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ABSTRACT

The variations in the intensity scale in Magnetic Resonance
Images pose a problem for many tasks and Intensity Stan-
dardization (IS) aims to solve this problem. Existing methods
generally use landmark values of the image histogram and
match it to a standard scale. The landmarks are often cho-
sen to be percentiles from different segmented tissues. We
propose a method for IS in which tissue information (via seg-
mentation) is needed during training but not during testing by
using landmark propagation. A KL divergence-based tech-
nique is employed for identifying volumes from the training
set, which are similar to a given non-standardized testing vol-
ume. The landmarks from the similar volumes are then prop-
agated to the given test volume. Evaluation of the proposed
method on 24 MRI volumes from 3 different scanners shows
that the IS results are better than L4 and at par with a method
which uses prior segmentation, to get percentile-based land-
marks. The proposed method aids speeding up and expanding
the scope of IS to volumes with no tissue information.

Index Terms— Magnetic Resonance Images, Intensity
Standardization, KL Divergence

1. INTRODUCTION

Magnetic Resonance Images (MRI) of the brain is widely
used for the diagnosis of many neuro disorder starting from
brain aneurysms and stroke, to Dementia, MS lesions and
cancer. Atlas construction is another application widely used
to get population specific normative parameters of the brain.
This requires Registration of MRI of different patients from
different scanner manufacturers. Disease diagnosis is based
on quantitative information derived from segmentation and
registration (to atlas) of MR volumes.

A major problem in MRI is that it lacks standardization of
voxel intensity values. There is inter-scanner, intra-scanner,
inter-patient, intra-patient variations of intensity profile for
same tissue type. It is well known that this kind of varia-
tion affects processing steps like segmentation, registration
[1] etc., which in turn affects above mentioned applications.

Various solutions have been proposed for the Intensity
Standardization (IS) task. These approaches can be cate-
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gorised as A: independent of or B: dependent on prior knowl-
edge of tissue labels. Earlier approaches to IS belong to
category A. Here, IS is performed in the histogram space
using mappings. These include one-to-one, one-to-many and
many-to-one mapping between non-standard to a standard-
volume [2]. The importance of preserving tissue distributions
were recognised and a Gaussian Mixture Modelling was used
to estimate different tissue types and their variation across
volumes was minimised [3]. One of the most popular method
for IS uses landmark-based matching and mapping [4]. Land-
marks are based on modes of histogram [5] or percentiles of
the foreground [4][6]. IS has also been cast as a non-rigid
registration problem [7].

More recent methods are in category B. For example, [8]
uses joint image histograms to determine intensity correspon-
dence between the input and standard volumes in each tissue
class, and uses it as landmark points. In contrast, [9] identi-
fies the landmark points for each tissue class individually and
matches them to standard scale. This method is reported to
outperform [4].

Tissue distribution based IS (category B) is said to im-
prove the performance in terms of tissue separability and tis-
sue Gaussianity [9] [8]. However, the preprocessing steps of
brain extraction and tissue segmentation are time consuming
and hence these methods are slower than the methods in cat-
egory A.

We propose a hybrid approach to IS which exploits the
strengths of both categories. This is motivated by the fact that
i) In a practical scenario, it is not possible to have tissue seg-
mentation for every volume, ii) IS is a preprocessing step for
further image analysis and hence needs to be computationally
light. We propose to restrict the use of tissue labelled vol-
umes to the training phase of IS. Given a new volume with
unlabelled voxels, we propose a novel way to identify the
landmarks, by propagating the landmark points from simi-
lar volumes, identified using KL divergence, in the training
dataset.

We use the method proposed in [9] to illustrate our idea.
Nevertheless, our approach of finding similar image from
training dataset and use its information for testing data is
equally applicable to [8] and other approaches based on prior
knowledge of tissue distributions.
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2. PROPOSED METHOD

The proposed method consists of two stages: offline training
and online testing. During training we have a set of non-
standardized MRI volumes In; and corresponding Tissue
Masks M j

n where n = 1, ..N and j = Grey Matter (GM),
White Matter (WM) and Cerebrospinal Fluid (CSF). During
testing, we have a given MRI volume Ig with no tissue mask.
All volumes (training and testing) are preprocessed to iden-
tify the foreground by thresholding the voxel intensity at a
threshold value identified using Otsu’s method [10].

2.1. Training Stage

Given In and M j
n the main steps in the training phase are:

1) Calculation of grey level histograms and corresponding
percentiles for each tissue type P j

n.
2) Determination of transformations T j

n, ∀j by matching
the percentile landmarks P j

n of In with the corresponding
standard-scale percentile landmarks P j

s .
3) Derivation of the continuous mapping Tn for the whole

volume via spline-fitting through T j
n as in [9].

2.2. Testing Stage

Our main contribution is in this stage. Given a test volume Ig
our aim is to derive a transformation T . The key information
needed is the landmarks on the tissue histograms. Since, no
tissue-level information is available for Ig , we proposed to
derive it by finding the nearest neighbours of Ig in the training
set In.

2.2.1. Finding the Nearest Neighbours

First, the intensity range of the training volume is remapped
to that of testing volume intensity range by a linear transfor-
mation. We choose the KL divergence (KLD) [11] metric to
identify volumes from the training set In which are similar
to Ig . Given two Probability Distribution Functions(PDF) P
and Q the KLD is given as

KLD(P,Q) =
∑
i

P (i) log
P (i)

Q(i)

In our case, KLD is computed between the histogram of the
given volume and all the volumes in the training set to obtain
KLD(n) = KLD(hn, hg), where hx denotes the histogram
of an volume Ix.

Low KLD values indicate a high degree of similarity be-
tween volumes. Hence,KLD(n) is thresholded to extract the
required set of L training volumes, which are the highly sim-
ilar to Ig . The threshold value controls the size of the set L
and the diversity within the set.

2.2.2. Projecting the landmarks from Training volume

The L nearest neighbours of Ig , are used to determine the
histogram landmarks for Ig as follows. The landmarks P j

i ,
i ∈ [1, L] from the L volumes are projected onto the intensity
range of Ig and then averaged to get the required landmarks
for the testing volume. The final landmarks are found as

P j
g =

L∑
i=1

WiP
j
i ,∀j

where,Wi =
wi∑L
i=1 wi

, wi =
1

KLD(i)
,∀i

A weighted averaging, with weights being inversely propor-
tional to KLD values, is chosen to accommodate the possibil-
ity that the training and testing volumes may be quite diverse.
In this case, the threshold may have to be lowered to permit L
of sufficient size to be identified for accurate landmark iden-
tification.

2.2.3. Matching to standard scale percentiles

The percentile landmarks P j
g are matched to the correspond-

ing standard-scale landmarks P j
s for each tissue type individ-

ually to get corresponding transformations T j
g and a spline

fitting is performed to obtain a continuous transformation Tg .

Fig. 1. Mapping function comparison

The effectiveness of this approach is illustrated in Fig.1
with a sample volume for which tissue masks were available.
The transformation curves for mapping a given volume to the
standard scale were derived with the proposed method by ig-
noring the tissue information and with tissue information us-
ing [9]. These are shown in red and blue, respectively, in
Fig.1. The two maps are highly overlapping emphasising the
effectiveness of our method.

3. EXPERIMENTS AND RESULTS

Dataset: T1 weighted MRI volumes from 1.5 T (GE, Siemens
and Phillips) scanners were used to construct a set of 8× 3 =
24 volumes. The volumes from GE and Siemens scanners
were sourced from local hospitals while the ones from the
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Fig. 2. Sample images from GE, Siemens and Phillips scan-
ners (left to right) before (top row) and after (bottom row) IS.

TE(ms) TR(ms) TI(ms) FA(◦)
GE 4.2 10.2 450 15

Siemens 2.9 2370 1000 7
Phillips 4.6 9.83 NA 8

Table 1. Scanning parameters.

Phillips scanner were sourced from [12]. Details of the ac-
quisition parameters for all scanners is given in Table1.

Validation: Preprocessing steps like denoising and inten-
sity inhomogeneity correction were done using [13] and [14]
respectively, on all the MRI volumes. Tissue classification
was done with the FAST tool of FSL Library [15]. Prior to
tissue classification, skull stripping was done using BET[16].

Validation of the proposed method was done using a leave
one out approach. All the computations were done on a PC
with Intel i5 processor, with 4GB of RAM.

Landmarks for the standard scale were learnt from 30
MRI volumes drawn from different scanners, by projecting
their landmarks to the voxel value range of 0:4096. The KLD
values were thresholded to obtain (on average) L=3 similar
volumes for a given test volume.

Sample images from 3 different scanners and results of IS
with our method are shown in Fig.2. All images were shown
at a fixed intensity window range of 0:4096. After IS, the
images appear more uniform in terms of intensity.

A major issue in MRI is the intensity variations at the
inter-scanner and intra-scanner levels. Our IS method reduces
these variations as shown in Fig 4 and Fig 3 respectively.

Quantitative analysis of IS was done using the Jeffery Di-
vergence (JD), which is defined for two PDFs P and Q as
follow: JD(P,Q) = 0.5[KLD(P,Q) +KLD(Q,P )]

The JD was computed for each tissue class, both across
volumes within a scanner and across scanners.

Let Ijn(s) denote the nth volume from scanner s with tis-
sue mask j; n = 1, .., 8, both j and s = 1, 2, 3. The intra-
scanner (JDintra(s, j)) and inter-scanner (JDinter(s, j)) di-

GM WM

Fig. 3. Intra-Scanner variation in tissue PDF before (top row)
and after (bottom row) IS for the Siemens scanner.

GM WM

Fig. 4. Inter-Scanner variation in tissue PDF before (top row)
and after (bottom row) IS.

vergence were computed as follow:

JDintra(s, j) =
1

mn

∑
n

∑
m

JD(Ijn(s), I
j
m(s)),

where, m 6= n, ∀n,m ∈ s

JDinter(sa, sb, j) =
1

mn

∑
n

∑
m

JD(Ijn(sa), I
j
m(sb)),

where,∀n ∈ sa,∀m ∈ sb

These are listed in Table 2. Low values signify similarity
among volumes which is desirable especially after IS. The ef-
fect of IS with 3 different methods are presented to aid com-
parison. L4 [4], provides a baseline method as it does not
use tissue information at any stage. IS results are compara-
ble for all 3 methods for CSF whereas for GM/WM classes,
SBST [9] and our method are (comparable and) better than
L4. Similar trend is also seen in the inter-scanner divergence.

We also computed the Standard Deviation (σNMI ),% Co-
efficient of Variance (CV) and mean (µNMI ) for Normalized
Mean Intensity (NMI) before and after IS, for all tissue types
for the entire dataset. The NMI of a tissue class is with respect
to the maximum intensity in a volume. These are tabulated in
Table 2. A similar trend as in the case of JD, is observed for
σNMI and CV. However, the µNMI is comparable for all 3 IS
methods across tissues. This is to be expected as the effect of
IS is to minise variation rather than shift the mean intensity of
a volume.

97



Intra-scanner JD Inter-scanner JD NMI statistics
(in x 10−2) (across all volumes)

G S P G vs S G vs P S vs P σNMI µNMI % CV
CSF Before 7.99 6.06 2.04 1.25 0.28 1.10 0.0240 0.1444 16.621

L4 3.87 2.74 0.97 0.08 0.03 0.05 0.0127 0.2228 5.7001
ours 3.53 2.40 0.87 0.04 0.03 0.04 0.0055 0.2506 2.1942

SBST 3.50 2.35 0.84 0.03 0.02 0.03 0.0049 0.2412 2.0315

GM Before 16.32 9.28 3.34 1.38 0.48 1.23 0.0305 0.2676 11.3999
L4 7.70 3.54 2.28 0.15 0.08 0.05 0.0128 0.4129 3.1001

ours 5.78 2.32 1.35 0.04 0.05 0.03 0.0094 0.4444 2.1152
SBST 5.67 2.28 1.32 0.03 0.03 0.02 0.0084 0.4427 1.8974

WM Before 19.53 8.71 3.46 1.38 0.88 1.25 0.0285 0.4049 7.0391
L4 7.56 5.25 2.95 0.44 0.25 0.14 0.0196 0.5792 3.3836

ours 5.32 2.47 2.27 0.09 0.07 0.05 0.0119 0.6200 1.9193
SBST 5.19 2.40 2.19 0.07 0.05 0.04 0.0106 0.6205 1.7082

Table 2. Quantitative Analysis for all tissue types, across 3 scanners [GE(G), Siemens(S), Phillips(P)]

4. CONCLUSIONS

We proposed a hybrid method for IS of MRI volumes which
relies on tissue information only during training. A technique
for handling the lack of this information in test data was pro-
posed using a KL divergence. Our method outperforms [4]
which does not use any tissue information but is at par with
[9], which uses prior tissue segmentation for test volume; it
is robust to change of scanner. IS of a new volume with our
method is significantly fast (as skull stripping and tissue seg-
mentation are not required) and it can be easily adapted to any
existing method which requires tissue information.
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