
Multilingual OCR for Indic Scripts
Minesh Mathew, Ajeet Kumar Singh and C. V. Jawahar

Center for Visual Information Technology, IIIT Hyderabad, India.

Abstract—In Indian scenario, a document analysis system has
to support multiple languages at the same time. With emerging
multilingualism in urban India, often bilingual, trilingual or
even more languages need to be supported. This demands
development of a multilingual OCR system which can work
seamlessly across Indic scripts. In our approach the script is
identified at word level, prior to the recognition of the word.
An end-to-end RNN based architecture which can detect the
script and recognize the text in a segmentation-free manner is
proposed for this purpose. We demonstrate the approach for 12
Indian languages and English. It is observed that, even with the
similar architecture, performance on Indian languages are poorer
compared to English. We investigate this further. Our approach
is evaluated on a large corpus comprising of thousands of pages.
The Hindi OCR is compared with other popular OCRs for the
language, as a further testimony for the efficacy of our method.

Keywords—Multilingual OCR, RNN, Indic Scripts

I. INTRODUCTION

India uses 22 official languages [1], and many more unoffi-
cial languages for its communication, administration and doc-
umentation of her cultural heritage. Most of these languages
have their own scripts, which had also gone through revisions
(e.g. natural evolution, revisions to support the technology) on
a regular basis.

Though many of these languages share common linguistic
and grammatical structures, script remain very different except
for few languages (among the 12 languages Hindi and Marathi
use the same script–Devanagari and Bangla, Assamese and
Manipuri use Bangla script. Others have their own unique
scripts. See Figure 2.) Non-standardization of fonts and their
rendering schemes, especially the ones designed prior to the
emergence of Unicode, has made the development of OCRs
further challenging. Though there have been many attempts
in developing OCRs for Indian scripts from the 1970s to the
beginning of this decade [2, 3, 4], methods that can scale
across languages and yield reasonable results over a wide
variety of documents are not yet devised.

Data driven methods using machine learning for the pre-
diction are the natural choice for adapting the solution to
newer scripts and styles with minimal effort. Ideas from
machine learning were used for Indic scripts with the help of
nearest neighbors [5], neural networks [6] and Support Vector
Machine (SVM) methods [7]. Due to the mismatch between
the basic units for representation and rendering, (Unicode,
Akshara and the Glyphs), creation of examples for fully super-
vised machine learning methods remain very hard. Employing
large number of training examples and using a classifier that
can scale to these examples resulted in highly accurate char-
acter classifiers [8]. Even with powerfully trained classifiers,

Fig. 1. Example of a trilingual document. This document has three
languages — Sanskrit, Hindi and English.

such methods had difficulty in robustly segmenting/detecting
the character occurrences during prediction phase.

In recent years, we have explored the utility of Recurrent
Neural Networks (RNN) for recognition of Indic scripts [9, 10,
11]. In [11], more than 97% accuracy was reported for some of
the Indian languages on ∼1000 pages. RNN based methods are
suited for Indic scripts as they are segmentation- free, needs
minimal supervision and uses transition probabilities at feature
unit level. In this work, we extend this direction of research
further.

• The solution is extended to more Indian languages. Our
results are validated on larger data sets (∼5000 pages)
and results are superior to [11].

• A holistic solution to suit a natural multilingual setting
is developed. We employ the ideas from [12] to design a
fully RNN based scheme for this purpose.

• We further provide insight into a set of specific issues that
results in lower accuracy across Indic scripts compared to
English even when the recognition architectures are same
and the amount of data used is similar.

• Finally we empirically compare our approach with a
set of popular emerging OCR solutions for Indic scripts,
including that of Google OCR. Even with out any spe-
cial post processing scheme, our method outperforms
these methods that could possibly be using lessons from
English, very powerful algorithms and computational
resources. This validation is done on Hindi1.

1For data, resources and results please visit http://ocr.iiit.ac.in/

II. MULTI-LINGUAL INDIC OCR

There were attempts in the direction of Multilingual OCR
(M-OCR), especially bilingual OCRs (for example, Bangla-
Hindi [13] and Hindi-Telugu [8]). Some others were bilingual
in the sense that English was supported in addition to an Indian
language. Most of the earlier methods had script specific
rules for character segmentation and input representation. Our
approach to M-OCR, follows a uniform method across the
languages. It is designed to recognize 12 Indian languages
and English. It is essentially a set of OCR engines used along
with a script identification module. In the following sections
our approach is described in the context of challenges posed
by Indian languages.

A. Challenges in Input and Output Space

First generation of Indic OCRs used rule based solutions and
intuitive features for the recognition of characters. The second
generation OCRs continued with the definition of characters,
but moved forward with more principled features based on
signal processing or statistical techniques. Traditional machine
learning based methods used for Indic OCRs used multi-
class classification schemes implemented with neural networks
or SVMs. However, such solutions demanded two separate
modules. 1. A segmentation step that could create isolated
character examples. 2. A step that convert the class labels into
a Unicode sequence based on the ordering of these characters.

Indian language OCRs that were developed until recently
(with exceptions like [14]) used a segmentation scheme prior
to recognition. However, due to the complex nature of the
scripts, robust segmentation remained as the hardest block
in the pipeline. From a machine learning perspective, OCR
is more of a structured prediction problem where the output
is a sequence of characters/symbols of arbitrary length and
input is a sequence of feature vectors of varying length. For
similar structured prediction problems, people have used Max-
Margin Markov (M3) Networks [15], Hidden Markov Models
(HMM) [14], and RNNs [9]. This direction of research was
widely appreciated as segmentation-free recognition schemes.

For Indic scripts, input and output spaces are some what
more complex compared to English. The output space is
much larger. When all the possible characters which can
be generated by composition of consonants and vowels are
considered, the number of classes for Indian languages would
be a prohibitively large number. If the output space is modelled
as a series of k askharas, the output space would be all k-
permutations of these classes. For this work we use the output
space as a series of Unicodes. This considerably reduces the
size of the output space as total number of Unicodes in a
language is usually less than 200 (127 for Devanagari). Even
after this the size of the output space is larger compared to
English. At the input space, the feature sequence could differ
only minimally to yield very different Unicode sequences. This
demands precise modelling of the contextual dependencies of
the input sequence. Few examples where fine character shape
variations, resulted in wrong output sequences are shown in

Fig. 2. Examples of words from the popular languages used in India.
(from top left English, Assamese, Bengali, Gujarati, Gurumukhi, Hindi,
Kannada, Malayalam, Manipuri, Marathi, Odia, Tamil and Telugu) Many of
these languages have lot of commonalities in the language and organization of
the scripts. However, the visual appearance of the scripts vary a lot, making
the OCR development a different problem for each language.

section III. A RNN using Connectionist Temporal Classifica-
tion (CTC) [16] algorithm can do this in a segmentation-free
manner.

In the design of M-OCR for Indic scripts, we make use
of RNN, for two different but related problems — script
identification and segmentation-free OCR. Script identification
module is a RNN trained for sequence classification. The
network is trained to classify an input sequence of profile
features to a target script. Once the script is identified the word
is recognized on another RNN, which is trained for sequence
transcription. This network transcribes an input sequence of
binary pixel values to output Unicode sequence. The utility of
RNN for both the tasks - sequence classification and sequence
transcription, is discussed in the following two subsections.

B. Scripts: To Separate or Not ?

There are two different ways to build M-OCRs. i) train
a single OCR for all the languages, or ii) train an isolated
OCR for each language. Both these methods have their own
advantages and disadvantages. In first case, RNN would require
a very large corpus of data and cardinality of the output
space is much larger. With larger output space, the RNN
learning becomes time consuming as well as computationally
expensive. However, in latter case, the data required for RNN
training would be lesser and the output space would be smaller.
In this case the network would converge to an optimum in
lesser time. This approach defeats the purpose of the M-
OCR where we want a “single” OCR to recognize multiple
languages. Due to the demerits mentioned above for a lone
M-OCR, we introduce a process of script separation in the M-
OCR pipeline which would identify the script of the incoming
word beforehand and then send the word to the corresponding
script’s OCR engine.

In a recent work [12], it was shown that RNNs can easily be
used for script and language separation which do not require
any special tuning (n-grams, textures). In this approach, the
method represents word images as a sequence of feature
vectors, and then employs a RNN for the script and language
identification.

In Section III-A we establish the case for script separa-
tion module in M-OCR, by empirically comparing the two

approaches discussed.

C. English vs Indian Languages

In this section we investigate why the inherent challenges in
Indic scripts make the sequence transcription harder compared
to English. We also analyze how the prolonged memory of the
LSTM cells help a RNN to deal with these challenges.

Fig. 3. Confusion matrix for matras (vowel modifiers) in Devanagari
script .

Word Type # Words
Char.
Error

Word
Error

All Words 1.20M 2.30 8.4
Words w/o matra(s) 0.25M 2.34 4.10
Words with matra(s) 1M 2.30 11.70
Words with easily confusable matra(s) 0.20M 6.30 22.6

TABLE I
EFFECT OF matras ON RECOGNITION IN HINDI WORDS WITH matras
ARE MORE ERRONEOUS. Matras WHICH ARE BEING ATTACHED TO THE

BOTTOM OF OTHER SYMBOLS(U (0941), UU (0942), R (0943), RR
(0944) AND HALANT (094D)) ARE EASILY CONFUSABLE. WORD ERROR
RATES ARE MUCH HIGHER IN SUCH CASES AS SHOWN IN THE LAST ROW.

Firstly we see how the similar looking glyphs in Indic
scripts, especially the vowel modifiers (matras) make the
recognition harder. Figure 3 shows confusion matrix for (ma-
tras) in Devanagari script, which have lot of similar looking
glyphs among them. Higher rate of confusion among the
matras made us probe if this had any effect on the performance
of Hindi OCR. As evident from the Table I words with matras
have higher recognition error rates than words which do not
have matras. The relative difficulty in learning matras, espe-
cially the ones attached to the bottom parts of other symbols
is reflected in the output probabilities of these classes during
recognition. This is shown in Figure 4. Output activations for
classes corresponding to matras and other easily confusable
symbols are relatively lower.

The ability of RNNs to model contextual dependencies
within an input sequence, is critical in transcription tasks
involving Indic scripts, as the confusion among symbols is

a) b)

Fig. 4. Output Activations for a Hindi and a Malayalam word. Activation
for the matra symbol is relatively lesser than the activations for other classes
in case of the Hindi word (a). For the Malayalam word (b), output activation
of 5th character is slightly lesser compared to other characters. This character
is visually similar to the preceding two characters.

a) b) c)

Fig. 5. Visualizing use of context using Input Jacobians. Input Jacobian
is a means to assess the relative influence inputs on the output. Here Jacobians
of all top classes, at times when they are emitted are plotted. Brighter areas
in the plots correspond to inputs, which influenced the decision the most.

more. Therefore it is important to analyze how and where the
network uses context during a particular input sequence. In
case of RNNs we can have insights into the use of context
by measuring the sensitivity of the outputs to inputs. The

input Jacobian for a RNN, is defined as, J tt′

ki =
∂ytk
∂xt′

i

. The

above equation defines the relative sensitivity of output yk
at time t to the input xi at time t′. Since raw features are
used in our implementation, if we compute derivatives of a
single output unit at a particular time with respect to all inputs
at all times throughout the sequence, we would a get 2D
matrix of the same size as the input word image. If these
matrices are visualized as 2D images, brighter pixels would
be indicative of pixels in the input word image, which the
output is more sensitive to. In Figure 5, input Jacobains for
an (a) English, (b) Hindi and (c) Malayalam words are shown.
Jacobians are plotted as 2D images as described above, for
the top classes, when the classes are emitted. The magnitude
of the derivatives forms an ‘envelope’ around time at which
derivative is measured (t). The derivatives remain large for
around 10-20 pixels before and after t. In case of English
the ‘envelope’ is more vertically oriented, and in case of
Malayalam it is spread in all directions, reflecting the curvy
writing style of the Malayalam script. For the Hindi word, the
matra symbol, which had relatively lower output activation
(Figure 4), the ’envelope’ is broader indicating use of more

context in the decision. It is evident from the input Jacobian
plots that, the network make use of wider context, whenever
similar looking characters are encountered.

D. Implementation

The recognition system comprises of two RNNs. The first
one is used for script identification and the other for recogni-
tion. Hidden layers of both the networks consist of 3 levels of
50 Long Short Term Memory LSTM [17] nodes. There are two
sets of such hidden layers. One processes the input sequence
from beginning to end and the other in the reverse direction.
In this manner, context in both directions is made available.
The input is fully connected to both the hidden layers and the
output layer is fully connected to the two hidden layers.

For script identification, profile features extracted over a
sliding window are used. [12]. The 12 input nodes of the
RNN are fed with the 12 profile features, one timestep at a
time. Output layer is a soft-max layer with as many nodes
as the number of target scripts plus a class for blank or null
predictions.

The second RNN has a CTC output layer. All Unicodes in the
language block, Arabic numerals, basic punctuation symbols
and the null label form the set of output classes for each
language. Raw features of binarized word image are used as
features in this case. We resize the word images to a height
of 32 pixels, and hence a column of 32 pixels forms a feature
vector. The sequence of feature vectors is fed to the network
one at a time.

III. RESULTS AND DISCUSSIONS

In this section results of performance evaluation of M-
OCR and a discussion based on the results are presented.
Recognition performance with and without script separation is
studied in III-A. In section III-B quantitative and qualitative
results of M-OCR evaluation on a large corpus is presented.
This is is followed by a performance comparison of our system
with other popular OCRs for Hindi. In III-D we analyze why
a fully RNN based approach to M-OCR is well suited for Indic
scripts.

A. Script separation

In Section II-B, we discuss two ways to build a M-OCR.
One method is to train a single flat OCR for all languages.
The other method is to have a system with script separation
module and language specific OCRs in a hierarchical manner.
Here, we contrast both the methods and comment on the need
for a script separation module in a M-OCR.

In our first experiment, script separation is tried out on
two groups of 4 scripts - groups of South Indian and North
Indian scripts. We represent the word images as sequential
features using the method described in [12]. Both the groups
were mixed with English language. A RNN is trained for each
group separately. For both the groups, 100K words are used for
training and the resultant network is validated on 25K words.

Results of the script separation experiment is shown in
Table II. We report an accurate script separation for both of the

aforementioned groups. From the evidence, we can safely infer
that RNN is able to identify between English and other Indic
scripts accurately. Also, separation among Indic scripts is very
high. From North group, we are getting a higher accuracy of
99.29% for Gujarati and lower accuracy of 98.40% for Hindi.
From South group, we report a high accuracy of 99.57% for
Malayalam and lower accuracy of 98.78% for Kannada. The
lower accuracy of Hindi is probably due to its similarity with
Gurumukhi and similarly the lower accuracy of Kannada can
be attributed to its similarity with Telugu

Scripts
Acc(%)
(word)

North Scripts
English 99.99
Hindi 98.40
Bangla 99.16
Gurumukhi 98.63
Gujarati 99.29

Scripts
Acc (%)
(word)

South Scripts
English 99.98
Kannada 98.78
Malayalam 99.57
Tamil 99.13
Telugu 99.15

TABLE II
SCRIPT SEPARATION RESULTS ON GROUPS OF NORTH INDIAN AND

SOUTH INDIAN SCRIPTS

L1+L2 L1+L2+L3
(Bi/Tri)-lingual B1 B2 B3 B4 T1 T2
OCR bf ho bf ho bf ho bf ho tf ho tf ho
Average Char.
Error Rate 3.88 2.87 2.16 1.65 2.31 2.13 1.11 0.61 3.85 3.31 2.65 2.02

TABLE III
MULTILINGUAL OCRS: COMPARISON OF BILINGUAL (bf) AND

TRILINGUAL (tf) OCRS WITH HIERARCHICAL (ho) OCR. HERE,
B1,B2,B3 AND B4 ARE ENG+HIN, ENG+BAN, ENG+KAN, ENG+TEL OCRS

RESPECTIVELY. T1 AND T2 ARE ENG+HIN+KAN AND ENG+KAN+TEL
OCRS RESPECTIVELY. IN BOTH BILINGUAL AND TRILINGUAL SETTINGS,

HIERARCHICAL OCRS OUTPERFORM FLAT OCRS.

In order to establish the need for script separation in M-
OCR, we perform experiments with and without script separa-
tion in two multilingual settings - bilingual and trilingual. The
bilingual OCRs (bfOCR) are, i) English(Eng) and Hindi(Hin),
ii) English and Bangla(Ban), iii) English and Kannada(Kan)
and iv) English and Telugu(Tel). And, the trilingual OCRs
(tfOCR) are, i)English, Hindi and Bangla and ii) English,
Kannada and Telugu. In contrast to this a hierarchical system
is implemented(hOCR), which is a combination of script
separation module and isolated language specific OCRs. Now
we compare the bilingual and trilingual flat OCRs with the
proposed system– a hOCR. This comparison will enable us to
comment on the requirement for script separation module in
M-OCRs.

Table III shows the comparison of our hierarchical hOCR
with bilingual and trilingual flat OCRs. In both settings, the
hierarchical OCR comprising of a script separation module
and individual OCRs outperforms, flat bilingual or trilingual
OCRs. It is evident from these results that a hierarchical OCR
outperform flat, lone OCRs, in a multilingual setting, involving
a variety of scripts.

B. Evaluation on a Large Corpus

Language #Books #Pages #Lines #Words
Assamese 20 3.5K 93K 0.7M
Bangla 13 2.8K 96K 1.0M
Gujarati 25 5.0K 140K 1.1M
Gurmukhi 32 5.0K 140K 1.6M
Hindi 33 5.0K 112K 1.3M
Kannada 27 5.0K 129K 0.8M
Malayalam 31 5.0K 183K 1.0M
Manipuri 25 3.5K 91K 0.7M
Marathi 20 5.0K 154K 1.4M
Odia 17 5.0K 151K 1.4M
Tamil 23 5.0K 147K 0.7M
Telugu 28 5.0K 134K 0.8M
English 12 1.5K 47K 0.5M

TABLE IV
DETAILS OF THE DATASET USED IN OUR EXPERIMENTS.

Our dataset of Indian languages and English consist of
scanned images of printed documents with moderate complex-
ity. All the pages have been typed manually and is annotated
at word level using a semi-supervised approach [18].

The evaluation measure used for evaluating M-OCR perfor-
mance is Character Error Rate (CER). Character error rate is
defined as,

CER = (
Total Char Errors

Total Characters
)× 100

Total Character Error is computed using Levenshtein distance
method, by computing the distance between the output Uni-
code sequence and the desired Unicode sequence (Ground
truth).

Language
Pages
Tested Only Recognition

Segmentation
+ Recognition

Word Line Line
Assamese 1000 1.78 1.65 2.10
Bengali 1300 2.13 2.22 2.30
Gujarati 3500 3.42 3.00 4.70
Gurmukhi 3500 1.28 1.22 2.30
Hindi 3000 2.30 2.00 3.90
Kannada 3500 4.10 4.16 5.60
Malayalam 3500 0.88 0.74 3.60
Manipuri 2000 1.30 1.21 2.30
Marathi 3500 1.29 1.10 3.80
Odia 3500 3.49 2.40 3.30
Tamil 3500 2.44 4.00 5.60
Telugu 3500 2.00 1.90 4.86
English 300 0.93 0.65 1.25

TABLE V
M-OCR EVALUATION RESULTS . CHARACTER ERROR RATES OF ALL

OCRS AFTER EVALUATION ON THOUSANDS OF PAGES IN EACH LANGUAGE.
‘ONLY RECOGNITION’ IS THE CASE WHERE, LINE OR WORD IMAGES

COULD BE USED DIRECTLY (USING ANNOTATION). THE LAST COLUMN
SHOWS RESULTS OF OCR, WHEN THE PAGES WERE ANALYZED AND

SEGMENTED INTO TEXT LINES AUTOMATICALLY.

Table V shows the results of OCR transcription for all lan-
guages. We tried out both word level and line level transcrip-
tions when segmentation was available (i.e only recognition
is evaluated). The last column of the table shows error rates

when segmentation was automatic and transcription was at
line level. In each language around 20% of the total pages
were used for training, 10% for validation and the rest for
testing. The results of our approach are analyzed qualitatively
in Table VI. We study the success and failures under three
themes - script misclassification, Recognition in presence of
easily confusable symbols and effect of image degradation.

C. Comparison with other systems for Hindi

OCR Char. Error Rate
NEW OCR [19] 67.40
i2OCR [20] 10.00
ind.senz [21] 8.57
Google [22] 7.10
Our Method 5.85

TABLE VII
PERFORMANCE COMPARISON OF OUR SYSTEM WITH OTHER POPULAR

OCRS IN HINDI.

In the past few years there has been mounting interest in
Indian language OCR, especially in Devanagari OCR. There
have been efforts to train the Tesseract OCR engine for
Devanagari script and few commercial OCR systems have
also been released. We have compared our Hindi OCR with
the popular Hindi OCRs and the results are presented in VII.A
separate dataset of 100 images, with varying levels of image
quality and layout complexity were used in the experiment.

D. Discussion

Amidst the inherent complexities of Indian scripts and wide
variations in the input and output spaces across languages, a
practical solution to OCR for Indic languages using modern
machine learning tools was devised. We report accuracies of
more than 95% for all the languages, even after segmenta-
tion errors are counted for (Table V). And this is further
corroborated by Table VII, where our method outperformed
other popular Hindi OCRs. Most of these systems use language
specific rules, and often employ a post processor in the final
stage to refine the recognition results. In contrast to this we
follow a uniform approach for all languages, relying solely on
the sequence learning capabilities of the RNNs.

A RNN with a CTC output layer could directly map from a
sequence of input vectors to output Unicode sequence. This
ability to transcribe did away with the need for segmentation
of text lines into words, and further segmentation of words
to symbols. This was critical in our case where sub word
segmentation is often difficult.

Unicode representation of Indian scripts is not monotonic
and requires reordering of the Unicode points at places where
matras (vowel modifiers) are present. In cases where latent
symbols are classified, explicit rules had to be written to map
from the output symbols to Unicode sequence of the word.
In a transcription setting, the Unicode reordering scheme is
learned by the network, on its own.

Hindi Telugu Tamil Kannada Malayalam Odia

A

B

C

D

TABLE VI
QUALITATIVE RESULTS OF OUR APPROACH TO SCRIPT SEPARATION AND OCR. EXAMPLES OF SCRIPT MISCLASSIFICATION ARE SHOWN IN (A). IN

(B) ARE RECOGNITION RESULTS WHERE A CHARACTER IS CONFUSED WITH ANOTHER SIMILAR LOOKING CHARACTER. DEGRADED IMAGES WHICH
WERE NOT CORRECTLY RECOGNIZED ARE SHOWN IN (C). AND (D) SHOWS IMAGES WHICH WERE CORRECTLY RECOGNIZED, EVEN WITH DEGRADATIONS

RNNs with LSTM cells in the hidden layers have access
to unlimited range of context. And with two sets of hidden
layers for processing the input sequence in both forward and
backward directions, both past and future contexts were made
available while emitting any output. This helped in two ways in
our case. Most Indian languages are highly inflectional which
induces a large vocabulary and longer average word lengths.
LSTM cells’ ability to keep gradients for unlimited time solved
the problem of vanishing gradients and any length sequences
could be transcribed with full access to the context. Secondly
availability of longer contexts from both past and future,
helped in accurate predictions in a setting where matras, and
other similar looking symbols demanded perfect modelling of
contextual dependencies in the input sequence.

A web interface for M-OCR is being developed and will
soon be available for the general public. For details please
visit http://ocr.iiit.ac.in/.

IV. CONCLUSION

Our approach presented in this paper, addresses the need
for a multilingual OCR in Indian setting. A single recognition
system, but comprising of multiple OCR engines was used.
The crux of our solution lies in detecting the script prior
to recognition. This enabled each word to be recognized on
an OCR, trained exclusively for the script. Each individual
OCR was devised using a RNN, without any language specific
modelling. We have investigated ‘why’ and ‘how’ RNNs could
do this, despite the complexity of the scripts and variations
across scripts. With the web based system in place, we
would get a chance to evaluate our sytem on wide variety
of documents. We are working on methods to make the best
use of the new data, in further improving the performance of
our system.

REFERENCES

[1] “Census 2011,” http://censusindia.gov.in/.
[2] R. M. K. Sinha and H. Mahabala, “Machine recognition of dev-

nagari script,” in IEEE Trans. on Systems, Man and Cybernetics,
1979.

[3] B. Chaudhuri and U. Pal, “A complete printed bangla OCR
system,” Pattern recognition, 1998.

[4] D. Arya, T. Patnaik, S. Chaudhury, C. V. Jawahar,
B.B.Chaudhuri, A.G.Ramakrishna, C. Bhagvati, and G. S.
Lehal, “ Experiences of Integration and Performance Testing
of Multilingual OCR for Printed Indian Scripts,” in J-MOCR
Workshop,ICDAR, 2011.

[5] K. Aparna and A. Ramakrishnan, “A complete tamil optical
character recognition system,” in DAS, 2002.

[6] R. Sanjeev Kunte and R. Sudhaker Samuel, “A simple and
efficient optical character recognition system for basic symbols
in printed kannada text,” Sadhana, vol. 32, no. 5, 2007.

[7] T. Ashwin and P. S. Sastry, “A font and size independent OCR
system for printed kannada documents using support vector
machines,” in Sadhana, 2002.

[8] C. V. Jawahar, M. N. S. S. K. P. Kumar, and S. S. R. Kiran, “A
bilingual OCR for hindi-telugu documents and its applications,”
in ICDAR, 2003.

[9] N. Sankaran and C. V. Jawahar, “Recognition of printed de-
vanagari text using blstm neural network,” in ICPR, 2012.

[10] N. Sankaran, , and C. V. Jawahar, “Devanagari Text Recogni-
tion:A Transcription Based Formulation,” in ICDAR, 2013.

[11] P. Krishnan, N. Sankaran, A. K. Singh, and C. V. Jawahar,
“Towards a robust OCR system for indic scripts,” in DAS, 2014.

[12] A. K. Singh and C. V. Jawahar, “Can RNNs reliably separate
script and language at word and line level?” in ICDAR, 2015.

[13] B. Chaudhuri and U. Pal, “An ocr system to read two indian
language scripts: Bangla and devnagari (hindi),” in DAS, 1997.

[14] Premkumar S. Natarajan and Ehry MacRostie and Michael
Decerbo, “The BBN Byblos Hindi OCR system,” in DRR, 2005.

[15] B. Taskar, C. Guestrin, and D. Koller, “Max-margin markov
networks,” in NIPS, 2004.

[16] A. Graves, S. Fernández, F. Gomez, and J. Schmidhuber,
“Connectionist temporal classification: Labelling unsegmented
sequence data with recurrent neural networks,” in ICML, 2006.

[17] S. Hochreiter and J. Schmidhuber, “Long short-term memory,”
Neural Comput., 1997.

[18] C. V. Jawahar and Anand Kumar, “Content-level Annotation
of Large Collection of Printed Document Images,” in ICDAR,
2007.

[19] “New ocr,” https://www.newocr.com/.
[20] “i2ocr free hindi ocr,” http://www.i2ocr.com/

free-online-hindi-ocr.
[21] “ind.senz,” http://www.indsenz.com/.
[22] “Google ocr,” https://support.google.com/drive/answer/176692?

hl=en.

