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Abstract. We propose a fast and accurate method for counting the
mitotic figures from histopathological slides using regenerative random
forest. Our method performs automatic feature selection in an integrated
manner with classification. The proposed random forest assigns a weight
to each feature (dimension) of the feature vector in a novel manner based
on the importance of the feature (dimension). The forest also assigns a
misclassification-based penalty term to each tree in the forest. The trees
are then regenerated to make a new population of trees (new forest)
and only the more important features survive in the new forest. The
feature vector is constructed from domain knowledge using the intensity
features of nucleus, features of nuclear membrane and features of the
possible stroma region surrounding the cell. The use of domain knowledge
improves the classification performance. Experiments show at least 4%
improvement in F-measure with an improvement in time complexity on
the MITOS dataset from ICPR 2012 grand challenge.
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1 Introduction

Detecting and counting of mitotic cells from histopathological images are key
steps in breast cancer diagnosis as mitosis signals cell division. Interest in au-
tomating this process is driven from the arduous and error-prone nature of the
manual detection. Research in this area has received much interest after the
launch of mitosis detection as a challenge in ICPR 2012. The images that need
to be analyzed are obtained with Hematoxylin & Eosin (H&E) staining which
render the cell nuclei dark blue against pinkish background (see Fig. 1).

Early solutions proposed for this problem include Gamma-Gaussian mixture
modeling [1] and independent component analysis [2]. The difficulty in identify-
ing appropriate features has been addressed by augmenting hand crafted features
with those learnt by a convolutional neural network [3] or using only features
learnt with a deep neural network [4]. While it is attractive to use neural net-
works to learn the appropriate features from raw image patches, this comes at
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a cost in terms of tuning effort and training time for optimal performance. For
instance, [4] reports a training time of 1 day on a GPU and processing time of
8 minutes per image. The latter poses a major deterrent for considering auto-
mated mitosis detection with high throughput processing of tissue microarrays.
More extensive review can be found in [5]. Recently, random forests with pop-
ulation update [6] has been tried for mitosis detection where tree weights are
changed based on classification performance. An in-depth biological study of the
breast cancer tissues reveal that the key factors in mitosis detection are: the
color of the nucleus, the shape of the nuclear membrane and most importantly,
the texture of the surrounding region. Presence of nucleus in a stromal region
rules out the possibility of the nucleus to be mitotic, while the absence or rup-
ture of the nuclear membrane signals mitosis. Hence, we propose a fast mitosis
detection method with the following contributions (i) new features based on
domain knowledge mentioned above and (ii) regenerative random forest-based
classification with automatic feature selection, unlike [6]. Throughout the paper,
feature refers to the dimension of feature vector. Automatic feature selection
is achieved using a novel feature weighting scheme. Feature weights are based
on the importance of a feature and we reject features with low weights. A new
generation of forest (new population of trees) is created which operates on a
reduced feature set. During the test phase, each tree of the trained forest votes
with their corresponding weights to perform the classification.

The rest of the paper is organized as follows: section 2 describes our proposed
method and prove that the process of forest regeneration converges with maxi-
mum classification accuracy with the training data. We present the experimental
results in section 3 and the paper concludes in section 4.

2 Methods

We focus on several important biological cues for mitosis detection. First, we note
that after chromosomal condensation in interphase, the nucleolus disappears and
the nuclear envelope breaks down during prophase of mitosis. Consequently, most
of the liquid contents of the nucleus is released into the cytoplasm and the nu-
cleus region becomes denser with darker appearance compared to non-mitotic
nucleus [7] in H&FE stained histopathological slides. This darker pattern of inten-
sity of mitotic nuclei remains almost phase invariant during mitosis. Thus, the
nuclear intensity pattern provides discriminative features between mitotic and
non-mitotic cells. Second, it has been observed that the stroma or the connecting
tissues contain non-cancerous fibroadenomas and a large number of non-mitotic
cells. Thus, if stroma is found surrounding an unknown cell, the cell can be
classified as non-mitotic. Hence, we evaluate the texture features of the regions
surrounding the cell to find whether the cell belong to stroma or not. Further,
after the nuclear membrane breaks down during mitosis, the nuclear contour of
a mitotic cell becomes irregular compared to the contour of a non-mitotic cell
with nuclear membrane. Thus, the pattern of the contour of nucleus also pro-
vides useful information in categorizing the mitotic and the non-mitotic cells.
But the above features can be correctly evaluated and used for classification
only if the nuclei are accurately segmented. So, the proposed method consists of
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three steps, namely: nuclei segmentation, feature extraction, classification. We
perform nuclei segmentation using the method proposed in [6]. Subsequently,
the segmented nuclei are used for feature extraction. In the next few paragraphs
we discuss the feature extraction and classification steps in detail.

2.1 Feature Extraction

Both the mitotic and non-mitotic nuclei in H& FE stained images are almost uni-
formly stained in blue [8]. As a result, the blue channels of the H&E stained
images do not provide useful information to discriminate the mitotic and non-
mitotic nuclei. Hence, we use only the red and the green channel images for
feature extraction. First, we extract the red and green channel histograms of the
segmented nuclei. Next we look for the features of stroma. For this, we take a
region with 3 times the area enclosing the nucleus. In each such area, we evaluate
the Haralick texture feature [9] of the region excluding the pixels representing
nuclei. Along with that, we detect the features associated with nuclear mem-
brane. Here, we rely on the fact that a detected object (nucleus) with nuclear
membrane has smooth and almost circular boundary whereas the mitotic nucleus
with ruptured nuclear membrane has a rough boundary with non-circular shape
in most cases. In order to characterize the detected object contour (whether the
contour is circular or not) we evaluate the solidity, extent and the lengths of
major and minor axes of an ellipse equivalent to the detected object. This yields
a 604-dimensional feature vector for each of the detected object (nucleus). Let
the feature vector of k*" nucleus be denoted as F (k). Intensity histogram of nu-
cleus, stromal texture and nuclear membrane contribute 512, 88 and 4 features
respectively. We use these feature vectors in the next step for classification of
the nuclei in mitotic and non-mitotic category.

2.2 Classification

Our training dataset relies on manual ground truth [10] which inherently includes
observer bias. Further a wide variation of feature magnitudes among the nuclei of
same category (mitotic or non-mitotic) dictates the use of an ensemble classifier
rather than a single classifier. Further, the variability in class-specific signatures
in this problem precludes an explicit feature initialization in the classifier. All
these prompt us to use random forest classifier [11] which is an ensemble classi-
fier without the requirement for explicit feature initialization. A random forest
is constructed of T trees each of which is grown using a bootstrap sample [11]
from the training dataset. While splitting a node in each such tree, a subset of
f number of features from F(k) are chosen. The best out of these f features is
used for splitting the node. But, all of the features (dimensions) of F(k) may
not have class-discriminative information. So, we propose a novel regenerative
random forest that keeps on improving its classification performance by elimi-
nating less discriminative features (dimensions) as the new populations of trees
(new forest) are produced and thus performs feature selection and classification
in an integrated manner.

Regenerative Random Forest: Our present aim is to classify the detected
nuclei into two classes: mitotic and non-mitotic. For this, let S be the training
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dataset with s number of training data. A feature vector F(k) of dimension
604 is associated with k" such data. During first step of training, we build
T number of binary trees. For each tree 7, we construct a subset of training
feature vectors W™ (with #¥™ = s) by selecting s number of training feature
vectors randomly with replacement from S. At each node of tree 7, we randomly
choose a set (A) of f number of features (dimensions) from each training feature
vector F(k) € U™ without replacement for splitting the node into its two child
nodes. Now, for selecting the split point, we consider the fact that an ideal split
should result in child nodes each of which contains training data of exactly one
class. Let a node u be composed of £ number of training feature vectors and

the class label of j feature vector be denoted by c¢j. We indicate the probability
of class ¢; in node u by p(u ¢;). Then the total entropy of node u is defined as:
H(u) = > p(u,cj)log p(u 7y Vi € & So, the total entropy of two child nodes

Cj
after a split from parent node v using feature (dimension) f; is:

2
E(U,fl)zz ZZpu ¢j)log —— ( & Vi€ &F. (1)

u=1 c¢j
In case of an ideal split from parent node v, p(u,c¢;) =1 making H(u) = 0;Vu,

where u is a child node of v. Thus, from (1), we get E(v) = Z H(u) = 0 which

indicates that the best split should result in minimum total entropy of the child
nodes. Hence we look for the split point in node v based on a feature (dimension)
fx € f that minimizes the total entropy of its child nodes. So,

fx =argmin{E(v, fi)} = argmm Z Z (u,c¢;)log o) (2)

7 u= 1v]€ &u (U’Cj)

We continue splitting a node u until u has a very small value (0) of entropy.
So, we split a node u only if H(u) > J. Now, suppose the ground truth class
label of j** training feature vector is given by c¢; and tree 7 predicts the proper
class label with probability ¢2(j,c;) [11]. Then, probability of misclassification
on j'" training feature vector by tree 7 is 1 — ¢2(j,¢;). Once all the trees are
grown, we calculate weight (importance) of each tree in a novel manner based
on tree’s classification performance on the labeled training data. Initially, each
tree T is assigned a weight w? = 1. Now, we propose a penalty for each tree on
the basis of above misclassification probabilities. The normalized penalty of tree
T is given by: 72 = £ 3 (1 — ¢%(j,¢;)). Consequently, the weight of a tree

=

after the first population (first phase of training) is given by: w, = w? — k7? =

w? -2 > —q2%(j, ¢;)), where £ is a constant in (0, 1]. Subsequently, we assign
vjewr

weight to each feature (dimension) of the feature vector F. Consider a tree T

where feature (dimension) 2 has been selected a,(z) times in A, out of which

it has been used S, (z) times for node splitting. Then we define the importance
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of feature (dimension) z in tree 7 as v, (z) = 5 z gg and the global importance

T
(weight) of feature (dimension) x is defined as: n(z) = & > .7, (z), where b,

T=1

is the value of w,, normalized w.r.t. maz(w,),¥r € T. Note that a,(z) =0 =
Br(x) = 0. So, if a.(x) = 0, we take v,(x) = 1. Clearly, the feature (dimension)
that provides more class-discriminative information will be used for splitting
more number of times as evident from (1) and (2) yielding high value of 7, (x)
in each tree. Thus a more class-discriminative feature (dimension) x will have
higher value of weight n(z). Let 1 and o be the mean and standard deviation of
feature weights n(z), Va. Also, let £ be the set of features (dimensions) that has
weight n(z) < (u— o). Clearly, the features (dimensions) in £ are the redundant
features with low weights. So, we remove the features in £ and make F = F — L.
Then we create a new population of trees (new forest) which are trained with
a subset of training data ¥™. ¥” is composed of s number of training feature
vectors randomly selected with replacement from S. Thus, the weight of tree 7 in
(n+1)*" population is given by: w? ™! = w? — Y = w? — £ . gp (1—q2(j, ¢j))-
e
Let F™ be the set of features in n!* population and £" be the set of features
to be removed from F™. Then the reduced feature set in (n + 1)** population is
given by: F**+1 = Fn — L™, Thus, our approach performs automatic selection of
features that provide more class-discriminative information. Next, we show that
the proposed approach result in maximization of classification performance of
the forest on training data.

Maximization of classification performance of the forest: Let 7j(r) =
n(r)/maz(n(r)) be the relative weight of r** feature (dimension). We consider
an empirical dependence that the accurate classification probability by the forest
@ in the n'" population (P%) depends on the relative weight of true discrimina-
tive features (dimensions). The relative weight 7(r) indicates the probability of
rth feature (dimension) to be selected as the feature for splitting a node, given
that the feature is there in A of the corresponding node. Consequently, Pg also
depends on the probability that the above mentioned true discriminative feature
is chosen in A. Let there be d number of true discriminative features in F. Also,
let the subset of features to be considered for node splitting in tree 7 in the n**
population be A7. Given this, we obtain the probability that r* true discrimina-
tive feature is selected in A7, (#A], = f) is given by p] (r) = (#’izl)/(#ff) Now,
if the weight of the r*" discriminative feature is 7(r), then, we consider the em-

d
pirical function II that relates P} and p] (r),n(r) as: Py = II (Z pﬁ(r)ﬁ(r)).
r=1

So, if we go on removing redundant features using the equation F*+t! = 77— L",
#JF will decrease. Thus, from straightforward observation, for every infinitesimal
change in iteration (population number) %’é” > 0. Now, if we take sufficiently
large number of training data, the relative weight of the features can be con-
sidered to be statistically independent of the subset of data chosen for training
each tree. So, using the expression of Pg, we can write AAIT;}’L > 0 until we remove
any important feature.
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Forest convergence: Increase in AP} corresponds to decrease in misclassifi-
cation probability of the forest on training data [11]. So, we conclude that our
proposed approach converges with minimum misclassification probability. We
terminate the population update when the misclassification probability starts
increasing after attaining a minima. This situation corresponds to removal of
discriminative feature from the feature vector. Finally we discard the current
population and select the trees of previous population (that attained misclassi-
fication minima). We compute the weights of the selected trees and a weighted
voting from these tress is used for classifying test data. At this point, we discuss
two situations that may arise during training. First, at some iteration num-
ber (population) n*, the feature vector may have all the features with weight
n(x) > (p—o). This indicates that all the features, now present in feature vector
are important (class-discriminative) features. So, in this condition we terminate
the regeneration process and go for testing. Fig. 2(a)-(b) shows a typical situa-
tion where convergence is achieved based on misclassification probability and as
many as 96% of the features are above (1 — o) limit at the convergence point.
Second, as we go on reducing the features, at some population, although very
rare, it may happen that #F < f. To avoid this, we terminate the training pro-
cedure pre-matured when #F = f. In the next section, we present and analyze
the experimental results.

3 Experimental Results

3.1 Dataset and Parameters

We use the MITOS dataset [10] for our experiments. The training data contains
35 images with 233 mitotic cells and the test data contains 15 images with 103
mitotic cells. During classification, our forest is composed of T' = 1000 trees and
the initial feature vector contains 604 features. We take f = 15 for each node.
When the proposed forest tends to misclassification minima, the tree weights
have a high mean value and a low value of standard deviation as evident from
previous discussions. In this near minima situation, the rate of change of tree
weights (and consequently x) should be low so that the forest does not cross the
minima. Hence, we take k = o7 (1 — u”) where p! and o are mean and standard
deviation of tree weights in the n*" population.

3.2 Performance Measures and Comparisons

Following [10] we evaluate recall, precision and F-measures on the test data. In
particular we obtain a recall value of 0.8113 and precision value of 0.8350. Thus
the F-measure is found to be 0.823. We compare our classification performance
with the four best results reported for MITOS dataset [10] and the result us-
ing the method proposed in [6] (abbreviated as ERF). The four best results are
from groups IDSTA, TPAL, SUTECH and NEC respectively [10]. We show the
comparative results in Fig. 2(c¢) where the proposed method is found to outper-
form other competing methods in terms of F-measure. Note that the ranking
of the groups in [10] are performed in terms of F-measure. However, it can be
observed that the precision value in the proposed method is less compared to
IDSTA. The reason is imbalance in the number of dense non-mitotic nuclei in
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Fig. 1. Sample results of mitotic cell detection. Original sub-images (top row), detected
results with proposed method (middle row) and with IDSIA [4]. True/false positive
detections are indicated by green/blue boxes in the middle row while true positives
and false negatives are indicated by green and cyan circles respectively in the bottom
row. Ground truth provided by [10] are shown as yellow regions in the middle row.

the training dataset due to which the forest did not properly learn the corre-
sponding signature. The precision-recall (P-R) curves obtained by varying the
number of features selected for each node (f) are shown in Fig. 2(d). We also
examined the performance of the method a) while keeping constant tree weight
(CTW) of value 1 across all generations (populations), b) without feature re-
duction (WFR) (by updating only the tree weights) and ¢) using the proposed
random forest without using biological (stroma and nuclear membrane) features
(WBF). The P-R curves for each of these experiments are also presented in
Fig. 2(d). We find that the area under the curve of the proposed method is the
largest which indicates that both feature reductions and tree weights play sig-
nificant roles in classification performances. It also indicates the importance of
using the biological features. Some sample sub-images are shown in Fig. 1 along
with classification results of our method and IDSIA [4]. It is notable that there
is significant improvement in training and testing times compared to [4]. The
training time for the proposed method is 12 minutes and the average testing
time per image is 22 sec using a PC with 3.2 GHz intel Xeon processor and 16
GB memory.

4 Conclusions

We propose a novel approach for mitosis detection utilizing domain knowledge.
Intensity features of the nucleus, texture features of possible stroma and fea-
tures of nuclear membrane are classified with a novel regenerative random forest
that performs automatic feature selection. We prove that the regeneration pro-
cess converges producing maximum classification accuracy during training. We
achieve lower time complexity compared to state-of-the-art techniques. In future,
we want to use more biological features to further improve the classification per-
formance. A generalized regenerative random forest will also be a significant
direction of future research.
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Fig. 2. Performance results of the proposed method. (a) Probability of misclassifica-
tion, (b) percentage of features above (u — o) limit, (c¢) classification performances of
different methods, (d) P-R curves for different methods (proposed, CTW, WFR and
WBF).



