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ABSTRACT

The utility of canonical correlation analysis (CCA) for do-
main adaptation (DA) in the context of multi-view head pose
estimation is examined in this work. We consider the three
problems studied in [1], where different DA approaches are
explored to transfer head pose-related knowledge from an
extensively labeled source dataset to a sparsely labeled tar-
get set, whose attributes are vastly different from the source.
CCA is found to benefit DA for all the three problems, and
the use of a covariance profile-based diagonality score (DS)
also improves classification performance with respect to a
nearest neighbor (NN) classifier.

Index Terms— Canonical Correlation Analysis, Domain
Adaptation, Head pose classification, Diagonality score

1. INTRODUCTION

Due to the extensive difficulty and cost of annotating large
datasets, domain adaptation (DA) or transfer learning tech-
niques, which allow for adapting models trained on existing
datasets to novel ones, have become very popular recently.
Traditional learning algorithms require feature-wise consis-
tent target (or test) data for achieving good performance– this
requirement is violated when the target data is sufficiently dif-
ferent in nature with respect to the source (or training) data.
In such cases, transfer learning adapts knowledge acquired
from the source by incorporating target-specific information
learned from a few labeled target examples.

We specifically examine DA in the context of multi-view
coarse head pose estimation (or head pose classification) in
this paper. Head pose estimation from surveillance video is
particularly useful for security and behavior analysis, but has
been shown to be challenging even with multi-view systems
in [2]. Three DA approaches for determining the head pose
class of a person (target) captured by four surveillance cam-
eras are evaluated in [1]. Upon training models with CLEAR
(source) images where targets rotate in-place and exhibit
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a roughly frontal head-tilt as in social interactions, the au-
thors attempt head pose classification on the DPOSE (target)
dataset specifically considering three problems as illustrated
in Fig.1. P1 denotes the case where DPOSE targets also
rotate in-place while exhibiting a larger range of head tilts
than in the CLEAR images. P2 represents the situation where
DPOSE targets are moving, but exhibiting head-tilts similar
to CLEAR. P3 combines P1 and P2, and involves moving
targets exhibiting a large range of head-tilts (as in a museum
or supermarket). In addition to the fundamental difficulty
in determining head pose from low-resolution face images,
traditional learning algorithms trained on CLEAR perform
poorly on DPOSE due to differences in camera geometry and
lighting, and mainly because the facial appearance of DPOSE
targets varies under motion due to changing camera perspec-
tive and scale. In contrast, CLEAR targets remain stationary
ensuring greater consistency in appearance.

Three DA approaches are proposed in [1] to solve P1-P3.
For P1, an adaptation of the inductive transfer learning al-
gorithm [3] is proposed so that misclassified target samples
are preferentially learned in subsequent iterations. Transfer-
able distance functions are proposed for P2 and P3, where
patch weights signifying importance of face patches for pose
estimation are learned from source data, and adapted to the
target by accounting for appearance distortions arising from
perspective and scale changes. A nearest neighbor (NN) clas-
sifier is then employed to classify target samples.

Given that DA is necessitated by the source and target
data having different feature distributions, projecting both
onto a correlated sub-space to make them feature-wise con-
sistent can enhance transfer learning. Canonical correlation
analysis (CCA) is useful to this end [4], as it enables dis-
covery of linear relationships between two feature sets. We
show that CCA improves DA performance for P1-P3 via
extensive experiments. Also, in the context of transferable
distance learning, the NN classifier chooses the closest neigh-
bor among a (typically small) set of class-specific prototypes.
Deriving class-representative signatures instead would be
beneficial. Covariance profiles (CP) [5] enable efficient de-
scription of an object family, and the closeness of a novel
object to this family can be computed using the diagonality
score (DS). We also show that employing the diagonality



Fig. 1. Illustration of the three problems (P1, P2, P3) studied in [1]. 4-view images from CLEAR and DPOSE are shown
two-by-two. Figure is best viewed in color and under zoom.

score is advantageous and enhances DA-based head pose
classification performance with respect to the NN classifier.

2. RELATED WORK

We now briefly review related work on (i) head pose esti-
mation (HPE) from surveillance videos and related domain
adaptation approaches, and (ii) the use of CCA and covari-
ance profiles for computer vision applications.
HPE from low resolution videos: A Kullback Leibler
distance-based face descriptor is proposed in [6], but is out-
performed by the array-of-covariances (ARCO) [7], which
is also robust to occlusions, scale and illumination changes.
Recent works [8,9] have explored the use of weak labels (e.g.
motion direction for head pose) for robust HPE with unla-
beled data. Nevertheless, all these works attempt monocular
HPE. Multi-view HPE has only been addressed by a handful
of algorithms. A particle filter is combined with two neural
networks for estimating head pan and tilt in [10]. Multi-
view HPE under target motion [11] is achieved by mapping
multiple face images onto a textured 3D model, and deter-
mining the face location in the unfolded texture map. An
unsupervised approach to tackle face appearance variations
under motion is proposed in [12], where spectral clustering
is employed to segment the scene into regions, and region-
specific head pose classifiers are learned. Multi-task learning
for estimating head pose under motion is proposed in [13].

As obtaining labeled head pose data in surveillance set-
tings is difficult and expensive, few works have explored the
use of DA techniques for HPE on novel datasets. An adap-
tive multiple kernel learning-based active DA framework is
proposed in [14]. An extensive discussion on how DA can
achieve efficient multi-view head pose classification in novel
scenarios is presented in [1].
CCA and CP in vision applications: The correlated sub-
space derived from CCA is exploited for transfer learning,

and is applied to a number of vision problems including ac-
tion recognition in [15]. A methodology to employ CCA for
domain-adaptive head pose classification is presented in [16].
Some works have also focused on representing and compar-
ing a family of objects– principal angles [17] are popular in
this respect. Covariance profiles are shown to be effective for
object track clustering and face recognition in [5].

3. PROPOSED FRAMEWORK

Fig.2 presents an overview of the proposed framework. In [1],
ARCO [7] is modified via Tradaboost [3] to develop the
ARCO-Xboost classifier. For P2, upon dividing the 4-view
face image into overlapping 8 × 8 patches, weights denot-
ing saliency of these patches for HPE are learned from the
source data. These weights are then modulated to the target
dataset incorporating patch reliability scores encoding facial
appearance distortion due to motion from a reference scene
location. Finally, the target (test) sample label is assigned
on determining its nearest neighbor based on the weighted
distance between corresponding patches. A similar approach
is adopted for P3, where patch weights are decomposed into
hyperfeatures which encode the patch saliency and parame-
ters P , which are directly transferable from the source to the
target and are learned from source data. These two weighted
distance approaches are denoted as WD (see [1]) in Fig.2.

We consider the same scenario as in [1], where the source
data comprises only images corresponding to a frontal head-
tilt, while the target dataset comprises a much larger range
of head tilts. More specifically, the source data is discretized
into 8 classes each denoting a head pan range of 45◦, while the
target data is discretized into 24 classes (8 pan × 3 namely,
upward, frontal and downward tilt ranges). For P1 and P3,
our objective is to assign a class label C ∈ [1..24] for each
test sample, while there are only eight possible classes for
P2 as only those target instances consistent with the source



in terms of head pose are considered here. In the proposed
framework, we perform CCA on the source and target fea-
tures to derive a correlated subspace, and feed the source and
target features projected onto the correlated subspace to the
DA algorithms for P1-P3. For P2 and P3, we also examine if
the use of the diagonality score with covariance features can
improve performance with respect to the NN classifier. Brief
descriptions of CCA and CP are as follows.

Fig. 2. Overview of the proposed framework.

3.1. Canonical Correlation Analysis

Canonical Correlation Analysis (CCA) [18] is a technique
used to analyze the linear relationship between two multi-
dimensional variables. CCA seeks to find two basis vectors
such that the correlation between the two variables is mutually
maximized. CCA can also be viewed as a measure of simi-
larity between two variables, and the two variables involved
can be of different dimensions. A probabilistic interpretation
of CCA as a latent model is given in [19]. Most importantly,
CCA places the fewest restrictions on the types of data on
which it operates.

Let X and Y be two random variables. Consider a set
of n samples xi ∈ X ⊆ <n1 and yi ∈ Y ⊆ <n2 forming
n training samples {(xi, yi)}ni=1. CCA seeks to find vec-
tors a and b such that the random variables a′X and b′Y
are correlated maximally. Let X = [x1, ..., xn] ∈ <n1×n

and Y = [y1, ..., yn] ∈ <n2×n. We assume that the data is
centered i.e. E[X] = E[Y ] = 0. Let ΣXX = E[XX′],
ΣY Y = E[YY′] and ΣXY = E[XY′]. The optimization
problem is thus as given below

argmax
a∈<n1,b∈<n2

a′ΣXY b√
(aΣXXa)(bΣY Y b)

(1)

Note that the above problem is invariant to scaling of a
and b. Thus, the maximization problem can be redefined with
the following constraints a′ΣXXa = 1 and b′ΣY Y b = 1.
The optimization problem in Eq. (1) can be written as a con-
strained optimization problem as below

argmax
a∈<n1,b∈<n2

a′ΣXY a√
(a′ΣXXa)(b′ΣY Y b)

(2)

s.t. a′ΣXXa = 1 and b′ΣY Y b = 1 (3)

The canonical correlations can be found by solving the gen-
eralized eigenvalue problem below to obtain d pairs of eigen-
vectors for each random variable to be projected:

ΣXX−1ΣXY Σ−1Y Y ΣY Xa = λ2a

and b =
Σ−1Y Y ΣY Xa

λ

3.2. Covariance Profiles

Covariance profile (CP) is a descriptor for an object set de-
scribed by a covariance matrix. CP descriptors are used
for video object track clustering and face recognition in [5].
Given a set of similar objects T = {C1, C2, . . . , CN} where
each Ci is a covariance descriptor [20], CP attempts to find
a matrix which captures some notion of similarity among
these covariance descriptors. Mathematically, the problem
is to obtain vectors β1, β2, . . . , βd, where d is the number of
columns of the Ci’s, such that

Ci =
∑
j

λijβjβ
′
j (4)

The matrix P , with vectors {βj} as its columns, jointly di-
agonalizes the individual Ci matrices, i.e. Λi = P ′CiP is a
diagonal matrix with entries λij . This matrix is defined as the
covariance profile for the set.

To estimate a CP of a given set, we perform approximate
joint diagonalization using Pham’s algorithm [21] designed
for joint diagonalization of positive definite Hermitian matri-
ces. Also, CP can be used as a similarity measure– the close-
ness of an object with covariance descriptor C to a family T
is computed using the diagonality score (DS). This value de-
creases with decreasing Frobenius norm of the off-diagonal
elements in P ′CP and is 0 if and only if it is fully diago-
nal [22]. Thus, given a P for a family T , the diagonality
measure of C is given by Eq. (5). A sufficiently small diago-
nality score indicates that C is almost perfectly diagonalized
by P , and hence likely to belong to the family T .

log(
det(diag(P ′CP ))

det(P ′CP )
) (5)

4. EXPERIMENTS

In this section, we examine the utility of CCA and CP for
the three DA problems P1–P3 described in Sec.3. We use
CLEAR [23] as the source dataset, and DPOSE [24] as the
target. As mentioned earlier, source dataset comprises only
images with frontal head-tilt (8 classes), while the target
dataset also includes images with upward and downward



head-tilts (24 classes in total). Classification accuracies
on the target are presented for source (classes C1-C8, de-
noted accsrc), non-source (C9-C24, denoted accnsrc) and
all (accall) classes for P1 and P3. For all experiments, 300
samples/class were used in the source training set, while 5
samples/class were used in the target training set. Covariance
(cov), LBP and HoG features were computed as in [1].

Table 1 presents the impact of CCA on the DA framework
for P1. Classification results on combining CCA with the
ARCO and ARCO-Xboost classifiers are compared with the
corresponding baselines. Projecting both the source and tar-
get data onto the correlated sub-space considerably improves
classification performance for source classes with respect to
ARCO, while there is a marginal improvement over ARCO-
Xboost. This in turn improves overall classification accu-
racy, even if the performance of CCA+ARCO/CCA+ARCO-
Xboost does not improve with respect to ARCO/ARCO-
Xboost for non-source classes as very few training examples
from these classes are used for model synthesis.

P2 results are shown in Table 2. Here, WD+CCA per-
forms better than WD considering the different scene regions
(as in [1]), while mean accuracy increases by 5%. Improve-
ment on combining diagonalization score (DS) with WD
is marginal. However, CP is a concise representation of
a training class. Fig. 3(a) shows variation in classification
accuracy with different CCA-subspace dimensions. We ob-
serve that good accuracies are observed even with very low
dimensionality. Also, WD+CCA (with nearest target neigh-
bor denoted as NNtgt) outperforms CCA (NNtgt), which
evidences the need for DA. Also, WD+CCA (NNsrc de-
noting nearest source neighbor) performs almost as well as
WD+CCA (NNtgt). WD+CCA (NNtgt) decreases with in-
creasing dimensionality, while WD+CCA (NNsrc) remains
constant which could be due to the large number of source
samples available for comparison.

The results for P3 is shown in Table 3. In [16] better per-
formance of WD+CCA over WD is shown. Also, WD+DS
performs better than WD+CCA by a minimum of about 3%.
WD+DS performs better than WD+CCA for source classes,
which contributes to better classification. Fig. 3(b) presents
variation in overall classification accuracy with varying train-
ing size. DStgt (only DS on target prototypes without DA)
performs better than NNtgt while WD+DS performs best with
increasing dimensionality due to compact representation of
the training samples via CP.

5. CONCLUSION
This work examines the utility of canonical correlation anal-
ysis and covariance profile for domain adaptive multi-view
headpose classification. Empirical results confirm that CCA
and the use of the diagonalization score (DS) can improve
classification performance for DA problems P1-P3. Integrat-
ing CCA and CP, which is computationally demanding, to de-
velop a unified DA framework is left to future work.

Table 1. P1: Performance comparison for static targets.
Mean target classification accuracy reported over 24 classes.

ARCO [7] CCA+ARCO ARCO-Xboost [1] CCA+ARCO-Xboost
accsrc 41 56.1 73.8 74.5
accnsrc 7 2 31.1 31
accall 18 18.7 45.4 46

Table 2. P2: Performance comparison for 8-class head-pan
classification under target motion. The room is divided into 4
quadrants (R1-R4). NN classifier with Targets is considered.

WD WD WD+CCA WD+DS
Cov (d = 12) LBP Cov (d = 12) Cov (d = 12)

R1 69.8 74.7 74.2 74.1
R2 72.4 77.6 81.3 78.7
R3 63 66.9 73 66.1
R4 62.5 64.5 74.9 65.9

Regions Average 66.9 70.9 75.9 71.2

Table 3. P3: Classification accuracies for source (C1–C8),
non-source (C9–C24) and all classes with freely moving tar-
gets. DS results available only with covariance features.

accsrc Cov + LBP Cov +HoG LBP +HoG

WD+CCA [16] 36.7± 0.7 35.1± 0.6 34.6± 0.7
WD + DS 41.2± 0.9 42.8± 1 -

DStgt 37.5± 0.7 37.5± 0.7 -
NNtgt 31.2± 0.8 31.2± 0.8 32.4± 1

accnsrc Cov + LBP Cov +HoG LBP +HoG

WD+CCA [16] 48.8± 0.8 47.1± 0.5 42.3± 0.9
WD + DS 49.5± 0.9 49.7± 1 -

DStgt 46.7± 0.6 46.7± 0.6 -
NNtgt 38.8± 0.8 38.8± 0.8 40.2± 0.8

accall Cov + LBP Cov +HoG LBP + HoG

WD+CCA [16] 42.1± 0.8 40.5± 0.6 38.9± 0.8
WD + DS 45.3± 1 46.2± 0.8 -

DStgt 42± 1 42± 1 -
NNtgt 35.8± 0.9 35.8± 0.9 36.3± 0.9

(a) (b)
Fig. 3. (a) Variation in overall classification accuracy with in-
creasing CCA dimension for P2. (b) Variation in overall clas-
sification accuracy with increase in target training examples
for problem P3.
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