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Abstract—While the problem of detecting generic objects
in natural scene images has been the subject of research for
a long time, the problem of detection of small objects has
been largely ignored. While generic object detectors perform
well on medium and large sized objects, they perform poorly
for the overall task of recognition of small objects. This
is because of the low resolution and simple shape of most
small objects. In this work, we suggest a simple yet effective
upsampling-based technique that performs better than the
current state-of-the-art for end-to-end small object detection.
Like most recent methods, we generate proposals and then
classify them. We suggest improvements to both these steps
for the case of small objects.
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I. INTRODUCTION

Though the problem of object detection in natural
scenes has seen a lot of research, especially since the
development of deep ConvNets, it is far from being solved,
particularly for the case of small objects. An object is
considered small if it occupies only a tiny portion of the
image (less than 1% of the image area). This problem
is very relevant in many of the challenging research
applications of today - like detecting pedestrians, traffic
sings and cars on roads and areal imagery.

Detecting small objects is a challenging task. Firstly,
it is very hard to distinguish small objects from generic
clutter in the background. This makes it hard for many
of the standard detectors that rely on ‘objectness’ due to
the drastic increase in the number of possible locations.
Secondly, the activations of small objects become smaller
with each pooling layer as an image passes through a
standard CNN architecture like VGG16. For example, if an
object has a size of 32×32, it will represent at most 1 pixel
after the block5 pool layer in VGG16. Such activations
can be easily missed. Thirdly, most small objects have sim-
ple shapes that are not decomposable into smaller parts.
On the other hand, popular CNN-based detectors excel
at learning hierarchical features. Lastly, there is no large
publically-available dataset for small objects. While MS
COCO and VOC2012 have specific instances of objects
being small, there are not any dedicated large datasets
for small objects. Also, much of the prior experience and
intuitions are on datasets with larger objects. While the
mean Average Precision using the state-of-art end-to-end
detectors on a dataset like PASCAL VOC is 76.3% [1],
the state-of-art on a dataset with only small objects is just
27% [2].

Figure 1. The problem of small object detection is hard because of
a much larger search space, background clutter and a weak signal after
passing through standard convolutional layers. For example, the mouse
(in the green box) is a small object and is hard to spot among the various
other objects of similar sizes present.

A class of popular detection techniques in recent years
involve suggesting several object proposal regions which
are then classified by a deep CNN model [3]. These tech-
niques are successful because the features obtained using
a deep CNN are more discriminative than hand-engineered
features. Unlike earlier times, when dense sliding windows
were used to look at probable object regions, algorithms
that look at low-level cues suggest much fewer and sparser
windows. These proposal generation methods made way
for a Region Proposal Network (RPN) [1], which was
found to not only generate better proposals, but also
greatly quicken the detection process when the weights
of the convolutional layers are shared with that of the
detector. In our work, we use a similar approach: an RPN
generates proposals which are then classified by a deep
CNN. The RPN as used in the de-facto standard detection
algorithm, Faster RCNN [1], misses several small objects
because of the large size of anchor boxes. Keeping this in
mind, we study the size of anchor boxes for a dataset. We
then show that this choice of anchor box size beats other
existing methods.

Works like [4] suggest that the classification
performance increases with the image size. One
way to approach the problem would be to upsample
the entire image and apply standard techniques on
this image. However, the computational cost increases



exponentially as the size of the image increases. Instead,
we can upsample small proposal regions. Here, we
take inspiration from recent works that convert low
resolution images to high resolution by hallucinating the
intermediate values. We develop a method that upsamples
proposal regions with the hope of improving the overall
classification performance.

The main contributions of this work are as follows:

• We formulate finding the appropriate sizes of the
anchor boxes mathematically and perform detailed
experiments to show the effectiveness in their choice.
We show that this gives us the state of the art end-
to-end trainable network for this dataset.

• We show how network-based super resolution tech-
niques can help improve performance

II. RELATED WORK

In the pre-deep learning era, works used specially-
crafted features for problems like vehicle detection in
aerial imagery [5]. However, since the emergence of deep
learning, the task of learning discriminative features has
been usurped by CNNs.

Many approaches have emerged in recent times that do
not use region proposals. YOLO [6] divides the image into
a grid and predicts class labels and bounding boxes for
each cell of the grid. Another interesting approach is Sin-
gle Shot Detection [7] which fixes boxes of various scales
where objects may lie and scores presence of objects for
each such box during test time. However, proposal-based
methods have been shown to outperform all proposal-free
methods as far as recall and accuracy are concerned [8].
[9] and [10] were popular methods for proposal generation
that used low and mid level features. The idea of using
deep networks to suggest proposals has gained traction
in recent years. While Deepbox [11] reranks proposals
generated by Edgeboxes [10], DeepProposal [12] uses an
inverse cascade that goes from the final to the initial
convolutional layers of the CNN. The Regional Proposal
Network introduced in [1] can share convolutional layers
with the classifier network. Here, anchor boxes of multiple
scales and aspect ratios slide across the feature map from
the last convolutional layer. The RPN acts as an attention
mechanism and tells the detector where to look.

[3] was made fast in [13] with the introduction of the
RoIPooling layer which maps images of any dimension
to a feature map of fixed dimension. Faster RCNN [1] is
essentially two components - an RPN which feeds to Fast
RCNN. All these approaches predict a bounding box and
probability of belonging to that class for every class. It
was observed that sharing weights between the proposal
network and detector not only significantly reduces run-
ning time, but also improves performance.

Several detectors [14] [15] [16] have emerged that build
upon the faster RCNN framework. However, most of them
only fleetingly mention the case of small objects. [17] [18]
and [19] look at modifying the fast RCNN architecture

for the problem of logo, face and pedestrian detection
respectively, all having instances of small objects.

Small object RCNN [2] is perhaps the first paper to
focus on the problem of small object detection. They
introduce a small dataset, an evaluation metric and provide
a baseline score. They suggest modifications to the Region
Proposal Network and show an improvement in recall
and mean average precision. Specifically, they suggest
choosing smaller anchor box sizes and attaching the the
anchor boxes to conv4 3 rather than conv5 3 of VGG16.
They go on to argue that the RoI pooling layer may not
preserve much information of small objects and hence
follow the RCNN framework. In this work, we build upon
their ideas and show how to make changes to perform just
as well in an end-to-end pipeline.

The low and high resolution spaces are different and
hence a one-network-fits-all approach may not work, since
most large datasets are heavily skewed towards large and
high resolution objects. Papers like [20] and [21] which
address activity recognition in low resolution videos, map
both low and high resolution to a common space. [20]
shows that the problem of working in such low resolutions
is harder as the space is very sensitive to even slight
translations. [21] uses high resolution to assist learning
filters for the low resolution domain. We use a different
approach in this work. We leverage the fact that classifiers
work well in the high resolution domain. we use super-
resolution to transfer the task of classification to a network
pretrained on high resolution images.

The problem of image denoising and image super-
resolution are well studied and have seen numerous ap-
proaches in the deep learning era. [22] showed how to
train an end-to-end neural network for the task of Single
Image Super Resolution. [23] and [24] use recursive CNNs
and sub-pixel level convolution while [25] uses an auto-
encoder model. We use [25] because of the relative ease
to experiment with it.

III. APPROACH

A. Proposal Generation
We make several modifications to the Faster RCNN [1]

Region Proposal Network so that it performs well for
the specific tasks of small objects. [13] suggested using
powers of two like 1282, 2562, 5122 for anchor box sizes.
While these anchor box sizes were shown to work for
large objects, these are too large for small objects.

We follow [17] to theoretically estimate the size of the
anchor boxes. The performance metric commonly used
in detection to decide if a proposal is correct is to see
if the Intersection over Union is greater than a threshold
(typically 0.5). More formally, like in Figure 3, if Sgt is
the side length of the ground truth object and SA is the
side length of an anchor object, and d is the displacement
of the two boxes, the IoU is defined as

(Sgt − d)2

S2
gt + S2

A − (Sgt − d)2
(1)

We want the quantity described in equation 1 to always
be greater than a threshold t. In other words, we want



Figure 2. The pipeline for our approach - discriminative features that can be used for proposal generation and classification are obtained by passing
the image through a standard pre-trained deep convolutional net. A region proposal network generates regions of interest based on the objectness of
the region. These proposals are upsampled and flow through a super-resolution network after which they are classified.

min IoU ≥ t. We will only consider the case when SA ≥
Sgt. Solving for SA, we get,

(Sgt − d)2(1 + t−1)− S2
gt ≥ S2

A (2)

The size of Sgt is dependent on our dataset. The worst
possible overlap happens when the stride is largest. The
value of d is dependent on the number of downsampling
layers the image undergoes. Since we are fixing the anchor
boxes after the fifth convolutional block, d = 16 .

Thus, from equation 2, we get an upper limit for the
size of an anchor box for a given ground truth image.
This also gives us a bound on the size of the ground truth
image for which our method will work, since S2

A needs to
be positive. We also note from [17] that Sgt/SA ≤ 1/

√
2.

Here, we assume the bounding boxes to be squares. The
same kind of relationship holds for other aspect ratios
also. We analyze the size of objects in our dataset (Figure
4) and get our anchor boxes as {16, 25, 32, 45, 64, 90}.

Figure 3. The choice of the size of anchor boxes is such that for
all possible ground truth sizes and strides, an anchor box will have an
overlap greater than a threshold.

Unlike [2], we train the RPN in an end-to-end manner
to predict bounding boxes as well as class scores. This
has been shown to improve performance [3]. Also, unlike
them, we add batch normalization layers after every block
in our VGG16 convnet.

B. Upsampling

According to [2], an RoI pooling layer loses discrimina-
tive features. They find that classifying upscaled proposals
gives a better performance than classifying patches despite
the fact that aggressively upscaling adds undesirable arti-
facts and results in a noisy image. We instead leverage
recent work in super-resolution to denoise the image and
get a high resolution image.

A fairly common approach in super-resolution is to
first upscale the low resolution image and use a CNN to
denoise the image. The upscaling operation uses a hand-
crafted filter like bilinear or bicubic interpolation. Such
filters are but special cases of a deconvolutional layer as
argued in[26]. A deconvolutional layer can be thought of
as a convolutional layer with fractional stride. A network
with deconvolutional layers might learn more complex,
non-linear upsampling, specific to the dataset.

We use an implementation of [25] which uses a
convolutional-deconvolutional network with skip connec-
tions. The usage of skip connections in the autoencoder
makes the network easier to train while also ensuring that
the deconvolutional layers can use the semantic informa-
tion captured by the convolutional layers. The network is
pretrained on a large dataset like Imagenet.We train a CNN
on the super-resolved train images like in [2]. We use the
VGG16 weights for the convolutional layers of a classifier
which we use to classify the upsampled test proposals.

IV. EXPERIMENTS AND DISCUSSION

A. Dataset and Performance Metric

The dataset used in our experiments is the Small Object
Dataset introduced in [2]. This is a collection of 4925
images from Microsoft COCO and the SUN dataset. Ten
categories were chosen such that a typical instance of the
object was no larger than 30cm in the physical world.
Among all images which contained these classes, only
those images which contained objects occupying a small
area were chosen. The dataset is quite challenging for the
following reasons :



• A significant percentage of the instances occupy less
than 16 × 16 pixels (Figure 4). This is on average
0.2% of the image area. In contrast, datasets like VOC
have objects that occupy 14% of the image area on
average.

• There is class imbalance - while the category mouse
has 1739 instances, the category tissue box has only
100 instances.

• The absence of high-resolution images for these cate-
gories is a major drawback. If high-resolution images
were present,.

• The small size of the dataset with just 6000 train
instances limits proper fine-tuning of existing meth-
ods for the case of small objects, let alone train full
end-to-end systems from scratch.

We evaluate with the commonly used performance
metric in detection: a predicted bounding box is considered
a correct detection if the Intersection over Union (IoU)
overlap with the ground truth bounding box is greater than
0.5. The performance of the whole detection algorithm is
measured using mean Average Precision (mAP), which
essentially denotes the area under the precision-recall
curve.

Figure 4. Size distribution in the dataset. Most objects are too small to
be detected by the default anchor box sizes

B. Proposal Generation
We evaluate the choice of anchor box sizes against the

default choice in Faster RCNN and those used by [2]. We
use the standard faster RCNN framework with VGG16 as
the backbone. The anchor boxes are attached to the conv5
layer of VGG16. The aspect ratios are the same as that
of faster-RCNN, namely, 1:1, 1:2 and 2:1. The network
is finetuned with a learning rate of 0.001 and a gamma
of 0.1 for 50000 iterations. We compare the mAP upon
taking the top 1000 proposals ranked on confidence of the
proposal belonging to a non-background class for every
test image.

While [2] uses the RCNN framework, we prefer ex-
perimenting with faster RCNN. The advantage of using
Faster-RCNN is that apart from being much faster during
testing and training, it does not require the storage of
generated proposals which takes up a lot of memory. Also,
we empirically found that attaching the anchor boxes to
conv5 performs better than attaching to conv4 or conv3
when training end-to-end.

Figure 5. mAP vs number of proposals: our choice of anchors performs
better than other methods even for much fewer proposals. It is interesting
that the performance stagnates or even decreases with more proposals
being considered.

We see that our choice of anchors performs better than
the default faster RCNN (Table 1). This is expected since
the smallest anchor box of size 128 is much bigger than
all instances in the dataset. [2] choose anchor boxes of
size 16,40 and 100. This performs much better than the
default values. The anchor box sizes we propose cover the
entire range of the small object sizes in the dataset.

To show that these anchors are adequate, we add two
more anchor boxes of sizes 40 and 100. We observe
that despite adding more anchor boxes, the performance
slightly reduces to 21.9%. This is due to the larger number
of proposals generated, which would include more pro-
posals of generic objects that are part of the background.
Because of the relatively simpler shapes of small objects,
objects of these background classes might be confused for
classes in our dataset.

Table I
SIZE OF ANCHORS VS PERFORMANCE. OUR CHOICE OF ANCHORS
PERFORMS BETTER THAN THE DEFAULT FASTER RCNN ANCHORS

AND THOSE USED IN [2] IN THE END-TO-END FASTER RCNN
PIPELINE.

Anchor Box sizes mean Average Precision (%)
faster RCNN [1] 9.4
Chen et al. [2] 18.3

Ours 22.4

C. Number of Proposals

We next compare the quality of the generated proposals
with the number of proposals we consider for every test
image and the choices for anchor box sizes. We continue to
use the faster RCNN framework. Proposals that belong to
a non-background class are ranked based on the classifier
score and the top-k are chosen for the calculation of mAP.

As observed in Figure 6, we notice that our choice of
anchor boxes beats [2] and the default Faster RCNN at all
choices of number of proposals. We attribute the decrease
in performance with more proposals to the observation
that most true positives occur in the top few proposals
itself, while there is an explosion in the number of false
positives as more proposals are considered. These false



Figure 6. Exemplar results of our method on the small object dataset. The detections are shown in green boxes. The last row shows failure cases.
In the first image, an armchair handle is classified as a mouse due to their similarity in shape. The second image shows a missed detection of the
clock because it was too faint. The phone in the third image has two components quite far apart for our proposal generation method to consider as a
single object.

Table II
RESULTS OF OUR END-TO-END METHOD ON THE 10-CLASS SMALL OBJECT DATASET. THE LAST COLUMN IS THE WEIGHTED AVERAGE

PRECISION. THE FIRST ROW IS THE END-TO-END TRAINED FASTER RCNN NETWORK WITH OUR ANCHORS. THE SECOND ROW GIVES THE
PERFORMANCE WITH THE RCNN PIPELINE AND UPSCALING [2]. THE THIRD ROW SHOWS THE IMPROVEMENT WITH SUPER-RESOLUTION.

Method Mouse Phone Switch Outlet Clock T. paper T. box Faucet Plate Jar Average
Faster RCNN 57.7 14.3 15.4 22.1 26.0 31.7 8.1 35.1 11.9 3.1 22.6

RPN and upscaling 56.8 16.4 31.1 29.4 31.9 29.4 23.4 31.3 9.3 4.2 24.8
RPN and

super-resolution 60.1 16.9 16.2 23.5 30.3 34.1 12.8 38.0 15.2 4.7 25.2

positives arise because of the similarity in shape of generic
background objects with the classes of interest.

D. Super-resolution

To investigate the effect of using supervised up-
sampling techniques, we parallel the approach followed
by [2]. Here, we use the RCNN framework wherein we
use our trained RPN with our choice of anchor box sizes to
generate region proposals. We then upsample the proposals
and use our trained classifier to rerank the scores for each
proposal. The results are summarized in Table 2, where
we observe that a super-resolution network improves per-
formance. This improvement can be attributed to how the
filters learned by convolutional layers don’t perform just

as well on low-resolution images. Low-resolution images,
when upscaled, have blurry edges and are rather pixelated.
However, these datasets are trained on medium and high
resolution images and hence the filters work best for this
resolution. This difference in resolution is mitigated by
super-resolution.

V. CONCLUSION

In this work, we explore the choice of anchor sizes for
small object region proposal generation. We also showed
how deep super-resolution methods improve the perfor-
mance for small object classification. It will be interesting
to see how super-resolution and cues such as context,
segmentation mask and saliency which have been shown



to work for generic object detection, can be incorporated
in an end-to-end faster RCNN framework for the case of
small objects.
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