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Abstract— Human pose as a query modality is an alternative
and rich experience for image and video retrieval. We present a
novel approach for the task of human pose retrieval, and make
the following contributions: first, we introduce ‘deep poselets’
for pose-sensitive detection of various body parts, that are
built on convolutional neural network (CNN) features. These
deep poselets significantly outperform previous instantiations of
Berkeley poselets [2]. Second, using these detector responses, we
construct a pose representation that is suitable for pose search,
and show that pose retrieval performance exceeds previous
methods by a factor of two. The compared methods include
Bag of visual words [24], Berkeley poselets [2] and Human pose
estimation algorithms [28]. All the methods are quantitatively
evaluated on a large dataset of images built from a number
of standard benchmarks together with frames from Hollywood
movies.

I. INTRODUCTION

As an atomic unit of gesture and action, pose is an
important aspect of human communication. Accordingly it
has been the focus of many works [6], [10], [14], [17],
[20], [23], [27], [28] in the recent past. With the exponential
growth of videos and images online, it has become very
critical to develop interfaces which allow easy access to
human pose. Figure 1 illustrates an example pose retrieval.
As shown in the figure, a pose search system aims to retrieve
people in a similar pose to the query irrespective of the
gender of the person, color of the clothing, the type of clothes
worn or the clutter and crowd in which the person is standing.

In this work, we propose a novel approach to pose search
using ‘deep poselets’. ‘Deep poselets’ can be described as
classifiers which detect a subset of body parts in a specific
pose. The response of these deep poselets are used to con-
struct a feature representation of the pose, which is used for
the pose retrieval. The main contributions of this work are,
(a) demonstrating that explicitly clustering the pose space of
arms is useful for encoding the pose, (b) demonstrating that
a similar architecture to ImageNet-CNN [18] is able to work
on the unrelated task of poselet classification, (c) finding
areas in the image that have high probability of deep poselets
being present, and thereby improving their performance, and
(d) empirically demonstrating that deep poselet based pose
search outperforms competing methods.

The pose search task was originally proposed by Ferrari et
al. [9] where it was demonstrated on a database containing
six episodes of the popular TV show ‘Buffy the Vampire
Slayer’. In their work, first, all the people in a frame are
detected using an upper body detector, and a human pose
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Fig. 1. Pose Search: For the query image (top-left corner), the pose
search system retrieves people in the database who are in the same pose as
the query image. The system has to be invariant to the color and type of
the clothes, the clutter in the background and presence of other people in
the image. (Best viewed in color)

estimation (HPE) algorithm is run on the detected upper
bodies. Using the marginals computed during the inference,
a feature representation is constructed for the pose. The work
by Jammalamadaka et al. [16] extended [9] by demonstrating
pose search on 3.1 Million frames taken from 22 Hollywood
movies. In [16], a HPE algorithm is used to estimate pose
and a very low dimensional feature vector is built using the
angles of the various body parts. Furthermore, the algorithm
proposed by Jammalamadaka et al. [15] detects wrong pose
estimates, and hence is able to filter them out.

The pose retrieval methods of [9], [16], [15] use HPE al-
gorithms. Among the many HPE algorithms, pictorial struc-
tures [8] based methods [6], [10], [28] in particular are very
popular. Methods such as [20] have integrated a modified
version of Berkeley poselets [2] with pictorial structures,
while other methods such as [23] have used the poselets for
inferring the pose. With the success of convolutional neural
networks, a few methods [25] have been proposed using
CNN architectures. The work by Gkioxari et al. [13] is the
closest to ours. Both our approach and [13] use body part
detectors which are sensitive to pose. While the main focus
of [13] is on key point detection, ours is on implicit pose



encoding. Further, while we train CNN features specifically
for body part detection task using CNNs, Gkioxari et al. [13]
have used HOG features. Even though the performance of
HPE is improving, it is not good enough to be used as base
technology for tasks such as action recognition and pose
retrieval. A single mistake by the algorithm, say a mistaken
wrist position, renders the whole pose estimate wrong. Our
proposed approach addresses this by softly encoding several
locations for each body part.

Deep poselets, inspired by poselets [2], model a subset of
parts (e.g, left upper and lower arm) appearing in a particular
pose. The key difference between [2] and our method is
that [2] is for person detection, and ours is for pose detection.
The different poselet types in [2] are derived from data by
randomly selecting a large number of potential candidates,
and then successively pruning them using various heuristics.
Several such classifiers are trained with the objective of
detecting a person. All these classifiers are then run on
a test image. Based on the relative locations between the
detections, the location of the person is estimated. In our ap-
proach, we obtain specific poselets and the positive instances
belonging to them using a data driven process described in
section II-A. Given the poselets and instances belonging to
them, a classifier is trained to discriminate positive instances
from the negatives ones. The features for these classifiers are
learnt using CNNs. CNNs have significantly improved the
performance of image classification [4], [12], [18] on the
challenging ImageNet dataset [3]. Motivated by Razavian
et al. [22], we use an architecture similar to [18] to learn
features. The details of the feature extraction and training
are described in section II-C. During the detection stage,
mutually exclusive poselet types (e.g., those corresponding to
the left arm) fire at the locations with a significant overlap in
their detections. This conflict is resolved by spatial reasoning,
described in section III. Using these deep poselets and their
detection scores, a representation for a pose is constructed.
The representation is then used to perform pose search as
described in section IV. In the experimental section V, we
evaluate both the deep poselet method and the pose search
method by comparing them with relevant baselines.

II. DEEP POSELETS

In this work, a deep poselet is defined as a model which
consists of subset of the seven body parts present in a
particular pose. The seven body parts used are the left and
the right upper arms, the left and the right lower arms, the
left and right hip, and the head. Figure 2 illustrates a few
example deep poselets.

A. Deep poselet discovery

The deep poselet framework can be understood as a
discretization of the pose space, where each state is captured
by one deep poselet. We formulate this discretization as a
data driven process by clustering the body joints. Clustering
all the body parts jointly needs huge amounts of data to
fully represent the pose space. Instead we cluster on seven
subset of body parts, where subset i is represented by Si.
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Fig. 2. Discovered deep poselets: Six deep poselets and instances
belonging to them are shown. For each deep poselet, an average image
marked with stickman and example instances are displayed. A deep poselet
is composed of subset of body parts in a particular pose as indicated by the
stick figure on the average image. The body parts and their poses in each
example instance matches its corresponding deep poselet.

The seven subsets used are (1) the left arm and the left hip,
(2) the left arm, left hip, and the head, (3) the left arm and
the right hip, (4) the right arm and the right hip, (5) the right
arm, right hip, and the head, (6) the right arm and the left
hip, and (7) all body parts minus the head. The left and the
right arm are modelled, in three different spatial contexts,
by the subsets {S1, S2, S3} and {S4, S5, S6} respectively.
These three spatial contexts are (a) itself, (b) with torso, and
(c) with head and torso. The subset S7 models both the arms
and captures the popular poses in the database. The resultant
cluster means form an atomic unit of pose and a combination
of them describes an upper body pose. Since the body parts
modelled by a subset Si can only take one of N distinct poses
and clustering algorithms give unique means, these cluster
means are mutually exclusive to each other.

Clustering each subset Si is performed in the following
way. First the dataset is preprocessed by computing a bound-
ing box of the person from the stickman annotation. This
bounding box is then expanded by extents learnt from the
data such that all possible human poses, with their various ar-
ticulations and extensions of body parts, are contained within
the expanded bounding box. Next, body parts annotations
of subset Si are x-y normalized with the dimensions of
the expanded bounding box. These normalized coordinates
are concatenated and passed onto a K-means algorithm for
clustering. The cluster means are taken as the canonical deep
poselets. In our experiments, a total of 122 deep poselets are
obtained. Figure 2 illustrates a few deep poselets discovered
using the above process.

While it is sensible to consider the samples belonging to
the deep poselet cluster as positive samples, some of these are
perceptually dissimilar to the cluster mean. Further, there are
samples whose membership is perceptually ambiguous. Thus
for a deep poselet, each sample is classified as belonging
to positive class, negative class or ignore class using body
part angle (angle made by a body part with the image axis).



The samples belonging to ignore class are neither considered
while training nor while testing. The classification is done
using the following procedure: (a) All the samples whose
individual part angles do not deviate by more than τ1 from
the canonical deep poselet are taken as positive samples,
(b) All the samples whose individual part angles deviate
by more than τ2 degrees from the canonical deep poselet
are considered as negative samples, and (c) Finally all the
samples whose individual part angles deviate by less than τ2
degrees but with at-least one part which deviates between τ1
and τ2 degrees are considered as ignore class. Using cross
validation, the thresholds τ1 and τ2 are set at 20 and 30
degrees respectively.

B. Expected poselet area (EPA)

As deep poselets use CNNs, the sliding window approach
for locating the body parts is very expensive during test time.
Previous CNN based methods for image classification have
solved this problem by using unsupervised object proposal
methods like objectness [1] and selective search [26]. Unfor-
tunately, poselets are not whole objects but parts of a specific
object (e.g, arms as part of human). Thus the above object
proposal methods are not useful for the task. We solve this
problem by finding the ‘expected poselet area (EPA)’ in an
image. EPA gives the highly probable location of the deep
poselet within the bounding box of the person.

Deep poselets typically occur in a localized region within
expanded bounding box. For example, a deep poselet mod-
elling the left arm typically lies in the left half of the bound-
ing box. We term this localized region as ‘expected poselet
area’. The search space of the deep poselet can be restricted
to this ‘expected poselet area’ which improves both the
performance and time complexity. The extent of the EPA of a
deep poselet is learnt from the positives in the training data.
This is done by taking 5 percentile and 95 percentile of the
normalized coordinates (normalized w.r.t expanded bounding
box) as the extent of EPA respectively. Experiments show
that over 95% of the positive instances are encompassed by
expected poselet area. While EPA encompasses the positives
instance well, it also has background area within it. Thus the
ground truth area can be any of the possible sub-windows
of the EPA. A way to deal with this would be to search for
the true detection in the EPA over all possible scales and
locations. We simplify the search procedure by fixing the
scale of deep poselet to 90% of the EPA and translations to
9 equally spaced sub-windows.

C. Training

As mentioned before, each deep poselet models a subset of
parts in a specific pose. We train a discriminative classifier
which can tell apart image regions belonging to this deep
poselet from other image regions. We use linear SVMs
to train the deep poselets. For the features, we use the
representations from CNNs. Convolutional neural networks,
first proposed by Lecun et al. [19], model an object as
composition of patterns starting from edges to higher level
parts like faces. A CNN consists of convolutional layers,

pooling layers and fully connected layers. A convolutional
layer consists of K 3-D filters which are applied to the input
to obtain K feature maps. At each location of the feature
map, a nonlinear function called a neuron activation function
is applied. The convolutional layers are followed by pooling
layers which pool the inputs in a local neighbourhood and
typically down-sample the input, thus introducing translation
invariance. Finally, fully connected layers take input from all
the neurons of the previous layer and act as the reasoning
units. Taking input from such a wide context helps in making
better informed decisions about the class labels. The network
is trained using the back propagation algorithm. In our ex-
periments, we use the implementation of the ImageNet-CNN
network by Donahue et al. [4]. The ImageNet-CNN [18] is
a deep neural network with five convolutional layers and
three fully connected layers. Below, the feature extraction
and training are explained

1) Feature Extraction: The nine sub-windows of the EPA
are passed through ImageNet-CNN in a feed forward manner
and the feature maps of the fifth pooling layer (pool5), the
first and the second fully connected layers (fc6 and fc7
respectively) are noted. From these three feature maps, the
best performing one (details in section V) is used as the
representation for the deep poselet.

Further, we fine-tune the ImageNet-CNN to the task
of poselet classification so that the CNN takes an image
region as input and outputs the poselet class label or back-
ground. For fine-tuning, the last fully connected layer of
the ImageNet-CNN is replaced by a 123 (122 deep poselets
and a background class) neuron fully connected layer. The
weights of the newly added layer are randomly initialized.
The weights of the rest of the layers are initialized from the
ImageNet-CNN [4]. It has been observed that the sample
strength ratio between the largest poselet class and the
smallest poselet class is 80. To compensate for this skew,
the data of the classes with low strength are augmented
by their translated versions. The original learning rates are
decreased by a factor of 10 so that the existing weights do not
significantly change. For the first two fully connected layers,
a dropout rate of 0.5 is used. For training the network, the
cuda-convnet software is used.

2) Learning SVMs: The SVM training follows an iterative
procedure. After extracting the feature representations from
the nine sub-windows of all EPAs, an initial linear SVM
model is trained. For this, all the sub-windows are given
the same label as the EPA. Using this initial SVM, the best
scoring sub-windows are selected and a new SVM model is
trained. This process is repeated until the AP on validation
set converges. In practice, it is found that three iterations
suffice. Empirically, this procedure improved the AP by 7%
over the method in which the candidate window is used as-is
for training. This procedure is reminiscent of best positive
bounding box selection used in Felzenswalb et al. [7].

D. Testing

Given a test image, it is processed using the human de-
tector algorithm to obtain upper body detections. Each upper



Score: 0.3 

Score: 0.2 

Score: 0.7 

#Poselets: 

15 
#Poselets:  

13 

(1) 

(2) 

(3) 

Fig. 3. Spatial reasoning: For a given test sample, three deep poselet
detections and their scores are shown as belonging to the area marked by
an orange rectangle. Detections 1 and 3 are partially correct as the pose
of the left upper arm matches that of the test sample. Detection 2 is the
correct one. Typically many such deep poselet detections, often mutually
exclusive, have significant overlap. Using spatial reasoning, these detections
are rescored such that correct ones (detection 2) get a score of nearly 1 and
the partially or totally incorrect ones (detection 1 and 3) get a score of nearly
0. The image also shows that area around the left arm (orange rectangle) has
15 unique deep poselets while area around the right arm (pink rectangle)
has 13 unique deep poselets.

body detection is then transformed to obtain the expanded
bounding box. For each deep poselet, the corresponding
EPA (expected poselet area) is computed using the learnt
transformation (section II-B). The EPA is then divided into
nine equally spaced sub-windows with the scale of each sub-
window at 90% of EPA. Each sub-window is passed onto the
deep poselet model to obtain a score. The sub-window with
the best score is noted as the deep poselet detection.

III. SPATIAL REASONING

On an image with a person in it, typically most of the deep
poselets fire, when only a few of them are correct. Many
of these deep poselet detections significantly overlap, while
being mutually exclusive. Figure 3 illustrates this behavior. In
the figure, three deep poselet detections corresponding to the
left arm are displayed. Clearly they are mutually exclusive
because the arm can be present in only one of the three poses
represented by them. This conflict is resolved by rescoring
the deep poselet detections using other mutually exclusive
deep poselet detections as context. The expected outcome
is that the correct detections (detection 2 in the figure 3)
have a score of nearly 1 and incorrect ones (detections 1
and 3 in the figure 3) have a score of nearly 0. For this
rescoring, a RBF kernel based regression model [5] is learnt
for each deep poselet type P . The input to this model is
a feature vector comprising of calibrated scores of the P ’s
own detection and its mutually exclusive deep poselets and
the output is the new score. For training, the above feature
is provided as input and the binary label of the deep poselet

detection is provided as target value. Given a test sample,
first all the deep poselets are run on the sample and then the
above regression models are applied to rescore each deep
poselet detection. Below the procedure for calibration and
finding mutually exclusive poselets are described.

Calibration: Calibration ensures that scores of various
deep poselets are comparable. This is achieved by mapping
the scores of all deep poselets to the [0, 1] interval. We use the
method proposed by Platt [21], in which a logistic regression
model is learnt with the deep poselet score as input. Let
X ∈ R be the scores of the deep poselet detections D. A
mapping σ : X → Y where X,Y ∈ R is learnt. The function
σ(x) is parameterized by w0, w1 and is given by,

σ(x) =
1

1 + e(w1x+w0)
. (1)

Mutually exclusive deep poselets: For each deep poselet
type P , a mutually exclusive poselet is defined as one which
occupies the same area in the person bounding box. For
example, the three detections in figure 3, which are mutually
exclusive, occupy the same area. The following procedure is
used to find the mutually exclusive deep poselets. First the
‘expected poselet areas’ (section II-C) of all the 122 deep
poselets are collected. These deep poselets are then clustered
using the cluster partitioning algorithm proposed by Ferrari
et al. [11]. The algorithm returned 31 clusters, where poselets
in each cluster form a mutually exclusive set.

IV. POSE SEARCH

In this section, we first describe our pose search approach.
We then review three standard retrieval methods for the pose
search task. Later in the paper (section V-C), we compare
the proposed pose search method against standard retrieval
schemes described below. All the methods below take an
expanded bounding box as input.

Our pose search approach: Given a test image, all the
deep poselets are run on it using the procedure described
in section II-D and the detection scores are noted. All the
deep poselet detections are clustered by the person to which
they belong. These deep poselet detections are then rescored
using spatial reasoning (section III). Finally a feature vector
of K dimensions, where K is the number of deep poselet
detectors, is constructed by max pooling the detections. The
feature is then l2 normalized. Thus for each upper body in
the dataset, a feature vector is constructed.

Given a query image, a feature representation is created
using the method described above and it is compared against
all the samples in the dataset using Euclidean distance. The
samples in the dataset are sorted by distance and presented
to the user.

Bag-of-visual words models [24]: Given a training data
composed of images with people in various poses, the SIFT
features are extracted at the key points and 1000 visual
words are obtained. Given a test upper body detection, the
SIFT features are extracted in the expanded bounding box
and bag of words representation is obtained using the visual
words computed from the training data. This representation



Dataset Train Validation Test Total
H3D dataset [2] 238 0 0 238
ETH PASCAL dataset [6] 0 0 548 548
Buffy stickmen dataset [10] 747 0 0 747
Buffy stickmen-2 dataset [15] 396 0 0 396
Movie stickmen dataset [15] 1098 491 2172 3756
FLIC [23] 2724 2279 0 5003
Total 5198 2764 2720 10682

TABLE I
THE CONTRIBUTIONS OF VARIOUS DATASETS BEFORE ADDING THE

FLIPPED VERSIONS.

  

Fig. 4. Images from the dataset: These images show the pose variation
in the dataset.

is then compared against all the images in the database. The
distances or similarity scores are sorted to obtain the ranked
list.

Human pose estimator [28]: Following the method pro-
posed by Jammalamadaka et al. [16], the HPE algorithms are
used for the pose search task as described below. First the
pose estimation algorithm [28] is run on all the expanded
versions of the upper body detections in the database to
obtain the pose estimates. This HPE algorithm gives the
locations of various body joints by efficiently searching over
multiple scales and all possible translations. For each pose
estimate, the sine and cosine of upper and lower parts of both
the arms are extracted to form a pose representation. Given a
test upper body bounding box, the above procedure is applied
to obtain the pose representation. It is then compared against
all the instances in the database and the ranked list is obtained
after sorting the scores.

Berkeley poselets [2]: Here, all the poselet classifiers are
run on an image to obtain poselet detections. These poselet
detections are then pooled into clusters based on the person
bounding box, and are max pooled to obtain a description
of the human pose. The above procedure is applied on the
database and the representations are stored. Given the query
sample the above representation is obtained and is compared
against all the samples in the database. The ranked list is
obtained by sorting the scores.

Layer Before fine tuning After fine tuning
pool5 67.5 69.5
fc6 59.7 69.6
fc7 47.4 69.6

TABLE II
PERFORMANCE OF FIVE RANDOMLY CHOSEN DEEP POSELETS ON

VARIOUS CNN FEATURES OVER THE TEST DATA.

V. EXPERIMENTS

In this section, we present the experimental evaluation
of the deep poselet method and the pose search method.
First the data used for both the tasks is described in detail.
Then the experimental setup and results for the deep poselet
method and pose search method are described.

A. Data

Training deep poselet classifiers require moderately large
amounts of data. We thus pool several existing datasets to
create training and test data for deep poselets and pose
search. The datasets used are Buffy stickmen dataset [10],
ETH PASCAL dataset [6], the H3D dataset [2], Buffy
stickmen-2 dataset [15], Movie stickmen dataset [15] and
FLIC dataset [23]. Each of these datasets contains images
and stick figure annotations of the humans. Figure 4 shows
some examples from these datasets. For the convenience of
pose search method, we consider only those annotations in
which all parts are visible. For a partially occluded person,
defining a positive instance for retrieval is ambiguous. In all,
there are 10, 682 fully visible annotations. The statistics are
given in the Table I. To further enhance the dataset size,
each image and annotation is horizontally flipped effectively
doubling the corpus to 21, 364 stickmen. Using the stickman
annotations, the bounding box of the upper body is con-
structed and transformed into the expanded bounding box.
To understand the efficacy of various pose representation
schemes, the ground truth bounding box is assumed.

The combined dataset of 21, 364 samples is divided into
training, validation and test datasets. The training dataset
consists of Buffy stickmen dataset [10], H3D dataset [2],
Buffy-stickmen II dataset [15], five movies from the movie
stickmen dataset [15] and twenty movies from FLIC
dataset [23]. The validation dataset consists of one movie
from movie stickmen dataset [15] and ten movies from FLIC
dataset [23]. The testing dataset consists of ETH pascal
dataset [6] and the remaining five movies from the movie
stickmen dataset [15]. This division of data ensures that
training and testing datasets have no overlap in movies
and helps in evaluating the methods on unseen data. The
individual contributions of various datasets to the train,
validation and test data are given in table I.

B. Deep Poselets

Given a set of deep poselet detections and ground truth
bounding boxes, the deep poselet performance is reported in
terms of average precision (AP) in the following way. First
all the deep poselet detections in an image are compared
against the ground truth bounding boxes using the intersec-
tion over union measure (IOU). All the detections which
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Fig. 5. Deep poselets vs HOG poselets: The graphs show the performance of three deep poselets on test data. The red curve in each graph corresponds
to HOG poselet while the green curve corresponds to the deep poselet. As can be seen, the deep poselet outperforms the HOG poselet.

Method AP-test
HOG poselets 32.6
Deep poselets before fine-tuning 48.6
Deep poselets after fine-tuning 56.0

TABLE III
COMPARISON BETWEEN HOG AND DEEP POSELETS (CNN-FEATURES)

ON THE TEST DATA.

have more 0.35 IOU, a value used in [2], are considered as
positive. All the detections are then sorted in the decreasing
order of score and AP is calculated using the labels.

Deep poselets: Using the procedure described in sec-
tion II-C, deep poselets are trained using CNN features
extracted from the ImageNet network [4], before and after
fine-tuning it. The hyper-parameters are set using 3-fold cross
validation. We experiment with the features from last pooling
layer (pool5), the first (fc6) and second (fc7) fully connected
layers. Table II shows the performance of deep poselets using
features from different layers averaged over five randomly
chosen deep poselets on the testset. For deep poselets using
features before fine tuning the network, the last pooling layer
(pool5) works best. This is expected as the network is trained
on a very different task of object detection. For the deep
poselets using the features after fine tuning the network, the
features from second fully connected layer (fc7) works best.
The deep poselets using features after fine tuning consistently
outperform those which use features before fine tuning.

HOG poselets: To baseline the performance of the deep
poselets, we compare it with poselets which use HOG
features. In this method, a linear SVM is trained using the
standard hard-negative mining approach [7]. For the positive
samples, the HOG feature is extracted in the bounding
box. For the negative samples, the HOG feature of all
possible bounding boxes in scale and translation space are
considered. Given a test sample, the classifier is run on all
scales and locations. All the detections which are above a
pre-determined threshold (95% recall on the training data)
are deemed as positive detections. Further, all the poselet
detections which do not overlap more than 0.35 IOU with
the ‘expected poselet area’ (section II-C) are discarded. This
step improves the average AP by 10%.

Table III shows the performances of HOG poselets and
deep poselets. These values are averaged across all the 122
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BOW [24]:      14.2

Berkeley
Poselets [2]: 15.3

HPE [28]:       17.5

Ours:              34.6

Fig. 6. Posesearch performance: The distribution of query performances
by various retrieval methods are shown. Each bar in the graph shows the
percentage of queries (Y-axis) having an average precision (X-axis). Thus
the more the number of queries on the right side of the graph the better
the method. This is also reflected by the mean of the distribution (mAP) of
various methods given in the top right corner. It is clear that the proposed
method significantly outperforms other methods.

Methods #Dimension mAP
Bag of Visual Words [24] 1000 14.2
Berkeley Poselets [2] 150 15.3
Human Pose Estimation [28] 8 17.5
Ours - Deep Poselets 122 32.9

+ Spatial Reasoning 122 34.6

TABLE IV
POSE SEARCH PERFORMANCE (MAP) AND POSE REPRESENTATION’S

DIMENSIONS OF VARIOUS METHODS.

classifiers. It is apparent from the numbers that deep poselets
outperform the HOG poselets. It is also observed that out
of 122 deep poselets, 118 of them using features before
fine-tuning and 120 of them using features after fine-tuning
outperform the HOG poselets. Figure 5 compares the AP
curves of HOG poselets and deep poselets. Figure 7 shows
the example detections of three deep poselets. As illustrated
in the figure, the performance of the deep poselet improves
with more training data.
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Fig. 7. Top deep poselet detections: Three deep poselets and top detections by them are shown. For each deep poselet, every fifth detection is displayed.
In the top 50 detections, while there are no mistakes in deep poselet (a), there are 4 mistakes in deep poselet (b) and 20 mistakes in deep poselet (c). In
the deep poselets (b) and (c), the first mistakes occur at ranks 20 and 10 respectively. It can be seen that the performance of deep poselets improve as the
number of training samples increases.

C. Pose search

Given a query image, the feature representation is com-
puted and its similarity score or distance is computed with
all samples in the test data. These scores are then sorted to
obtain a ranked list. The label for each sample in this list,
which indicates if the sample has a similar pose as the query,
is determined using the part angles as described in section II-
A. Using the ranked list and labels, average precision (AP)
is calculated. Each sample in the test data is used as a query
to retrieve the results, thus evaluating the various retrieval
methods on a total of 5440 queries, the size of test data. The
pose search task is evaluated using mean average precision
(mAP), which is the average of APs over all the queries.

Table IV shows the mAPs of various methods over all
the queries and the dimension of the pose representation. As
is evident, the proposed approach, with a mAP of 34.6%
significantly outperforms other methods with the best of
them at 17.5%. The table also shows that applying spatial
reasoning has improved the mAP from 32.9% to 34.6%, an
improvement of 1.7%. Figure 6, which shows the distribution
of pose search APs over all the queries, gives an insight into
our method’s better performance. Our method performs ex-
tremely well and outperforms other methods on queries such
as query 3 in figure 8 with APs in the excess of 50%. Such
queries have low intra-class variation and high frequency.
The second mode on the right in figure 6 corresponds to
these poses. On queries with rare poses, our method gives
better APs, while other methods post near zero APs. Few
examples queries and their top retrievals are displayed in
figure 8.

Each class of methods used for baselining in table 6 have
weaknesses, analysis of which is presented here.

Bag of visual words [24]: While these methods perform

very well for general object retrieval, their performance on
pose search suffers because, (a) the loss of geometric context
when histogramming the visual words, (b) distracting SIFT
detections on clothes, and (c) disproportionately small area
of arms and legs with respect to the rest of the bounding box.
Our method overcomes this problem by learning to ignore
distracting patterns like clothing and identifying the key areas
in the bounding box where the arms and outline of the human
are present.

Berkeley poselets [2]: A pose sensitive poselet describes
the body pose of a person. For example, a poselet corre-
sponding to the whole left arm in a certain pose is pose
sensitive while that of face and shoulder is not. A scan
through the set of poselets detected by [2] shows that most
of the detected poselets are not pose sensitive. This renders
the method incapable of detecting the human pose. While,
in theory, this method is capable of discovering poselets
which model the arms in various poses, it would output far
more pose-insensitive poselets. Our method and [13] output
a compact set of entirely pose sensitive poselets.

Human pose estimators (HPE) [28]: Most HPE algo-
rithms are modelled as a CRF and the pose estimate is
obtained by inferring a maximum a posteriori estimate. Typ-
ically maximum a posteriori estimation algorithms decide on
one particular location for each body part and can potentially
make a wrong choice. Clearly this affects the pose retrieval
as a mistake in one part effectively renders this detection
useless and can potentially worsens the performance of the
retrieval system. Our method solves this by taking into ac-
count several likely alternative locations, while constructing
a representation for the pose. Soft coding of pose is the key
to the performance of our algorithm.
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Fig. 8. Example retrievals: Top retrievals and AP curves for three queries are displayed. For the top retrievals every fifth sample from the top in retrieved
list is displayed. The first mistake occurs at ranks 11, 4 and 33 respectively for the above queries.

VI. CONCLUSIONS

In this work, we successfully demonstrated a novel ap-
proach for image and video search using pose as a query
modality. We have shown that pose space can be discretized
by using ‘pose-sensitive’ deep poselets. These deep poselet
detectors model a subset of body parts in a particular pose.
We have shown that using the state-of-the-art CNN [4]
features, these detectors perform very well. They have been
used as a basic building blocks in constructing a feature
representation for pose. We then empirically demonstrated
that our pose retrieval method outperforms other competing
pose retrieval methods by a factor of 2.
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