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Abstract

Understanding the precise 3D structure of an environ-
ment is one of the fundamental goals of computer vision
and is challenging due to a variety of factors such as ap-
pearance variation, illumination, pose, noise, occlusion and
scene clutter. A generic solution to the problem is ill-posed
due to the loss of depth information during imaging. In this
paper, we consider a specific but common situation, where
the scene contains known objects. Given 3D models of a
set of known objects and a cluttered scene image, we try
to detect these objects in the image, and align 3D models
to their images to find their exact pose. We develop an ap-
proach that poses this as a 3D-to-2D alignment problem.
We also deal with pose estimation of 3D articulated objects
in images. We evaluate our proposed method on BigBird
dataset and our own tabletop dataset, and present experi-
mental comparisons with state-of-the-art methods.

1. Introduction

The problem of detection, segmentation and recognition
of objects in natural and indoor scenes are fundamental to
computer vision and has received a significant amount of
attention over the past decade [ !, 4, 5, 7, 8]. However, vari-
ous factors like illumination, background clutter and object-
object interaction (e.g. occlusion), add to the complexity of
the problem in unconstrained environments. Apart from ob-
ject detection and recognition, estimating the position and
orientation of objects in an image is of significant interest
in tasks like 3D scene understanding and reconstruction.

Approaches to segmentation of indoor scenes include
modeling the appearance of objects from images as well as
their structure in RGBD data. Richtsfeld er al. [16], pre-
segment the input image based on surface normals of ob-
jects, and perform segmentation on a graph over the esti-
mated surface patches from NURBS. Hariharan et al. [8],
proposed a CNN based architecture that classifies region
proposals for simultaneous detection and segmentation of
all instances of a category in an image. Aggarwal ef al. [1]
proposes a method specific to estimating floor regions from

Figure 1: We attempt to align 3D CAD models of objects
to a single image. As observed, our proposed method is in-
variant to shape, size and texture of objects, and deals with
scenes of varying complexity in terms of occlusion and clut-

ter. (Best viewed in color)
appearance and geometric cues. Recent works have also ex-

plored the task of pose estimation of known objects in scene
images. Zhang et al. [20] proposed a robust pose estimation
method from line correspondences. In [ 1], Lim et al. have
estimated the pose of furnitures in common indoor scene
images, using correspondences between the test image and
candidate poses obtained from training data. Zhu ez al. [21]
attempt to estimate the pose of objects in outdoor scene im-
ages, for applications in robotics grasping. The approach
of aligning CAD models of objects to their images to esti-
mate object pose has been explored in the context of generic
furnitures and chairs was attempted by Lim ez al. [10] and
Aubry et al. [2] respectively. They used either geomtric fea-
tures of 3D models or appearance of rendered exemplars to
carry out the alignment. These are closest to our work in
their approach, and we compare our results with the latter.
Our goal differs from the above primarily in its assump-
tions about the objects and their models. We try to find the
pose of common tabletop objects that could potentially be
low-lying and the models are assumed to be without any
texture, making the alignment problem hard. Our major
contributions include: 1) An ensemble of shape features
that work well for aligning textureless 3D models, 2) A two-
stage alignment scheme that is efficient and accurate and 3)
An extension of the proposed approach to handle articulated
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Figure 2: Method Outline: Input scene image is parsed to detect and segment objects using appearance and geometric cues.
Initial pose is estimated from the closest matching examplar. An ensemble of shape features is used on object contour
points, followed by rejection of spurious marches to obtain correspondences. Pose is refined by iteratively minimizing the
reprojection error between the model and object. (Best viewed in color)

objects. We demonstrate our results on a variety of tabletop
objects including transparent ones and scene images with
occlusion and background clutter. Note that textureless 3D
models are used to generalize our proposed method to ob-
jects that are very similar in shape and size, but vary in tex-
ture. Experimental results show that the proposed method
outperforms the state-of-the-art method for pose estimation.

2. Method Overview

Figure 2 gives an outline of our proposed method. We
work with images of known objects of different shape, size,
texture and poses. We parse a given indoor scene image
into constituent entities of individual objects present in the
scene, using a rough segmentation algorithm. The retrieved
entities in the scene with their rough boundaries are used to
get the respective matched codebook from the learned ex-
emplars of individual objects. The azimuth and elevation
angle captured from the matched image is then used as an
initial estimate of the pose. To further refine the estimate,
we use an ensemble of shape features to establish matches
between object and model silhouettes. We align a 3D model
of the object, by iteratively minimizing the reprojection er-
TOf.

2.1. Estimation of Entites and their rough Contours

For each of the object pose image in the training data,
an exemplar model is learned based on appearance and ge-
ometric cues. Appearance cues capture the local shape of
the object, while geometric cues are significant in cluttered
scenes, where the object’s color and texture are not easily
computed, due to occlusions. We learn the appearance cues
from the superpixel segmented image of the individual ob-
jects using simple linear iterative clustering (SLIC) super-
pixels. Similar to Aggarwal et al. [1], we use color, texture
and shape cues of the superpixels and learn a GMM for sep-
arating object superpixels from that of background pixels.
We learn exemplar SVM as proposed in [13] to learn the

global shape and geometric cues extracted, using the HoG
and CNN features.

Assuming we have N poses for each of the M models
from our dataset, we learn M x N pose level GMMs and
M x N exemplar SVMs. Using these discriminative clas-
sifiers, the probable objects in the test scene image are clas-
sified, and the closest possible match from the training data
of all possible poses is found. GMMs give the probability
estimates which acts as the unary potential, and a standard
Potts model is used to get the pairwise potential. A standard
implementation of MRF Grabcut [9] is used to iteratively
refine the object pose estimation.

2.2. Fine Pose Estimation

We define a pose by two parameters, azimuth angle (6),
and elevation angle (¢), which are part of the spherical co-
ordinate system. Given the initial estimate and the object
class, our goal is to find the exact pose of the object in
the image. We render an image of the corresponding CAD
model from the initial estimate, using Back Face Culling.
Model silhouette for a pose [R|t] can be obtained by finding
points X which satisfy the equation:

(RNT(RX+ t)=N"(X+R"t)=0 (1)

where R and ¢ are the Rotation matrix and Translation
vector respectively. The model and the image contours
are scaled, and correspondences are obtained using feature
matching. We now explain the approach in detail.

2.2.1 Local shape information using a Buffer of HOG
features
In a cluttered environment, it is difficult to obtain precise
segments from the image. To make our method robust, we
create a buffer of Histogram of Oriented Gradients(HOG)
features of K neighbouring points on either side, along the
contour. Doing so captures the local shape information with
respect to a point. This step prevents redundant matches
due to lack of neighbouring information. Assuming we



have N object sample points, we learn N binary classi-
fiers [11, 2], taking one feature as positive set and others
as negative set. Each model point is matched to one of the
classes which minimizes the classification score. More for-
mally, the matching score between p-th object point and g-
th model point is defined as S(p, ¢) = ngn wlz,, where 2,

is feature vector of the g-th model point, w, is the weight

vector learned by LDA classifier for object point p. The
|H]

set of HOG features H is normalized such that > h; = 1,
i=1

where h; € H, and |H| is the number of points in the con-

tour. Value of K is fixed at 10 in our experiments.

2.2.2 Shape context and Chamfer matching

We use a combination of using shape context features [14]
and chamfer matching [12, 17] to obtain correspondences.
The shape context of p; is defined as a normalized k-bin
log-polar histogram of the relative coordinates, defined by
vector (¢ — p;) of the remaining points ¢ with respect to p;.
The key idea of this feature is to capture the distribution of
all points with respect to a reference point. Cost of matching
a model point to an object point is given by:

C=Cs+BCr+(1-p8)Cc )

where Cy is the x? distance between the shape contexts
of the point pairs, Cr and C¢ are the figural continu-
ity cost and curvature cost [19] respectively. Here, 0 <
Cs,Cp,Cc < 1, and S is the weighting parameter. Mod-
elling this as a bipartite matching problem, we solve this
problem as

minimize Z Z C(i,7)xi; (3)

pi€0 q; €M

subject to constraints,

injzlforpieO injzlforqjeM
q; €M pi €O

where z;; > 0 for p;,q; € O,M. We use Jonker-
Volgenant algorithm to solve this linear assignment prob-
lem, because of its robustness and speed. C(%,j) is pair-
wise cost matrix. Variable x;; is 1 when sample point p;
from model contour M corresponds to sample point g; from
object contour O and 0 otherwise. Chamfer matching uses
chamfer distance as the metric for establishing matches. In-
dividually, they both are prone to occlusion and background
clutter. However chamfer matching used by Thayananthan
et al. [19] is not robust to intense background clutter and oc-
clusion. Hence, following the work of Nguyen et al. [15],
we formulate the matching task as a maximum of a poste-
riori (MAP) problem. In other words, for each model point
m, finding the corresponding object point o is equivalent to
solving the following:

p(olm) =k mazx e~ ad(m;0) 4)

where  and « are positive parameters. p(o|m) is the prob-
ability of having an object point o corresponding to model
point m and, d(m, o) denotes the chamfer distance between
m and o with edge orientation error between them also
taken into account. Similar to [15], Variational Mean Field
approach is used to solve the MAP problem. Finally, we ob-
tain a set of point-to-point matches based on shape context
features and chamfer distance metric.

2.2.3 Ensemble of shape features

The set of correspondences obtained from each of the shape
matching methods, might contain outliers. The problem
intensifies when an object is occluded. Using segmented
masks of each object, we obtain a partial contour for an oc-
cluded object by subtracting the part of the contour common
to both the object in front and the occluded one. We use a
faster variant of RANSAC: Progressive Sample Consensus
(PROSAC) [3], to remove the outliers. The use of PROSAC
drastically reduces the computation time for obtaining the
inliers. We use an ensemble of these shape features to get a
reduced set of pure matches, which contain the least num-
ber of outliers. We partition the sampled points on the ob-
ject contour into K clusters. We find that, clustering us-
ing k-means algorithm yields satisfactory results. The idea
is that, for a model point, if the shape features are good
enough to capture its local appearance, they should all map
to object points which are close to each other. More pre-
cisely, for a model point, we assert that object point matches
obtained from the shape features, are similar if they belong
to the same cluster. We finally obtain the common 3D-to-
2D correspondence, where the model point is matched with
the object point which has the minimum reprojection error
with that model vertex. As shown in figure 3(a), using the
reduced set of matches, our algorithm converges with sig-
nificantly less number of iterations with minimum error. We
plot the error function with respect to azimuth and elevation
angle for an example, and find that it is much smoother,
when using ensemble of features. Hence, a lesser likelihood
of getting stuck at a local minima.! Finally, given a set of
pure 3D-to-2D correspondences, we use Iterative Closest
Point algorithm using Levenberg-Marquardt optimization
(LM-ICP) [6], using the initial estimate obtained before, to
obtain the transformation matrix which aligns the model to
the object. Table 2 shows the reprojection error, RMSE and
time taken at each step of our pipeline. While calculating
the reprojection error and RMSE, the points have been nor-
malized such that 0 < p,q < 1, where p and ¢ are model
and object points respectively.

I'The plots could not be shown due to limitations in space.



Transparent Bottle Sand Clock Pen Stand Scissors Spectacles Case
Accuracy(%) MPE Accuracy(%) | MPE | Accuracy(%) | MPE | Accuracy(%) | MPE | Accuracy(%) | MPE
S3DC 31.11 0.147 83.33 0.086 91.11 0.093 6.67 0.4 44.44 0.016
Ours 83.52 0.0016 86.81 0.033 83.52 0.002 73.63 0.086 54.65 0.121

Table 1: We compare the classification accuracy and mean pose error (MPE) with S3DC, for some of the objects from our
dataset with varying complexity in terms of shape, size and material.
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Figure 3: (a) Plot showing Reprojection Error (RE) vs number of iterations required to align a model to an object. Note
that, using correspondences obtained from ensemble of features, RE reaches convergence with lower number of iterations.
(b) Error in rough estimate. (c) Error in pose after fine alignment. Fine alignment error is shown those examples whose the
initial estimate is within 20°of groundtruth. (Best viewed in color)

RE RMSE | Time(in sec)
LDA-BHOG 0.197 | 0.243 12.87
Shape Context 0.271 | 0.336 5.49
Chamfer Distance 0.089 | 0.097 2.46
Ensemble of features | 0.015 | 0.026 23.56

Table 2: Table showing the Reprojection Error(RE), Root
Mean Square Error(RMSE), and time taken for estimating
pose of object with each of the shape features individually,
and using ensemble of features, given an initial estimate.
The Chamfer Distance algorithm was implemented in C++.

3. Experimental Results and Analysis

We evaluate our proposed method on the BigBird
dataset [18] as well as our own dataset of tabletop objects
(referred to as TableTop). We experiment with 15 objects
from BigBird, consisting of 600 images per object, and
50 objects from TableTop, each having 180 images. We
also run our approach on cluttered tabletop scene images
from our dataset. The outputs of our solution are given
in Figure 4. We also compare our results with Seeing 3D
Chairs [2] (S3DC).

We learn the exemplar model on our training data, and
obtain a learned classifier for each object sample. A test
image is classified into the object class corresponding to the
sample classifier yielding the maximum score. Figure 3(b)
and 3(c¢) summarizes the quantitative results of our method.
As observed, we are able to provide an initial rough estimate
within 20° of groundtruth for 76% of the correctly classified
examples. As evident from figure 3(c), we further refine er-

ror till 6° of groundtruth for 83% of our examples. Given
the groundtruth pose vector, (¢, ¢y, ¢.) and predicted pose
vector, (c,, ¢, ¢, ), the pose error is taken as the euclidean
distance between them. Table 1 gives results for some of the
objects from our dataset. We compare the classification ac-
curacy and mean pose errors with S3DC in table 3. Figure 6
show the qualitative comparisons. We also evaluate our ap-
proach on tabletop scene images. Using the pose of objects
from a single RGB scene image, we fit their corresponding
CAD models. The method fails when the initial estimate
is far away from groundtruth. Failure cases are shown in
figure 6.

We also run our experiments on articulated objects. Ob-
jects such as scissors have articulation points which influ-
ence certain model vertices to rotate or translate with re-
spect to them. Given the articulation points, and their trans-
formation matrices, we modify the LM-ICP framework to
account for the error due to local deformations in the ob-
ject. Figure 5 shows the results on articulated objects.

BigBird TableTop
Accuracy (%) | MPE | Accuracy (%) | MPE
S3DC 34.5 0.013 45.7 0.044
Ours 49.7 0.008 67.3 0.021

Table 3: Quantitative comparison of S3DC with our pro-
posed method on BigBird and TableTop dataset. Note that
our method outperforms S3DC with respect to classifica-
tion accuracy and mean pose error. Mean Pose errors are
compared for correctly classified examples only.




Figure 4: We show results of our proposed approach. Top
row shows the scene images from our dataset. In bottom
row, we superimpose the CAD models onto the image in
their exact pose. Note that occluded objects are also aligned
with minimal error. (Best viewed in color)
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Figure 5: Demonstration of our method on articulated ob-
ject. (a) Input test image (b) Original model (c) Deformed
model superimposed on image. (Best viewed in color)
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Figure 6: (a) Input test images (b) Fine poses obtained from
S3DC (c) Fine poses obtained from the proposed approach.
Although, S3DC correctly classifies objects, they fail to
align the CAD model properly. (d-e) Failure cases. Top
row shows input images. Middle and bottom rows show
groundtruth and obtained pose respectively. (Best viewed
in color)

4. Conclusions

We have developed an ensemble of shape features for
the purpose of fine alignment of textureless 3D models of
objects to 2D images of real-world objects. We are able
achieve this in spite of the clutter and occlusion in the scene
as well as the lack of texture on the 3D models. The method
is shown to be very effective on a dataset of tabletop objects
and robust against partial occlusion and comparative results
with state of the art are presented.
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