1 for
each language is given in the Table I. We have also created
another dictionary (dictionary 2) which contains all the words
in dictionary 1 along with the correct words in the book used
for testing.

Language English Hindi Gurumukhi Telugu Malayalam
Words in
dictionary1 38,727 92,620 90,844 258,299 331,007

Words in
dictionary2 40,410 93,530 91,297 264,831 336,013

TABLE I: Details of the vocabulary size used to build the dictionary1 and
dictionary2.

2) Error Detection: For error detection, we check if the
word is present in the dictionary or not. The word will be
labeled as a correct word only if the word is present in the
dictionary. Even if the word is a valid word, if it is not present
in the dictionary, it will be labeled as an error word. This is
critical in case of dictionary method because a dictionary with
insufficient word coverage will create a lot of false positives
(correct words recognized as errors). These words when passed
to the next stage will result in these words being replaced. This
causes the word error rate of the OCR pipeline to increase
rather than decrease after using a post-processor. The issue
in Indian languages is that the dictionary cannot cover all
the words. We cannot even guarantee that the dictionary will
cover most of the common words in the language. The reason
being that the words in languages like Malayalam, Telugu etc.
are agglutinative. Though their sandhi split words may exist,
their agglutinative combinations are difficult to cover. And we
cannot add all the agglutinated words to the dictionary as the
list is nearly endless because of the enormous combinations
of words generated.

3) Error Correction: When a word is detected as error in
the previous stage, the closest word from the dictionary is used
to replace it. As a first step, a list of top ’n’ candidate words are
retrieved from the dictionary. There are many ways to find the
closest matching word in the dictionary. A popular method
is using edit distance (Levenshtein distance) based distance
metric [18]. In this method, the distance is the number of
deletions, insertions, or substitutions required to transform the
source word into the target word. Another popular metric used
to find the closest matching words is Gestalt algorithm [19]
which is used in spell checkers.

We have conducted the experiments in four different In-
dian languages namely Hindi and Gurumukhi (Indo-Aryan
languages) and Telugu and Malayalam (Dravidian lan-
guages) [20]. We also compare the results of performance in
these languages with English. To analyze the errors corrected,
we divided the errors based on their distance from the actual
word into five classes namely, errors at distance 1 to 4 and
above 4. The classification of errors based on Hamming

Fig. 1: Figure shows errors classified according to its Hamming distance (1
to 4 and above 4) from the actual word in different language OCR outputs.

distance from the actual word is shown in Figure 1. The errors
at lower Hamming distances from the correct word should be
easier to correct than the ones which are at larger distances.
The errors produced depend on the shape classifier used and
the quality of images used for recognition. We can find that
in the Figure above, English has a significant portion of errors
which are above 4 distance from the actual word. This will
affect the error correction process in English. These types of
errors are due to faulty images or font issues which makes
comparison of different OCR errors difficult. Hence, we have
considered only those errors which are at a distance less than
equal to 3 from the actual word for error correction.

III. RESULTS AND ANALYSIS

A. Results using SLM

The results of error detection using unicode level SLM is
shown in Figure 2. The Figure shows errors at varying distance

Fig. 2: Error Detection using SLM at unicode level, for different errors at
varying distance from the actual word (shown in different colors).

from the actual word in different colors. It is observed that this
method does a significant role in detecting errors, especially
in languages like English and Gurumukhi. We repeated the
experiment, this time using aksharas instead of unicode level
SLM. The result of error detection using aksharas is shown
in Figure 3. The error detection accuracy for errors at various



distances are shown in different colors. A comparison of error

Fig. 3: Error Detection using SLM (akshara level for Indian languages and
unicode for English) for different errors (shown in different colors) at varying
distance from the actual word.

detection performance using akshara and unicode is shown in
Figure 4. It is clear that akshara level SLM do a significantly

Fig. 4: Figure shows comparison of Error Detection using akshara (blue color)
and unicode level (red color) SLM for Indian languages.

better job in detecting the errors. This is because insertion
or deletion of even a small glyph in the word can alter the
aksharas formed. When a valid word is split, the aksharas
generated also will be valid. On the other hand, splitting an
error word causes formation of invalid aksharas which are less
likely to be listed in the unigram list of aksharas. Formation
of such aksharas are indicative of presence of error in the
word. This information is not available in unicodes; hence
unicode performance is not as good as that of akshara split
words. It is also observed that in Malayalam, more than 75%
of the errors at Hamming distance 1 could be detected using
aksharas while around 30% only could be detected using
unicodes. Telugu also shows a significant improvement in error
detection results when we switched to aksharas. The error
correction using SLM at unicode level is shown in Figure 5.
The error correction is not significant in any of the languages
when unicode level language model is used. The result of error
correction using aksharas is shown in Figure 6. The results
using aksharas are better than those using unicode, both for

Fig. 5: Error Detection using SLM at unicode level, for different errors (shown
in different colors) at varying distance from the actual word. The errors beyond
distance 1 are not corrected using SLM.

Fig. 6: Error Correction using SLM (akshara level for Indian languages and
unicode for English) for different errors (shown in different colors) at varying
distance from the actual word. Very few errors beyond distance 1 are not
corrected using SLM.

error detection and correction. However, error correction using
unicode and akshara do not yield promising results in any
language. The use of ngrams for error correction can create
multiple candidate words. Since we have to choose only one
word for replacement, we have chosen the word with the
highest probability. This can create a situation wherein a cor-
rect replacement which does not have the highest probability
among the candidate words being ignored by the system.

B. Results and Analysis of Dictionary method

In the error detection experiment performed using dictio-
nary, in Hindi 57% of errors were detected and in Gurumukhi
66% of the errors were detected. The highest error detection
is observed in Malayalam and Telugu, 78% and 70% respec-
tively. In English, only 44% of the errors could be detected.
When we observed the errors in English, many errors which
occurred were real word errors, due to incorrect recognition of
punctuation etc. In Hindi, when matras were recognized incor-
rectly, inflection caused many incorrectly recognized words to
be valid words. The results of experiments of error correction
using dictionary method is shown in Figure 7, in which
we have retrieved the top 3 candidates for error correction



from the dictionary. In order to observe the performance of

Fig. 7: Figure shows the results using 2 different Dictionaries, Dictionary
which has all correct words corresponding to the error words included (red)
and one in which it is not explicitly included (blue). Gestalt score is used to
find the candidate words.

this method when all correct alternatives are available in the
dictionary, we have done the experiment using dictionary 2.
When using dictionary 1, we can see that in English, 56%
of errors could be corrected. However, after using dictionary
2, the percentage of error words corrected is 61%. When
we compare this with other languages, we can see that in
Malayalam, the correction accuracy increased from 36% to
62%. This is a significant increase. A similar behavior is
observed in Telugu, from 29% to 50%. Though Hindi and
Gurumukhi also have their error correction rate improved, it
is not comparable to the increase we see in Malayalam and
Telugu. This shows that the dictionary 1 covers many common
words in the languages in English, Hindi and Gurumukhi.
Whereas in Telugu and Malayalam, many words were added
which were not present in original dictionary. The error
detection in inflectional languages is easy if we are able to
create a good dictionary. An alternate method we can use is
to split the words which are agglutinated so that the words
before agglutination, if present in the dictionary can validate
the word. This requires improved language processing tools
in the language. The results using Levenshtein distance as the
distance metric are shown in Figure 8 which is comparable to
the results obtained using Gestalt score.

IV. SUMMARY

In Indic language OCRs, traditional methods used for error
detection and correction such as dictionary and character
ngrams alone cannot solve the problem. A major bottleneck is
the availability of a balanced corpus to create an unabridged
dictionary and word level language model. The dictionary
creation is particularly a difficult task for Dravidian lan-
guages such as Telugu and Malayalam due to the exploding
number of unique words. We also need grammatical tools
like morphological analyzers, POS taggers etc. to tackle the
problem effectively. Also when compared to unicode, aksharas
are more meaningful choice as the basic unit of a word in

Fig. 8: Figure shows the results using 2 different Dictionaries, Dictionary
which has all correct words corresponding to the error words included (red)
and one in which it is not explicitly included (blue). Levenshtein distance is
used to find the candidate words.

Indian languages. Akshara level language models contain more
information when compared to unicode level language models.

Acknowledgment. Minesh Mathew is supported by TCS
Research Scholar Fellowship

REFERENCES

[1] R. Smith, “An overview of the tesseract ocr engine,” 2007.
[2] “Abbyy finereader.” [Online]. Available: http://finereader.abbyy.com/
[3] X. Tong and D. A. Evans, “A statistical approach to automatic ocr error

correction in context,” in Proceedings of the fourth workshop on very
large corpora, 1996.

[4] K. Kukich, “Techniques for automatically correcting words in text,”
ACM Comput. Surv., 1992.

[5] A. Wilcox-OHearn, G. Hirst, and A. Budanitsky, “Real-word spelling
correction with trigrams: A reconsideration of the Mays, Damerau, and
Mercer model,” 2008.

[6] T. L. Packer, “Performing information extraction to improve ocr error
detection in semi-structured historical documents,” in Historical Docu-
ment Imaging and Processing, 2011.

[7] R. Smith, “Limits on the Application of Frequency-Based Language
Models to OCR,” in ICDAR, 2011.

[8] Y. Bassil and M. Alwani, “Ocr post-processing error correction algo-
rithm using google online spelling suggestion,” 2012.

[9] G. Lehal, C. Singh, and R. Lehal, “A shape based post processor for
Gurmukhi OCR,” in Document Analysis and Recognition, 2001.

[10] U. Pal, P. K. Kundu, and B. B. Chaudhuri, “OCR error correction of an
inflectional indian language using morphological parsing,” Journal Of
Information Science and Engineering, vol. 16, 2000.

[11] N. Sankaran and C. V. Jawahar, “Error detection in highly inflectional
languages,” in ICDAR, 2013.

[12] V. Vinitha and C. Jawahar, “Error detection in indic ocrs,” in DAS, 2016.
[13] C. D. Manning, H. Schütze et al., Foundations of statistical natural

language processing, 1999.
[14] A. Stolcke et al., “Srilm-an extensible language modeling toolkit.” in

INTERSPEECH, 2002.
[15] D. Arya, T. Patnaik, S. Chaudhury, C. V. Jawahar, B.B.Chaudhuri,

A.G.Ramakrishna, C. Bhagvati, and G. S. Lehal, “Experiences of
integration and performance testing of multilingual ocr for printed indian
scripts,” in ICDAR, 2011.

[16] D. Goldhahn, T. Eckart, and U. Quasthoff, “Building large monolin-
gual dictionaries at the leipzig corpora collection: From 100 to 200
languages.” in LREC, 2012.

[17] Y. Bassil and M. Alwani, “OCR context-sensitive error correction based
on google web 1T 5-gram data set,” American Journal of Scientific
Research, 2012.

[18] V. I. Levenshtein, “Binary codes capable of correcting deletions, inser-
tions, and reversals,” in Soviet physics doklady, 1966.

[19] J. W. Ratcliff and D. E. Metzener, “Pattern-matching-the gestalt ap-
proach,” Dr Dobbs Journal, 1988.



[20] A. Zograf, Languages of South Asia: a guide, 1982.


