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Abstract— The Simultaneous Localization and Mapping
problem (SLAM) in robotics is typically modeled as a dyadic
graph of relative pose measurements taken by the robot. The
graph nodes store the values representing the absolute pose of
the robot at a given point of time. An edge connecting two nodes
represents robot movement and it stores the measurements
taken by the robot sensor while moving between two nodes. The
objective of the SLAM problem is to find the optimal global
measurements best satisfying the noisy relative measurements
[12]. This problem of optimal estimation on a graph given
relative measurements is a well-studied problem within the
control community, for which several results and algorithms
are known [3, 4]. SLAM is generally solved as a least squares
problem. Robust kernels which are less sensitive to outliers are
used to deal with noise and outlier measurements. However,
robust kernels tend to be dependent on initialization and can fail
as the number of outliers increase. Therefore, it’s important to
identify and prune the outlier (noisy) measurements represented
by incorrect loop closure edges for an accurate pose estimate.

In this paper we propose a multi-scale Heat-Kernel analysis
based loop closure edge pruning algorithm for the SLAM
graph. We show that compared to other pruning algorithms,
our algorithm has a substantially higher precision and recall
when compared and is able to handle a large amount of outlier
measurements. We have corroborated results on several publicly
available datasets and several types of noise. Our algorithm is
not restricted to SLAM graphs only, but has a much wider
applicability to other types of geometric graphs.

I. INTRODUCTION

The SLAM problem in robotics is a long studied problem
with robust algorithms to solve it. It is typically formulated
as a graph G = (V, E) with the nodes representing robot
poses and the edges capturing the measurements taken by
the robot sensor while moving between the associated nodes.
This is a special case of the another well-studied problem of
assigning node values that best satisfy the edge constraints
imposed by the graph. A problem that arises in other forms
like sensor network localization, optimal sensor placement
placement, etc. In case of SLAM, the node values v € V
represent robot poses (usually v € SE(2) or SE(3)) relative
to a fixed co-ordinate frame, canonically taken as the starting
position of the robot. Each edge e = (v;,v;) € E connecting
nodes v; and v; represents a relative measurement between
the two nodes that are collected by a sensor mounted on
the robot. There are mainly two types of sensors on the
robot, Odometry sensors and Exteroceptive sensors. Odom-
etry sensors construct edges connecting successive nodes
and tend to be locally accurate. Exteroceptive sensors, like
cameras, enable edge constructions between non-successive
nodes by recognizing places that a robot has visited before
and connecting them in the SLAM graph. These edges are
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Fig. 1.  Original and Optimized Pose-graphs. The thick dark blue line
represents odometry edges. Fine Blue lines denote correct loop closures
while the red lines denote an incorrect loop closure. (a) The pose-graph
of KittiOO along with added synthetically added outlier loop closures. (b)
The desired ground truth map. (¢) The optimized map from Switchable
Constraints [23]. Note that a several outlier loop closure edges have been
retained. (d) The output of RRR algorithm [18]. Although all the incorrect
loop closures have been deleted here, several of the good loop closures are
missing as well. (e) The robust pose-graph output from our proposed loop
closure pruning method. Note that all the good loop closure edges have
been successfully retained while being able to prune all the incorrect ones.
(f) The final DCS [1] optimized map obtained from robust pose-graph.

called Loop Closure (LC) edges, which as the name suggests
indicate that the robot has returned to a previous location and
it’s path has formed a loop.

A SLAM solution assigns pose values to all the graph
nodes such that they optimally satisfy the edge constraints.
A natural formulation for this would be as a non-linear
least squares fitting of the node values to satisfy the edge
measurements optimally. However, unlike odometry sensors,
exteroceptive sensors tend to be more noisy and introduce
significant number of outliers by establishing edges between
incorrect nodes. This generally occurs due to a perceived
similarity between distant nodes. The phenomenon is called
perceptual aliasing, and occurs in map regions due to high
self-similarity in architecture or greenery. To handle the out-



liers arising due to this phenomenon, researchers in SLAM
have used robust penalty functions in the form of non-linear
kernels instead of the standard 1, penalty used in the least-
squares problems, and were able to handle a fair amount of
noise and reject outliers to a great extent.

However, like all non-linear optimizations, robust kernels
are also very sensitive to initialization and can fail catas-
trophically with a sub-optimal initialization. An alternative
approach to handle the outlier LC edges would be simply
to prune them from the graph. This paper takes the later ap-
proach. We plan to build on Spectral Graph Theoretic (SGT)
framework to identify and remove outlier edges from the
SLAM graph. SGT based techniques have been successfully
applied for topological analysis of graphs in multiple domain.
However, we know of only few recent results where SGT
techniques have been used to analyze the SLAM graph [16,
15].

In this paper we propose a multi-scale Heat-Kernel anal-
ysis based novel LC edge pruning algorithm for the SLAM
graph. We show that it is capable of handling various types
and significant amounts of noise in the graph structure and
still manage to prune the outlier LC edges with a high
precision and recall. We compare our algorithm against
other pruning algorithms proposed in the literature [18, 23]
and show superior results in terms of standard performance
metrics.

A pictorial representation of a result from our algorithm
has been shown in figure 1 (e) and 1 (f). Considering a
kittiO0 pose graph which is heavily corrupted by outlier LC
edges, our proposed algorithm can successfully prune the
incorrect loop closures which are incoherent with the rest of
the pose graph, where as other algorithms like Switchable
Constraints(SC) delete scarcely any loop closures while
Realizing, Reversing and Recovering (RRR) deletes several
of the correct loop closures as well. On the other hand, in
1(f) we see that our algorithm visually appears closer to the
ground truth.

II. MOTIVATION & CONTRIBUTION

The pose graph has an interesting structure making it
amenable to such an analysis. One can easily adopt the
weighted undirected graph representation for pose-graphs
where the non-zero edge weighting scheme can model the
uncertainity/confidence in each edge including both odom-
etry and LC edges. In particular, we propose to adopt a
convention where odometry edges can be set to relatively
large values in comparison to the LC edges (set close to
zero values) owing to the higher confidence in the odometric
measurements as opposed to the LC constraints.

Speaking in terms of signal and noise, the pose graph
usually has a very high signal-to-noise ratio along it’s odom-
etry edges, due to their relatively accurate measurements.
On the other hand, LC edges typically have a lower signal-
to-noise ratio, attributed to higher uncertaininty from the
exteroceptive sensor.

SGT techniques embeds graph nodes as points into the
spectral space spanned by the eigen-vectors of the graph
Laplacian matrix (corresponding to smaller eigen-values, see
section IV). These eigen-vectors also have a dual PCA-like
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Fig. 2. (a) The pose graph with the added correct loop closure (green)
(at the end of the odometry path) and incorrect loop closure (red). (b) The
corresponding loop closures drawn in the spectral space (see Section IV).
The incorrect loop closure in (red) is still long enough while the correct
loop closure in (green) has collapsed and is barely visible.

interpretation for graphs [20] i.e, these eigen-vectors captures
the global structure of the underlying graph. Therefore, the
correct LC edges, even with relatively low weights, will
ideally collapse (project to points within close proximity in
the embedding space) as they are consistent with respective
to the graph topology dominated by the odometric edges.
On the other hand the incorrect LC edges that will connect
nodes that are projected as distant points in the embedding
space.

Figure 2. shows a practical example where we plot a
SLAM map (pose-graph) as an undirected graph with colored
edges representing odometric (blue), correct LC (green) and
incorrect LC (red). We can clearly see that in the (3d-
Jembedding space the correct LC edge collapse while the
incorrect LC edge don’t (Figure 2(b)). This clearly indicates
that one can define a threshold on Euclidean distances
computed across LC edges in the embedding space and prune
incorrect LC edges. We propose to exploit this observation
to filter out incorrect LC edges in SLAM graphs.

However, the real scenario is significantly more complex
due to existence of multiple correct and incorrect LC edges
present at different scales. Nevertheless, we can iteratively
prune incorrect LC edges by considering different scale
seperately using the multi-scale heat-kernel framework (see
Section IV). We can start with a large scale heat-kernel
embedding to prune incorrect LC edges, and in the sub-
sequent iterations compute associated embeddings of the
refined/filtered graphs at smaller scales to further prune
incorrect LC edges.

Hence, we propose a novel LC pruning method where
first the weighted undirected graph is induced for a given
pose-graph. Subsequently, this graph is projected into the



spectral space to obtain the multi-scale Euclidean embed-
dings. Finally, the diffusion (heat-kernel) distances are used
to identify incorrect LC edges which connect nodes that are
projected far-away in the embedding space at different scales
in iterative fashion. Furthermore, we also propose a novel LC
detection method called “Lap-line” which helps initializing
the LC edges by exploiting the local geometry of the pose-
graph.

III. RELATED WORK

SLAM as a problem has been formulated and solved in
a number of ways. It has had been posed as a filtering
problem [19], as an optimal control problem [8] etc. The
stability, observability and controllability properties have
been analysed for various sensors and motion models [24,
19, 10, 25, 13]. The most popular formulation however is in
the form of a graph with relative measurements.

Different methods have been used to solve the SLAM
problem including belief propagation [21], consensus al-
gorithms [2], etc. However, the most frequently used and
numerically stable method involves solving a non-linear least
squares problem using quasi-newton methods. As with other
all non-linear optimization methods, they tend to be sensitive
to initialization. To deal with this short-coming graph pruning
algorithms have been proposed, as a pre-processing to the
graph optimization, to make the graph less sensitive to
initialization by pruning the incorrect LCs.

Recently two pruning algorithms have been developed to
handle incorrect loop closures. They are Realizing, Revers-
ing and Recovering (RRR) algorithm [18] and Switchable
Constraints (SC) [23]. RRR creates clusters of loop closure
detections based on proximity of edges within the pose-
graph. The algorithm starts with the odometry sub-graph
and adds edge clusters that maintain consistency with the
odometry data. The algorithm involves solving the pose
graph and its subgraphs multiple times in order to detect
inconsistent clusters and is thus computationally inefficient.
It also suffers from very poor recall values at around 50%.

The switchable constraints (SC) algorithms, switches off
constraints it deems to be inconsistent with the rest of
the graph. A 0-1 weight variable is added into the non-
linear objective for each constraint. The weight variable
indicates whether a constraint is active or not. The integrality
constraint is then relaxed and weights are optimized along
with the rest of the objective. The optimized weight values
indicate the relative accuracy/importance of an edge in the
graph, with 1 being the highest. While this approach shows
improvements over RRR, the additional weight variables op-
timized for give increase the time taken for the optimization
dramatically.

To address this limitation Agarwal et al. proposed the
Dynamic Covariance Scaling (DCS) [1] algorithm which
computes a closed form approximation to each of the SC
weight variables and thus avoids increasing the size of the
optimization problem. This is an improvement over SC in
terms of both speed and accuracy.

In comparison to both RRR and SC our algorithm has a
much higher precision and recall when it comes to pruning
false edges, and can handle a greater degree of noise. We

demonstrate this on a number of SLAM datasets of varying
graph topology.

IV. BACKGROUND

The Spectral Graph Theory provides an implicit graph
representation known as the Laplacian (spectral) embed-
ding. The Laplacian embedding [5] is a popular spectral
representation technique which maps each graph node to
a K-dimensional space spanned by the first K non-null
eigenvectors of the graph Laplacian matrix. This however
is a fixed scale representation of the graph and a multi-scale
representation can be easily derived by the related Heat-
Kernel Framework. In this section, we introduce the math-
ematical constructs related to Laplacian and Heat-Kernel
embedding of any undirected (non-negative) weighted graph,
which subsequently is used in the proposed LC pruning
method for pose-graphs.

A. Laplacian Embedding

Let G = {V,E,W} be an undirected weighted graph
where V' = {vy,---,v,} be the set of graph nodes rep-
resented by (not-necessarily) some Euclidean coordinates,
E = {e1, -+ ,en} be the set of undirected edges and W
be the n X n square symmetric weighted adjacency matrix
of the graph with each entry W;; >0, Vi,j € {1,---,n}.

The un-normalized graph Laplacian matrix L can be
derived as:

L=D-W, 1

where D is the diagonal degree matrix of the graph with
each non-zero diagonal entry d; = Z?:l W;;. The L matrix
is very sparse and positive semi-definite (PSD) and is seen
as discrete counterpart of the Laplace-Beltrami Operator on
continuous manifolds. The sparsity comes from the fact
that the graph is considered to be only locally connected
with each node having direct edges with nodes relatively
smaller neighborhood. The rational behind is the fact that
the notion of Laplacian operator (second order derivative) is
essentially Euclidean and valid only for the tangent space of
the manifold or in discrete case nearby nodes in the local
neighborhood.

The Laplacian embedding of graph nodes is obtained using
the eigen-spectrum of the graph Laplacian matrix. Let

L=UAU"T (2)

be the eigen-decomposition of the L matrix where
U = [d, - ,U,] be the eigen vectors and A =
Diag(A1,- -+, \n) be the corresponding eigenvalues of the
L matrix with property that {0 = A} < Xy <--- <\, } and
@ = 1 for a connected graph [9]. The Euclidean embedding
of the graphs nodes is defined as

X =AU = (&1, @iy, Tl 3)

Here, each vector Z; is the n—dimensional embedding of
graph node v; € V. Interestingly, we can only select k (< n)
non-null eigen-vectors corresponding to the £ smallest, non-
zero eigen-values and embed the graph nodes as point in the
lower dimensional Euclidean space spanned by these selected
k orthogonal eigen-vectors and values such that X € RF*™,



This is also known as the commute-time embedding where
the Euclidean distance between the projection of two graph
nodes in the embeddings space has an interpretation of
commute-time distance covered by a random walker on
the original graph [20]. Thus, it approximates the average
connectivity over the original graph.

B. Heat-Kernel Embedding

Heat diffusion is a fundamental concept in physics. The
heat diffusion equation is a partial differential equation
which describes the distribution of heat (or the variation
in temperature) in a given location and over time. Heat
diffusion can be generalized to non-Euclidean spaces such as
manifolds and graphs. Heat diffusion on graphs is exactly the
parallel of diffusion on closed Riemannian manifolds where
the heat-kernel matrix is defined as [7]:

H(t) = e, @)

Here, t > 0 is a time/scale parameter and L is the unnor-
malized graph Laplacian matrix. Each entry of H(¢) matrix
is a Mercer kernel [22] that has a very simple physical
interpretation, as follows. We consider real-valued functions
fover V, f: V — R and we note that f = (f1,---, fu)T
is simply a vector indexed by the nodes of G. The vector
ft) = H(t) f is a solution to the heat-diffusion equation
(5 +D)f(t) =o.

Hence, f corresponds to some initial heat distribution

—

over the nodes of graph G and f(t) is the heat distribu-
tion at time/scale ¢ starting from f(0) = f . Notice that
starting with a point heat distribution at node v, f:(O) =
[0,---,1,---,0]T, the heat distribution at time ¢ is given
by the jth column of the heat matrix which is denoted by

H(:,j;t) as
F(t) = H(t) f;(0) = H(:, j; 1) )

From Eq. 5 we can obtain a straightforward interpretation of
the entries of the heat matrix, namely each entry h(i, j;t)
of H(t) corresponds to the amount of heat available at node
v; at time ¢, starting with a point heat distribution at node
v;. The symmetric function h: V x V' — R is the heat
kernel of a graph G. Each diagonal term h(i,é;t) of the
heat-kernel matrix has an interesting interpretation as well.
It corresponds to the amount of heat remaining at node v;
at time ¢. To conclude, the heat-kernel matrix encapsulates
important intrinsic information about how heat travels from
one part of the graph to another part or in a way heat
diffusion at different scales can be used to capture scale-
dependent topological characterization of graphs.

Interestingly, multiple scale dependent characterizations
of graphs can be easily obtained by computing the heat-
kernel matrix for different value of ¢ using the pre-computed
eigen-vectors and eigen-values of associated graph Laplacian
matrix L as:

H(t)=> e Mijii] . (6)
i=1
Let @; = [uj1, -+ ,u;)? be the i-th eigenvector of L

matrix then each entry h(i,j;t) of H(t) matrix is a heat

kernel:
n
h(i,j;t) = Ze_)\ltuilujl =<, Yj >, (M
=1
where,

—

G = [e M 2y, e A 2y, ¥

Hence, ¥; is an element of the feature space, or heat-kernel
embedding of the graph in R™ . In practice one can use a
reduced dimension k£ < n. The heat-kernel can be used to
define distances in the Euclidean embedding (feature space),
namely, the diffusion distance or heat-distance defined as:

|7 = F5l1* = h(i,4;t) + h(j, 4;t) — 2h(i, ;1)  (9)
V. PROPOSED APPROACH

We propose a novel multi-scale LC pruning method which
can significantly improve the performance of existing SLAM
optimization techniques by pruning the noisy constraints
(incorrect LC edges) from the pose-graph. Figure 3. depicts
the overview of proposed method. Our novelty lies in the
two key modules: pose-graph induction and multi-scale LC
Pruning. Here we discuss each of the modules in detail.

Graph Induction

'

Multi-Scale LC Pruning

'

Pruned Graph Optimisation

Fig. 3. Overview of Algorithm

A. Pose-graph Induction

The task of graph induction involves deriving a new
affinity matrix (W) from the pose-graph, which has same
number of edges and nodes. This will allow us to capture
the relative strength of odometry and LC edges, which
subsequently will be exploited in the spectral analysis (IV).
An efficient and prudent weighing mechanism of edges is
required for the graph laplacian and multi-scale heat-kernel
to work well.

Our strategy is that the odometry edges of the graph
are given a significantly higher weight, so that the overall
structure of the graph is maintained. On the other hand the
weight should signify confidence whether a LC edge might
be correct or incorrect. The higher weights should ideally
assigned to a correct LC edges as opposed to the lower
weights assigned to incorrect LC edges while these weights
are normalized between 0 and 1.

However, it is very challenging to initialize these weights
for LC edges before performing the SLAM optimization. We
have proposed two specific ways for weight initialization of
LC edges in W.



Fig. 4.  Shows the trajectory descriptor of Lapline working along an
odometry edge of a graph. The tangential line (composed of scatter points),
is the line [, from which each of the perpendicular bisectors intersect the
trajectory path at regular intervals. The point of intersections has been
marked with a blue circle. The line descriptor is the vector of the length of
blue line segments from the tangent of the trajectory at v; to its intersection
with trajectory.

1) Lap-line: For pose-graphs which lack a perfect ini-
tialization in form of confidence matrices of the LC edges,
creating a robust set of edge weights becomes more challeng-
ing. In order to handle such graphs efficiently, we introduce
a innovative procedure called Lap-line.

In case of a correct LC edge in a pose-graph, it is
considered that the robot is currently revisiting an already
pre-traversed path. Ideally, as the robot is on the same path,
it should be navigating with similar trajectory as it did take
before. Therefore, we construct an underlying belief that both
trajectories would be locally similar.

Our Lap-line algorithm starts with a local trajectory des-
criptor, which can also be expressed in a more generic term
as a local curve descriptor. Consider a loop closing edge in
a graph G is formed by the two nodes (poses) v; and wvs.
The weight of this edge should be directly related of the
similarity of their local trajectory descriptor 7. The steps
for which are enumerated below:

1) We determine the length of the local trajectory to be
matched. Considering v{ and v% be the delimiter nodes
which determines the length of the local trajectory. We
define a local trajectory descriptor for v; in which,
we keep dilating the difference between v{ and v?
on either direction of v;. We do it till we reach a
considerable length trajectories, 30 x £ (where L is
the average odometry edge length), or the path takes
more than a 7/2 turn within itself. The black and the
yellow points in Fig. 4. are v{ and v?.

2) We draw a straight line [ through vy, with a slope of a
line defined as ((v]), — (12),)/((v]). — (1}).) where
x and y refer to the respective coordinate component.

3) With the line [ as reference, we calculate perpendicular
distances between itself and the trajectory at £ inter-
vals (on [). This is depicted by the blue lines in Fig. 4.
As the trajectory is not a continuous line but formed
of discrete poses, we relax the intersection coordinate

A=

Fig. 5. Plot of e~ (exponent of the eigen-values) versus A(eigen-values)
showing the exponential cover of the scale parameter. The scales used in
this plot, i are [100,70,10,5,1,0.1,0.01,0.001], highest corresponding to the
dark blue (on the left edge of the graph) and the lowest corresponding to
the brown (on the top of graph)

to a piece-wise linear line segment between the poses.
These line segments are depicted as the red lines in
Fig. 4. and the blue filled dots (almost occluded by
the red lines) are the point of intersection.

4) We record the length of each distances from [ to the
trajectory as l?il. The lengths are negative or positive
depending on their relative position (left or right) from
the orientation of roboL travel. As the intervals, at
which the elements of [d; are polled, are equidistant
and calculated on [ instead of the pose-graph trajectory.
This [dy descriptor is invariant of a locally dense or a
sparse map.

Now, as Id is calculated for bo_gh U1 an_'d vo of the loop
closure edge, an equal length of [d; and Idy are compared.
Smaller the disparity between the two descriptors, the better
the loop closure it is.

2) x? Initialization: x* initialization is done for pose
graphs which has a reliable information matrix for it’s edges.
It is done by taking the odometry map, and loop closure edge
at a time, the x?2 error for that edge is recorded in a vector
X_'d, and this is continued over all the loop closure edges. The
elements in X_’d having the lowest values are given a higher
weight in pose-graph induction, and vice-versa.

B. Multi-scale LC Pruning

Once, the weighted graph matrix is induced with appro-
priate initialization, we compute the eigen-values and eigen-
vectors of the graph Laplacian matrix (see Eq. 2.) derived
from weighted affinity matrix formed in the graph induction
step (see Eq. 1). Subsequently, we compute the heat-kernel
matrix (Eq. 6) for a fixed set of 'p’ time/scale parameters
represented in a vector as ¢ = {t1,--- ,tp} where t; >ty >

- > tp. Elements of t varies from large to small values
indicating global to local heat-diffusion on pose-graph.

Figure 5. is an example plot of e~** versus \ indexes on
kittiOO dataset. It is clearly visible that a large value of scale
parameter, the exponential cover drops very fast, pointing
that only initial eigen-vectors with smallest eigenvalue (struc-
tural components) participate in the large scale diffusion,
thereby making it a global phenomenon. On the other hand,
the curve is relatively flat for small values of scale parameter
suggesting the contribution of large number of eigen-vectors
(high frequency components) thereby making it highly local.



The set of scale dependent heat-kernel embeddings (or
heat-kernel matrices) are used in an iterative fashion, such
that initially we focus on incorrect LC’s that connect distant
points in the embedding space and remove them by thresh-
olding the heat-kernel distance (Eq. 9) between pair of nodes
participating in every LC edge (Eq. 8) with a scale specific
threshold parameter. In subsequent iterations, we recompute
the the graph Laplacian with remaining edges in the pose-
graph (both odometry and LC edges) and repeat the same
process using other (smaller) values of scale parameter stored
in vector ¢ for removing incorrect (noisy) LC edges that have
smaller scale. Algorithm 1. outlines the proposed iterative LC
pruning method in details.

Algorithm 1: Multi-scale LC Pruning on Pose-graphs

Input: Pose-graph G = {V, E, W} and scale vector .
Output: Robust Pose-graph G = {V, E, W}.
1 Initialize G = G
2 for i< 1to pdo
Initialize set of pruned LC index PLC=NULL
Define L using G as in Eq. 1
Compute U and A from SVD of L (see Eq. 2.)
Compute Heat-Kernel matrix H (¢;) using Eq. 6.
Compute threshold parameter 6; using Eq. 11.
for j < 1to q do
L if Hysta’rt(j) - yend(j)”2 > 0; then

LI - Y N ]

| Add j to set PLC

11 Update G by removing set of LC edges stored in
PLC from E and set corresponding affinity matrix
entries to zero in W.

2 return G

-

C. Pruned Pose-graph Optimization

Once the LC edge pruning is performed by Algorithm 1,
the respective edges are also removed from the original pose-
graph. The final pose-graph optimization is done by solving
a non-linear least squares problem that assigns to the node,
values that best explain the measurements by minimizing the
overall fitting error

Z P(H(ijTv_il)_lTei,j

67‘,,_7‘€E

) (10)

In Eq. 10. p is the robust kernel being used, T, is
the transformation associated with vertex v; and T, ; is
the transformation associated with the edge connecting the
vertices v; and v;. ¢ and j are indices of the vertices. To
carry out the optimization in our experiments we use the
g2o library [17].

D. Choice of Parameters

We have two parameters for this algorithm, which is
the threshold parameter 6; and the time/scale parameter .
The minimum element in £ is always O but the largest
one depends on the dataset (value at which e saturates).

The intermediate values in ¢ are linearly sampled at the
logarithmic scale.

The threshold parameter #; changes at every iteration and
in different values of the . It is usually a combination of the
mean p and standard deviation o of the euclidean distance
of the loop closing edges edges in the spectral embedding,
and is defined as follows:

0; =+ (konst x o), konst € R (1D

konst varies from anywhere from O to 4, depending on
the scale of heat diffusion.

VI. EXPERIMENTS AND RESULT
A. Experimental Setup

We have tested our algorithm on Kitti datasets 00,06 [11]
and Bicocca [18]. Along with it, the pose-graphs of Bicocca
(B25b) were also used. All the datasets have the ground truth
GPS tracks. The Kitti and the B25b datasets also has the
output of Bag-of-Words (BoW) loop detection algorithm.

The dataset had the ground truth loop closures sparsified
to increase speed of the pose-graph optimization algorithms.
In particular, we have observed that Kitti dataset has very
sparse set of correct LC edges. As our proposed method
exploits the graph topology, it’s performance will be better
if we have densified correct loop closures. Therefore, we
have obtained densified correct loop closures by replicating
the original set of sparse LC edges in local neighborhood,
only for Kitti dataset.

For testing, we have considered a low a of the BoW
system. This would result in our pose graph containing
higher percentage of incorrect loop closures and hence a
better test. Furthermore, synthetic loop closures were also
added in the following 5 types of noises — local, local-
grouped, random, random-grouped and all-random.

For each dataset, we have considered noise levels ranging
from 10% to 70% added incorrect LCs of the pose count in
the graph, in increments of 10% each. Every level of noise is
the mean of 3 individual initializations of noise, for each of
5 types of noise stated above. Hence, a dataset of 105 files
are created for every dataset.

B. Evaluation

We have evaluated the performance of our algorithm on
two different grounds; (1) against robust kernels such as DCS
and Cauchy, and (2) against robust pose graph optimizers
which prune incorrect loop closures such as RRR and SC.

To compare the performance of our proposed algorithm
with the m-estimators, we have used the error parameter
Absolute Translation Error (ATE) as defined in the Rawseeds
toolkit [6]. To compare the performance of the exactness of
our pruning of the loop closing edges, we have used precision
and recall values.

To calculate ATE of the optimized pose graph against
ground truth graph, we align the graphs to be compared.
We do so, by calculating the SE2 or SE3 transformation
required to correlate the first pose of the graph to the first
pose of ground truth pose graph. This transformation is
applied for every pose throughout the optimized pose-graph.



Dataset # Ot. Outlier Type Precision Recall F-Measure ATE
outliers
SC RRR  Ours SC RRR  Ours SC RRR  Ours SC RRR Ours
Local 1.00 0.66 097 | 045 1.00 085 | 0.62 0.79 090 | 35.16 3530 4.12
Local-Grouped 1.00 0.68 095 | 044 1.00 0.65 | 0.61 0.81 0.77 | 35.16 3530 11.98
Kitti00 402 Random 1.00 052 099 | 042 1.00 099 | 0.60 0.69 099 | 35.16 3530 3.72
Random-Grouped 1.00 0.67 096 | 043 1.00 073 | 0.60 0.80 0.81 | 3516 3530 3.39
All Random 1.00 0.65 096 | 042 1.00 073 | 0.60 0.79 0.83 | 3516 3530 3.56
Local nan®™ 022 0.71 | 0.00 1.00 099 | 0.00 036 0.83 4.57 5.91 4.61
Local-Grouped nan®  0.22 0.57 | 0.00 1.00 1.00 | 0.00 036 0.73 4.57 591 4.47
Kitti06 88 Random nan®  0.27 0.87 | 0.00 1.00 1.00 | 0.00 0.43 0.93 4.50 5.91 4.55
Random-Grouped | nan™  0.28 0.70 | 0.00 1.00 1.00 | 0.00 044 0.83 4.56 591 4.59
All Random nan®  0.28 0.68 | 0.00 1.00 1.00 | 0.00 044 0.81 4.56 5.91 4.35
TABLE I

PERFORMANCE ON KITTI DATASETS.

* in the case of SC, switchable constraints (SC) did not delete any edges, resulting in a nan average over experiments due to a division by zero.

ATE is calculated by averaging over the translation disparity
between ground truth poses and that of optimized pose-
graph.

For precision and recall, the true positives (TP) are incor-
rect loop closures identified as such and eventually pruned,
false positives (FP) are correct loop closures identified as a
bad loop closure and hence pruned, false negatives (FN) are
incorrect loop closures which had not been pruned, and true
negatives (TN) are correct loop closures that remained in the
output file.

We have used the publicly available version of RRR
algorithm. For Switchable Constraints, we have used the
default parameters. For DCS and Cauchy, we have checked
the kernel width 1 to 20, and used the parameter which has
provided least ATE error.

C. Results

To evaluate the performance of our proposed algorithm, we
have compared our precision and recall performance while
using 2 initialization, against that of RRR and SC. We
believe this to be a fair comparison as RRR’s inter cluster
and intra cluster loop closure consistency algorithm is based
on a similar note.

The Table I. shows the accuracy of our algorithm com-
pared against that of SC and RRR. We find that over KittiO0
and Kitti06, our algorithm performs very well compared to
that of the competitors. For Kitti06, the precision values for
SC are nan, as it was unable to delete any of the loop closing
edges. This resulted in the true positives being zero, as none
of the incorrect loop closures were deleted, and the false
positives also being zero, as none of the good loop closures
were also deleted. When it comes to the ATE, our algorithm
in most cases achieves a lower ATE than the other two
approaches. It is substantially lower in the case of the Kitti00
dataset. Even in the cases when the ATE of our algorithm
is not the lowest, it is very close to the best result. Overall,
showing that our algorithm does exceptionally well in both
performance metrics when compared to the state-of-the-art.

To evaluate the performance of our proposed LC pruning
algorithm with Lap-line initialization against that of the m-
estimators [14], see Fig. 6. We notice that there is a overall
improvement of ATE, when our algorithm is used with DCS.

ﬁu?lfiers Outlier-Type DCS Ours + DCS | Cauchy
Local 9.90 247 5.73
Local-Grouped 33.68 | 3.25 5.72

44 Random 4.12 349 5.70
Random-Grouped | 5.69 3.07 6.98
All Random 4.12 3.53 5.78
Local 36.82 | 2.92 5.70
Local-Grouped 4.16 3.67 5.77

223 Random 38.44 | 3.91 8.92
Random-Grouped | 10.87 | 3.66 10.97
All Random 4.17 2.23 5.77
Local 7.64 2.94 5.67
Local-Grouped 53.26 | 14.17 9.78

312 Random 4.63 4.42 6.04
Random-Grouped | 5.14 4.32 24.76
All Random 6.15 3.73 7.35

TABLE II

ATE RESULTS ON BICOCCA

This improvement is prevalent over multiple levels of noise
and different types of noise as well. The quantitative results
are shown in tabular form in Table II.

VII. CONCLUSION

We have presented a graph pruning algorithm specifically
designed to handle erroneous and noisy loop closures by
performing a multi-scale heat-kernel analysis on the SLAM
graph. We compared our algorithm against other state-of-the-
art graph pruning algorithms and showed that our algorithm
performs significantly better for various types of high level
noise added to the graph.
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