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Abstract—Instance retrieval (IR) is the problem of retrieving
specific instances of a particular object, like a monument, from
a collection of images. Currently, the most popular methods for
IR use Bag of words (BoW) features for retrieval. However, a
prominent problem for IR remains the tendency of BoW based
methods to retrieve near-identical images as most relevant results.
In this paper, we define diversity in IR as variation of physical
properties among most relevant retrieved results for a query
image. To achieve this, we propose both an ITML algorithm
that re-fashions the BoW feature space into one that appreciates
diversity better, and a measure to evaluate diversity in retrieval
results for IR applications. Additionally, we also generate 200
hand-labeled images from the Paris dataset, for use in further
research in this area. Experiments on the popular Paris dataset
show that our method outperforms the standard BoW model in
many cases.

I. INTRODUCTION

Instance-level image retrieval algorithms have gained re-
cent prominence because of their applicability to two main
areas, image recognition for product search like retail prod-
ucts [1] [2] and localization [3] [4]. The task of searching
in an image database for specific “instances” of an object or
subject is called instance retrieval (IR). For example, when
searching for images of “Maruti car”, a generic image search
might retrieve various cars like Maruti, Toyata, BMW, etc.
IR algorithms, on the other hand, retrieve images of various
models like “Maruti Celerio”, “Maruti Swift” etc. IR methods
are expected to perform under several physical constraints like
varitions in viewpoint of camera, time of day, camera zoom
etc.

The success of IR algorithms usually depends on the low-
level image features, such as color, texture, and shape, that
represent the visual content present in the images. The most
popular image representation is the Bag of Words (BoW)
model [5]. A typical BoW pipeline for representing images
is composed of the following steps: (i) extracting the local
features from each image, (ii) encoding the local features to
the corresponding visual words and (iii) performing spatial
binning. Initially, a large set of local features are extracted
from a training image corpus. These features are clustered to
divide the local feature space into informative regions (called
“visual words”) and the collection of the obtained visual words
is the visual vocabulary. Feature extraction is carried using
the popular SIFT [6] which is designed to capture appearance
and local image structures that are invariant to image trans-
formations such as translation, rotation, and scaling. Next, in
the encoding step, the local features of an image are assigned
to the nearest visual word‘s centriod (in Euclidean distance)
and a histogram of visual words is generated. Finally, spatial
information is encoded by dividing the image into several
(spatial) regions, compute the encoding of each region and
concatenating all the resulting histograms. Thus, in IR, when
a query image is given, one computes the SIFT features and

Fig. 1: Sample images of the Paris dataset for the monument
“La Grande Arche de la Dfense”. Top row shows the diverse
images present in the dataset. Middle row shows a sample
query image, and corresponding retrieved results using a BOW
model. Bottom row shows the human expected diversity in
results. (Images best viewed in color)

encodes the visual information in the form of a histogram
and retrieves relevant images that are close in the Euclidean
distance.

However, when a database has many similar images, IR
methods result in near identical images at the top. This is
beacause of two properties: Firstly, local features like SIFT
are more adept at identifying near identical images and of-
ten confuse between different views of the same image and
different but similar looking images. Such a differentiation
requires higher order features to be computed. Secondly, these
approaches do not penalize duplicate results aggressively.
Therefore, the retrieved results are more homogenous with
little diversity. We define diversity in IR as accurate retrieval
of instances that show variations in physical properties like
geometry and illumination.

Further more, in the BoW methods the distance metric,
often pre-defined, used for image similarity is detremental to
accuracy and diversity of the results. This limits the capacity of
IR algorithms, because they usually assume that the distance
between two similar objects is smaller than the distance
between two dissimilar objects. This assumption may not
hold, especially in the case of IR when the input space is
heterogeneous i.e., diverse in visual content. For instance, the
outdoor images (like monuments) are most effected by natural
light, position from the which images are captured, and camera
zoom that is intrinsic property of an image. Product search
might have other properties like occlusion, but this is out of
scope of this work.

We illustrate these characteristics with an example in
Figure 1. Given a dataset containing several distinct views of
a monument (La Grande Arche de la Defense in Paris, first
row, Figure 1), BoW based algorithms [5] [7] typically retrieve
near similar results for a query image (second row, Figure 1),
even when the database itself contains diverse images. It can
be easily seen that users searching for images of La Grande978-1-4673-8564-0/15/$31.00 c©2015 IEEE



Arche de la Defense, might better appreciate the set of results
shown in the third row of Figure 1, because its diversity in
viewpoint, camera zoom, time of day etc. gives much better
visual understanding of the monument itself. We thus make
the case that diversity is an important characteristic for an IR
algorithm to have.

In this work, we show that the key to encoding diversity
is to find appropriate distance metric which allows for vari-
ations these physical properties. In particular, we consider a
Mahalanobis distance function whose general form is given
by,

dA(x, y) = (x− y)TA(x− y) (1)

where, A is symmetric, positive semi-definite matrix. If A = I ,
the above equation is same the popular Euclidean distance
metric. We look at the development and evaluation of methods
for retrieving diverse images with respect to viewpoint of
image capture, time of day, and camera zoom.

II. PROPOSED METHOD

As discussed earlier, one of the more important choices to
make in IR is the distance metric used for retrieval. In contrast
to the Euclidean distance metric, we propose an approach to
learn the Mahalanobis distance metric from the data such that
diversity in IR can be increased while still retrieving accurate
results.

Learning distance metric from available domain has at-
tracted much interest in recent studies [8] [9] [10]. The domain
information is usually cast in the form of two pairwise con-
straints: must-link and cannot-link constraints. The must-link
constraints enforce smaller distances for the pair of “similar”
objects, and cannot-link constraints enforce large distances for
the pair of “dissimilar” objects. The optimal distance metric
is found such that majority of these pairwise constraints are
satisfied. Our goal is to learn this distance metric (A), under
certain physical constraints, to improve diversity in IR.

A. Metric Design

In this work, we use a popular metric learning approach
called Information theoretic metric learning (ITML) [11].
ITML algorithm uses an information-theoretic cost model
which iteratively enforces pairwise similarity/dissimilarity con-
straints, yielding a learned Mahalanobis distance metric, A.
The Mahalanobis distance is a bijection to a Gaussian distri-
bution with its covariance set as an inverse of A.

Exploiting this bijective property, ITML poses the metric
learning problem as a convex optimization of a relative entropy
between a pair of Guassian distributions with unknown A
and the identity I or A0 a prior knowledge about the inter-
point distances, under simple distance similar(S)/dissimilar(D)
constraints.

min Dld(A,A0)

s.t. A � 0

dA(xi, xj) ≤ u (i, j) ∈ S
dA(xi, xj) ≥ v (i, j) ∈ D

(2)

where, Dld(A,A0) = tr(AA−10 ) − log det(AA−10 ) − d; v
and u are large and small values, respectively. Solving Eq.(2)
involves repeatedly projecting the current solution onto a single
constraint, via an update:

At+1 = At + βtAt(xit − xjt)(xit − xjt)TAt, (3)

In the equation, xit and xjt are the constrained data points
for iteration t, and βt is a projection parameter computed
by the ITML algorithm. This formulation regularizes the
optimization problem so as to seek a metric that satisfies the
given constraints and is closest to the Euclidean distance.

Note that, for a pair of points, the distance computation
in Eq.(1) can also be realized by first performing a linear
transformation X → T = A

1
2X and by computing the L2 or

Euclidean distance for the pair in T . This linear transformation
makes similar data points in X closer together and dissimilar
data points farther apart in T , and yields more computationally
efficient pairwise computation.

Adapting this property, we treat the ITML‘s result A as
a post feature transformation and evaluate it with different
qualities of images like geometric and illuminance constraints.
Once this feature transformation is performed, we simply solve
the problem of nearest neighbor retrieval to report the relevant
images. We demonstrate that the learned metric improves the
diversity in the retrieval.

B. Constraint Generation

Metric learning can be seen as a data-driven transferring
of semantic information from the class labels to input fea-
ture space. In this work, physical properties are assigned as
class labels (refer Figure 2) while BoW forms the feature
space. The semantic information is represented in the form
of similar/dissimilar constraints over a pair of images. The
standard distance metric learning involves pairs of images that
are randomly sampled from a database. However, in the IR,
we need to visually identify images that are similar/dissimilar
to the query image.

In order to learn a diversity metric for BoW features, we
have to define the constraints dA(xi, xj) ≤ u or dA(xi, xj) ≥
v for a pair of feature vectors xi and xj , corresonding to
images that are similar and dissimilar, respectively. In the
section III, we describe how the labels are obtained based
on the visual aspects of the images. Using these labels,
we can formulate the constraints in terms of similarity and
dissimilarity between the feature vectors.

Algorithm 1: Diverse Retrieval Using Metric Learning

Input: X = {x1 . . . , xn}, where xi ∈ Rd, a query
q ∈ Rd and k an integer. A0 = I , is prior about
the inter-point distances. S, D are similar and
dissimilar constraints.

1 A← ITML(X , A0, S, D u, v) // Learn metric
2 X → T = A

1
2X // Apply linear transformation

3 Rq ← φ // Retrieved images
4 for i← 1 to k do
5 t∗ ← argmin(t∈T )(‖q − t‖2)
6 T ← T \ t∗
7 Rq ← Rq ∪ t∗

Output: Rq , set of retrieved images

To summarize, our algorithm executes in three phases: i)
perform metric learning using ITML, Algortihm 1 in line (1),
to find appropriate metric and ii) transform the initial feature
space to T using A

1
2 , Algortihm 1 in line (2), and iii) find the

k nearest neighbors, Algortihm 1 in lines (4-7), to report the
set of retrieved images, Rq ∈ X .



Throughout the algorithm, several variables are used that
are specific to the quality of diversity. The essential control
variables that direct the behaviour of the algorithm are: i)
the choice of u and v in the ITML and ii) the number
of constraints, |S| + |D|. See Algorithm 1 for a detailed
description of our approach.

C. Diversity in Instance Retrieval

In order to perform an IR, we first extract SIFT [6] features
from the input query image and compute visual words using
the cluster centers of the database to be searched. In our
experiments, we extract 100 visual words using the popular
VLFeat library [12]. We set the variables v and u in Eqn.(2)
to the 97th and 3rd percentiles of the distribution of pairwise
Euclidean distances within the dataset, respectively.

We randomly sample 100 pairwise constraints from a pool
of annotated images to learn the distance metric and, apply
the transformation on the basic BoW features as discussed
in Section II-A. As a result, the matching procedure using
the learned distance metric takes the same time as the BoW
method. We next include results of some of the queries
peformed on these techniques based on traditional BoW model
and the proposed metric design model for monument retrieval.

III. EXPERIMENTAL RESULTS

A. Experimental Setup

1) Datasets: We use the Paris dataset [13] which consists
of approximately 6K high quality (1024 X 768) images of
monuments in Paris like La Defense and Pantheon. Note that
this collection of paris images is considered to be a challenging
dataset. Since the images are not tagged based on monument
visibility, we manually annotated 200 images with 12 labels
in the following categories: viewpoint (frontal, up, down, left,
right), camera zoom (zoomed in, zoomedout, normal), time of
day (morning, afternoon, evening and night). Figure 2 shows
labels for a sample monument image in the Paris dataset.

2) Evaluation Criteria: There is no evaluation metric that
seems to be universally accepted as the best for measuring
the performance of methods that aim to obtain diverse re-
trieval [14]. Diversity necessarily depends on the collection
over which the search is being run [15] [16]. Diversity also
depends on a system‘s performance at basic ad-hoc retrieval
i.e., how many images are relevant to the user query. Therefore,
similar to precision and recall, there is a need to balance be-
tween accuracy and diversity in the retrieval. In this work, we
keep a balance between accuracy and diversity by maximizing
the harmonic mean of these two criteria. We believe that this
performance measure is suitable for different kinds of diversity
and helps us empirically compare different methods.

Accuracy: We measure the accuracy of the retrieval in
terms of the proportion of relevant images (to the given query)
in the retrieved results, aggregated over 50 trails.

Diversity: We measure diversity in terms of the entropy as
−Σm

i=1si log si, where si is the fraction of images of ith tag,
and m is the number of possible labels, aggregated over 50
trails.

B. Quantitative Results

To empirically evalaute the methods, we pick 50 random
query images and retrieve results for these queries from the

TABLE I: Paris Dataset: Comparison of the retrieval perfor-
mance for BoW and learned metrics using top-5 results. V-
Viewpoint, T - Time of Day, Z- Zoom, Div-Diversity. H is
the harmonic mean of accuracy with their respective diversity
scores. Notice the best peformances are marked in bold.

Method Accuracy V-Div H-V T-Div H-T Z-Div H-Z
BoW [5] 0.817 0.412 0.511 0.537 0.625 0.384 0.445
ITML [11] 0.822 0.391 0.495 0.592 0.652 0.434 0.474

TABLE II: User Study: Results averaged over 210 queries,
answering which method produced more useful results.

Method BoW Our Approach Tie
User Preference 84/210 = 40% 97/210 = 46.19% 29/210 = 13.81%

200 labeled images. We use the labels of the top-5 results to
compute accuracy and diversity scores. As discussed above,
we show in Table I the overall performance measure as the
harmonic mean of accuracy and diversity. We report results
for viewpoint, time of day and camera zoom diversity.

In our results, we observe an improvement in the accuracy
of the retrieval using ITML. Notice that ITML outperforms
BoW model in terms of h-score. This demonstrates the ef-
fectiveness of using metric learning to obtain both relevant
and diverse set of manument images. In order to measure
diversity, we use the distribution of the histogram labels (in
Figure 3), with an equal distribution over all labels being the
most desirable result.

Notice how ITML improves the “night” and “morning”
labels by supressing the “afternoon” and “evening” labels. We
also see a rise in “ZoomOut” label with a drop in “ZoomIn”
label. It is important to notice that the diversity with respect to
viewpoint is low for ITML approach (see Table I column 2),
and this can also be observed in the rise of spikes at “Frontal”
and “Up” labels for ITML approach in Figure 3.

C. Qualitative Results

The first rows of Table III give a visual representation of
the top 5 retrieved images given the query images (shown in
the first column). Note how the retrieved results are visually
very similar to the query image in many aspects like appear-
ance, viewpoint, zoom and even to some extent the time of
day. This highlights the problem that we alluded to earlier,
about the absence of diversity in results with traditional BoW
model. As can be seen in Table III, our approach shows a
greater visual diversity in the retrieved images. These visual
results convincingly prove the ability of learning metrics (from
pairwise constraints) can be helpful to improve the diversity
by as much as 5% (in the case of time of day and camera
zoom, refer Table I column 5) while still retaining similarity
among the results.

D. Evaluating Human Expectations

We evaluate the utility of our approach based on testimo-
nials from 14 different users randomly selected for trails. We
asked them to rate 5 queries by pointing out which among
IR method between BoW and our approach gave the most
relevant results. We the averaged results for the 210 queries
i.e., 14 users X 5 images X 3 criteria. Table II shows that users
in general rated our approach superior to the BoW based IR
approach.



Fig. 2: Images with labels for the “Sacre Coeur” monument in the Paris dataset. (Images best viewed in color)

Query Results with Bag of Words Results with Learned Metric

TABLE III: Five pairs of retrieval results from the Paris dataset. Top-5 candidates are shown for visual comparison between
BoW and Learned metric based approaches. For each query (column one from top to bottom), accuracy for BoW and ITML
Methods are {0.6, 0.8, 1, 1} and {1, 1, 0.8, 1}, respectively. (Images best viewed in color)

Fig. 3: Histogram of labels over 50 queries for BoW and
ITML based retrieval algorithms. Notice the improvements in
the “Morning”, “Night” using ITML approach and also note
the rise in “Zoom Out” label with a drop in “ZoomIn” label.
(Image best viewed in color)

IV. CONCLUSIONS

This paper proposed a metric learning-based diverse IR
method and presented a systematic experimental comparison
with traditional bag of visual words model. Although retrieving
visually similar images is arguably the most obvious applica-
tion where metric distance learning plays an important role,
we showed its application to diverse IR where a good distance
metric is essential in obtaining competitive performances.
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