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Abstract—In this paper, we present an all-core implementa-
tion of Burrows Wheeler Compression algorithm that exploits
all computing resources on a system. Our focus is to provide
significant benefit to everyday users on common end-to-end
applications by exploiting the parallelism of multiple CPU
cores and additional accelerators, viz. many-core GPU, on their
machines. The all-core framework is suitable for problems that
process large files or buffers in blocks. We consider a system
to be made up of compute stations and use a work-queue
to dynamically divide the tasks among them. Each compute
station uses an implementation that optimally exploits its archi-
tecture. We develop a fast GPU BWC algorithm by extending
the state-of-the-art GPU string sort to efficiently perform
BWT step of BWC. Our hybrid BWC with GPU acceleration
achieves a 2.9× speedup over best CPU implementation. Our
all-core framework allows concurrent processing of blocks by
both GPU and all available CPU cores. We achieve a 3.06×
speedup by using all CPU cores and a 4.87× speedup when
we additionally use an accelerator i.e. GPU. Our approach will
scale to the number and different types of computing resources
or accelerators found on a system.

Keywords-Burrows Wheeler Transform; Bzip2; Heteroge-
neous systems;

I. INTRODUCTION

Computing platforms are parallel and heterogeneous to-
day. CPUs with multiple identical cores are found on these
platforms. In addition to CPU, they have an accelerator in
form of GPU, with dozens to hundreds of simpler cores.
In future, other accelerators may also be used. Obtaining
higher performance on common end-to-end user applications
on such parallel platforms has been a challenge, however.
Tuned implementations of several data-parallel algorithms
on graphs or matrices on multicore CPUs, manycore ac-
celerators like the GPU and CellBE, and their combinations
have been developed recently. But such operations constitute
only a portion of most end-to-end applications. Pipelining
different tasks effectively and obtaining even moderate per-
formance gains for the entire end-to-end application is still
a practical challenge.

In this paper, we present an all-core implementation of
an end-to-end lossless data compression application, specif-
ically, the Burrows Wheeler Compression (BWC) algorithm.
BWC is a popular, open compression scheme built on
Burrows Wheeler Transform (BWT) [3]. It is used widely
to compress regular files, system software, gene sequences,

etc. BWC typically gives 30% smaller compressed files
compared to LZW based schemes [1]. Compression schemes
are among the hardest to parallelize on many-core architec-
tures like the GPU due to their irregularity. The approach
developed by us scales to exploit all cores – CPU, GPU
and others – present on a given computer. In contrast, only
block-parallel BWC approaches on multi-core CPUs have
resulted in speedup previously [10]. A recent GPU BWC
effort performed slower than a single core CPU [15]. The
main contributions of our work are given below.

1) We develop a fast BWT algorithm on the GPU that is
built on radix sort.1

2) BWT and its inverse are often used in pairs. This
allows us a way to speedup BWT by modifying the
strings to reduce high tie-lengths. We introduce a
reversible string perturbation step to increase speed at
a slight reduction in compression ratio (Section III-B).

3) We partition the tasks between CPU core and the GPU,
with naturally serial tasks performed on the CPU.
The controlling CPU thread performs its tasks totally
overlapped with the GPU computations, resulting in a
fast hybrid BWC algorithm (Section III-C).

4) We develop an all-core computation framework to
exploit heterogeneous compute cores on a system.
Using this all-core framework we extend hybrid BWC
(that used single controlling CPU thread and GPU)
to all-core BWC. On a Intel Core i7, with only
multi-core CPU, our all-core BWC achieves a 3.06×
speedup. This improves to 4.87× when we use GPU
acceleration by adding a Nvidia GTX 580 (Table II).
On a low-end Intel Core2Duo, our all-core BWC
achieves a 1.22× speedup. This improves to 1.67×
speedup on using Nvidia GTX 280 (Table III). Our
code is available for public use.2

Our all-core BWC using GPU acceleration, gives better
runtime (than multi-core CPU BWC), while balancing the
load between the GPU and the CPUs. This is significant
since a previous effort failed to achieve speedup using
GPUs [15]. We believe that the techniques and lessons from
this work will motivate future work in designing all-core

1http://web.engr.illinois.edu/∼ardeshp2/stringSort/
2http://cvit.iiit.ac.in/resources/bzip2GPU/bzip2Cvit.tar.gz

http://web.engr.illinois.edu/~ardeshp2/stringSort/
http://cvit.iiit.ac.in/resources/bzip2GPU/bzip2Cvit.tar.gz
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Figure 1: Illustration of the Burrows Wheeler Transform on
the input string banana.

implementations for other end-to-end applications.

II. BACKGROUND AND RELATED WORK

A. Burrows Wheeler Transform

Burrows and Wheeler, developed BWT [3] with following
steps: (i) Start with input string S[1...N ] and associated
index array I[1...N ], initialized to 1...N , denoting the
starting position of each (cyclically shifted) suffix in input
string. (ii) Sort all suffixes in lexicographic order along with
corresponding indices I . Final suffix array is a permutation
of initial index array I[1...N ]. (iii) Compute last elements of
sorted suffixes and output it along with the index of original
string in the sorted output.

Figure 1 shows the application of BWT on an input
string banana. It operates on all cyclic shifts or suffixes
of input string S[1...6] = banana. It generates the output
matrix containing a sorted list of all cyclically shifted strings.
The answer is last column of output matrix, i.e. nnbaaa,
appended with number 4, since the original string occurs at
4th position in output. In general, suffix sorting step of BWT
is compute intensive because it involves sorting O(N) suffix
strings each of length O(N) and these strings also have a
high match length (i.e. they share long common prefix). High
match length is a characteristic of compression datasets,
because compression schemes are typically used when data
has redundancy. This redundancy results from long repeating
substrings, which causes high match length for suffix strings.
In practice, cyclically shifted suffix strings match to lengths
as high as 103-105 characters within a 9M char. block. This
shows the compute intensive nature of BWT.

B. Sequential Burrows Wheeler Compression

BWT was used to devise a lossless BW compression
scheme by Burrows and Wheeler [3]. For suffix sort, they
performed a radix sort on first two characters (c1c2) of all
suffixes followed by a modified Quicksort [2] in subsequent

iterations, along with a special mechanism to handle inputs
with long repeated runs. Their BWC was slow. Seward pro-
posed a method that involved sorting only a few buckets after
2-character radix sort and cleverly synthesized sorted order
for suffixes in other buckets. This resulted in an efficient
and popular Bzip2 compressor. Incorporating Sadakane’s
algorithm [16] improved performance on worst case inputs.
Synthesizing sorted order of new suffixes from previously
sorted ones avoids expensive matching and results in good
performance. Such fine-grained synthesis methods require
synchronization and are difficult to do on GPU. Our GPU
implementation uses a coarse synthesis technique developed
by Kärkkäinen and Sanders [11].

C. Parallel Burrows Wheeler Compression

Gilchrist and Cuhadar [10] exploited the inter-block
parallelism for linear speedup with multiple CPU cores
for BWC. They focussed on naive parallelization without
modifying the basic algorithm or making it scale to larger
input size.

Previous GPU BWC. The only prior GPU implementation
of BWT by Patel et al. [15] repeatedly sorts strings using
a variable length key comparison based sort [5]. Their
implementation was about 2.78× slower (with BWT step
dominating the runtime) than the CPU version due to the
inherent difficulty of parallelizing BWC. Another attempt
at building parallel BWC was abandoned due to very poor
performance [4].

Edwards and Vishkin BWC. In parallel with our work,
Edwards and Vishkin [8] developed an intra-block parallel
BWC algorithm and compared it with CPU BWC [9].
Their algorithm is work optimal with an O(logN) time
on architectures with fine-grained parallelism. They
demonstrated it on their Explicit Multi-Threading (XMT)
architecture but not on CPUs/GPUs. In contrast, we
demonstrate better performance on multi-core CPUs and
GPUs. They report a speedup of 1.8 to 2.8× on XMT-64
(∼ 64 cores) platform and 12 to 25× on a simulated
XMT-1024 (∼ 1024 cores) platform. They use files from
Large Corpus3, which are small in size (< 4.5MB’s)
and have a lower maximum sorting depth (< 2000). We
demonstrate high performance on larger datasets with
higher sorting depth (103 to 105) like Enwik8 (96MB)
[14], Linux-2.6.11.tar (199MB) and Silesia Corpus4

(203MB, which supersedes Large Corpus) [6]. It would be
worthwhile to compare the runtime of our algorithm with
Edwards and Vishkin [8] on same platforms and same test
datasets in future.

3http://corpus.canterbury.ac.nz/descriptions/
4http://sun.aei.polsl.pl/ sdeor/index.php?page=silesia



(a) Sorting with Doubling MCU is expensive but requires very
few iterations, while Constant MCU sorting is faster but takes very
many iterations. Thus, we use constant MCU for first few iterations
and then resort to doubling MCU.

(b) Speedup of 1.2 to 2× is obtained by using our partial sort and
merge strategy as compared to performing full sorting on different
datasets.

Figure 2: Study of optimizations to string sort for performing BWT.

BWT in sequence alignment. Another line of related work on
parallel BWC is found in the literature of BWT constructed
for sequence alignment in bio-informatics applications. This
work deals only with the BWT step and not the entire BWC.
Nvidia distributes a high performance library nvbio for this
purpose5. The BWT/suffix sort algorithm in this library is
inspired from Liu et al. [13]. Note that, this algorithm uses
radix sort at its core and finds splitters to reduce the radix
sort problem size. They make naive repeated use of radix
sort for string sorting step. While, in our work, the core
radix sort based string sort has been augmented with many
optimizations [7]. These optimizations have been shown to
improve runtime when compared to naive repeated use of
radix sort. In addition, we have also developed many BWC
specific techniques (Section III-A).

III. CPU AND GPU HYBRID BWC ALGORITHM

Burrows Wheeler Transform (BWT) is the most crucial
step of BWC and one that occupies a significant chunk of
its runtime. Computing BWT is equivalent to suffix sorting
of all suffix strings (shown in Figure 1) of the input string.
We can treat each suffix as a separate string and perform a
string sort. A radix sort based approach is used to perform
string/suffix sorting. Using radix sort, suffix sorting can be
done in single sort step with O(N) length keys, which is
impractical. Alternatively, if each of the suffix strings are
sorted on its first few (8-bit) characters, we can get the
first column of sorted suffixes (Figure 1), with repeated
occurrences clubbed together (in a bucket). Their order
can be corrected by sorting on the next characters of each
suffix, within its bucket. Since sorting now only needs to
be done within a bucket, all buckets are independent of
each other and can be processed in parallel. Note that, as

5http://nvlabs.github.io/nvbio/sufsort page.html

opposed to merge sort [15], [5], in our radix sort based
method all characters (from left to right) of the string/suffix
are accessed only once. By performing minimal number of
global memory accesses a radix sort based string sorting
method runs much faster than merge sort based methods.
More details of string sorting technique can be found in [7].

A. Modified String Sort for BWT

The string sorting approach works well only when the
input has ties up to a few 100 characters [7]. As we saw
earlier, BWT has relatively much higher number of ties
(103 to 105 characters). We develop some BWT specific
optimizations to address this –

Doubling MCU Length. The match length between suffix
strings (i.e. length of longest common prefix of all suffix
strings) determine the maximum number of fixed-length
sorts required. This is referred to as the sorting depth.
Large sorting depths result from long substrings repeating
many times, which degrades GPU BWT performance. To
address this, we double the MCU length after a few steps.
This reduces the number of sort steps as longer substrings
are being compared in each successive iteration. As shown
in Figure 2a, if we use doubling right from the start, initial
sort steps are very costly as compared to constant sized
(k character) MCUs. But, the total number of sort steps
with doubling are very less. To obtain the best results, we
use the faster constant size MCU for the first 16 iterations
and then double the MCU length. For example, one input
dataset has a sorting depth of 960 characters. We double the
MCU length after 16 sort steps. So, we perform 16∗4 = 64
character comparisons with 4-byte MCUs. Now, only 7
more sort steps are required to cover the remaining 896
(8 + 16 + 32 + ...+ 512 > 896) characters. Doubling MCU
length after 16 sort steps gives us a speedup of 1.8× in

http://nvlabs.github.io/nvbio/sufsort_page.html
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Figure 3: An illustration of the CPU+GPU hybrid BWC
pipeline. The merge, MTF and Huffman steps are done on
the CPU in a fully overlapped manner with the partial sorts
on the GPU of succeeding block.

this particular case.

Partial GPU sorts and CPU merge. In suffix sort, it is not
necessary to sort all strings, we can sort only a subset of
the original strings and synthesize the sorted order for rest.
This synthesis is possible because the input strings are
cyclically shifted. Suppose, we sort all strings at indices
i (mod 3) 6= 0 (denoted by set I1,2), we can generate the
sorted order for all suffixes at i (mod 3) = 0 (denoted
by set I0). This is done as follows: we compare the first
character of the two I0 strings, if it is unequal we obtain the
sorted order. If it is equal, the strings beginning from next
characters of both suffixes correspond to suffixes in I1,2, for
which we already know the sorted order. Also, it is easy to
merge I0 and I1,2, since in at most two comparisons of next
characters, we hit two suffixes that belong to I1,2. Similar
sort and merge approaches have been in practice in the
CPU suffix sorting literature [11], [12], [17]. We perform
the two sorting steps on GPU and move the merge step to
CPU as shown in Figure 3. This allows us to utilize the idle
CPU cycles while GPU is performing sort on subsequent
block. Figure 2b shows that we obtain a speedup of 1.2 to
2× after using this optimization.

B. String Perturbation

Large sorting depth comes from repeated long substrings.
Runtime can reduce greatly if we can reduce long ties by
perturbing the string. This works for BWT based compres-
sion schemes because a known perturbation can be undone
after decompression. Different perturbations were tried by
us. Inserting a random character at fixed positions in the
input string worked the best, as it forcefully breaks long
ties. It should be noted that the BWT for this modified
input string is not the same as BWT of the original input
string. Since BWT and inverse BWT (IBWT) are used
in pairs, random characters that occur at fixed positions
can be removed to restore the original string after IBWT.

Algorithm 1 Hybrid BWC Algorithm

1: Input: File F
2: [B1,B2, · · · ,Bn] = split-blocks(F, N)

// split file into size N blocks
3: [B1, · · · ,Bn]← perturb([B1, · · · ,Bn], interval)

// random char is added after interval
4: for Bp in [B1,B2, · · · ,Bn]
5: I = [1 · · ·N]

// Index Array, denotes starting position of each string
6: I1,2 ← {I[i] | I[i](mod 3) = 1 or 2}
7: I0 ← {I[i] | I[i](mod 3) = 0}
8: I1,2 ← GPU-modified-string-sort(Bp, I1,2, lim)

// MCU doubled after lim iter.
9: I0 ← GPU-non-iterative-sort(Bp, I1,2, I0)

// synthesize sorted order
/* CPU computation is fully overlapped with asyn-
chronous GPU calls */

10: I← CPU-merge(Bp, I1,2, I0)
// non-iterative merge of two sorted suffix sets

11: bwt ← CPU-offset-addition(I,Bp,N) ⊕ index-
of(0, I)
// generate BWT

12: result← CPU-mtf-huffman(bwt)
// perform MTF and Huffman encoding

13: end for

The compressed file size increases slightly as we increase
the entropy by adding random characters, but our results
(Section V-A) show that this increase is reasonable. This
optimization also provides us a way to trade-off compression
time against compression ratio. The speedup obtained by
string perturbation is very useful on datasets with very high
sorting depths viz. linux-2.6.11.tar (8.2× speedup after 1%
perturbation as shown in Table I).

C. Overview of Hybrid BWC Algorithm

We have developed a hybrid BWC algorithm that makes
use of a single CPU core and the GPU. In the design of
our hybrid BWC algorithm we take into account differences
between CPU and GPU and map the appropriate operations
to the appropriate compute platform. The BWC algorithm
consists of three steps: (i) Burrows Wheeler Transform, (ii)
Move to Front Transform (MTF), and finally (iii) Huffman
encoding. Typically BWT computation itself takes about 80-
90% of the total computation time. MTF and tree building
step of Huffman coding are completely serial and it is
difficult to extract performance by mapping these to a data-
parallel model. Based on these observations, we perform the
bulk of BWC computation i.e. BWT operation on the GPU
(using steps discussed in Section III-A) and we perform the
remaining computations of MTF and Huffman encoding on
the controlling CPU thread. Also note that, as discussed
earlier, during BWT the merge step after partial sorts is



also performed on CPU. This hybrid BWC is illustrated
in Figure 3. Barring the last block, the merge, MTF and
Huffman operations of all the blocks are performed in a
fully overlapped manner with partial sorts on GPU. This
makes good use of the idle CPU cycles.

The pseudo code of our hybrid BWC algorithm is given
in Algorithm 1. Our algorithm takes as input a file F (line
1) and splits it into multiple blocks ([B1,B2, · · · ,Bn]) each
of size N (line 2). These blocks are perturbed (line 3) and
then undergo sort steps of BWT on the GPU and remaining
merge, mtf and huffman encoding steps on the CPU one
after the other (line 4). We create an index array, I, which
denotes the starting position of each suffix string (line 5).
Note that, since cyclically shifted suffix strings are used
during BWT, each of the N strings also has a length of
N. We use modified string sorting method described above,
along with doubling MCU optimization to sort strings that
occur at positions I1,2 (line 8). After this string sort, I1,2
contains the indices of strings in sorted order. We use this
sorted order to non-iteratively synthesize the sorted order for
strings at positions I0 (line 9). The results of partial sorts are
handed over to the CPU for performing merge and remaining
BWC steps (line 10 to 12), and GPU simultaneously begins
the sort steps on the next block.

In our algorithm for all operations on GPU, we use the
fastest sort, scatter and scan primitives. These primitives
are tuned for every new architecture and there are also
algorithmic improvements which improve their performance.
Our GPU BWC, built on these primitives, can directly
inherit all these improvements and is adaptable to future
architectures without requiring any re-design. Table I and
Figure 5 show that our hybrid BWC gives a max. 2.9×
speedup over standard CPU BWC implementation i.e. Bzip2.
In our hybrid BWC we only use a single CPU core. We
further improve our speedup by using the other idle CPU
cores through our all-core framework as shown in Tables II
and III.

IV. THE ALL-CORE FRAMEWORK

The all-core framework shown in Figure 4 is detailed in
this section. A typical heterogeneous computation platform
consists of multi-core CPUs, many-core GPUs, and/or other
accelerators. The specific platform we focus on consists of
a multi-core CPU and a GPU, but the framework extends
easily to others. We treat each CPU thread as a compute
station or CoSt. The number of CoSts can exceed the number
of CPU cores with hyperthreading. Each GPU with a con-
trolling CPU thread is another CoSt. The GPU programming
models are getting more flexible and multiple CoSts may
coexist on a physical GPU in the future. Each CoSt can be
assigned a specific task. Each CoSt is free to choose the
best possible strategy to perform the given task. A CPU
core as a CoSt will attack the problem sequentially while
a GPU as CoSt will resort to data-parallelism. For task
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Figure 4: Work Queue based all-core framework.

partitioning we present a simple, but generic strategy based
on work queues that can be used for several problems. Each
CoSt dequeues an appropriate task from the work queue,
processes it, and enqueues the results to an output queue.
This framework is best suited for applications that process
large data, but in independent blocks. There may be some
pre-processing before independent blocks are formed and
some post-processing to combine the outputs of independent
blocks. Several applications fit the work queue model such
as video encoding, decoding, and transcoding, lossy or
lossless data compression, etc. We confine our attention to
BWC compression in this paper, though extension to other
applications is straightforward.

A. BWC in All-Core Framework

BWC on large data buffers (files or others) is performed
by dividing it into blocks which are processed independently.
A CoSt processes a block. We add the entire data buffer to a
work-queue. Each CoSt, when free, removes a work item of
appropriate size from the queue and processes it. Since our
target architecture has two types of CoSts, (i) CPU core and
(ii) GPU with a single controlling CPU thread, we use two
BWC implementations. CPU CoSts use the best sequential
implementation of BWC. On the GPU we use our hybrid
BWC algorithm. We call this implementation which uses
both, CPU (BWC by [17]) and GPU (our hybrid BWC as
described in III-C), as the all-core BWC. It is also possible to
use only CPU cores in our all-core framework, this gives us
a multi-core BWC. The multi-core BWC is similar to [10],
but it is fully compatible with Bzip2 compression standard.
In Table II and III we show the speedup achieved using
all-core BWC and multi-core BWC. Note that the use of
GPU acceleration enables our all-core approach to achieve
additional speedup over multi-core CPUs.



Dataset (Size) Block Size

(i) Compression time for our hybrid BWC (s),
(ii) Compression time for CPU BWC (s) [17],

(iii) Compressed file size in MB’s (same for both)
0% Perturb-

ation
0.01% Perturb-

ation
0.1% Perturb-

ation
1% Perturb-

ation

enwik8 (96MB)

900KB 10.07, 10.81, 27.66 10.03, 10.85, 27.70 9.91, 10.88, 28.09 8.87, 10.97, 31.32
4.5MB 7.29, 13.12, 25.62 7.29, 13.11, 25.67 7.31, 13.10, 26.09 7.60, 13.22, 29.36
9MB 8.31, 15.23, 24.86 8.30, 15.22, 24.91 8.33, 15.82, 25.33 8.63, 15.27, 28.66

wiki-xml
(151MB)

900KB 36.88, 38.29, 15.29 36.56, 38.16, 15.39 33.85, 37.63, 16.19 23.49, 32.07, 21.89
4.5MB 30.42, 60.78, 13.66 30.14, 60.76, 13.77 26.97, 60.55, 14.55 15.96, 48.52, 19.82
9MB 31.51, 80.76, 13.13 31.12, 80.77, 13.24 27.62, 79.94, 14.04 15.79, 66.12, 19.07

linux-2.6.11.tar
(199MB)

900KB 84.86, 24.93, 35.35 48.01, 24.69, 35.46 32.84, 23.21, 36.44 22.78, 22.17, 44.19
4.5MB 133.54, 45.66, 33.10 41.37, 44.02, 33.23 24.17, 39.88, 34.26 14.24, 26.65, 42.31
9MB 196.64, 53.59, 32.51 45.55, 51.77, 32.65 23.81, 32.11, 33.69 14.37, 29.64, 41.81

silesia.tar
(203MB)

900KB 39.56, 29.65, 52.06 36.14, 29.69, 52.17 28.98, 29.32, 52.97 23.06, 27.46, 59.49
4.5MB 34.60, 39.57, 50.06 29.52, 39.63, 50.19 22.97, 32.67, 51.03 16.81, 36.07, 57.54
9MB 36.10, 46.73, 49.57 28.85, 46.92, 49.70 24.55, 46.31, 50.55 17.74, 41.94, 57.11

Table I: This table shows impact of block size, string perturbation on runtime and compressed file size (CPU BWC runtime
is that of the standard Bzip2 and the GPU BWC runtime is that of our hybrid BWC implementation). Bold values
indicate cases where we get either better compression and/or runtime compared to the baseline i.e. standard CPU BWC on
the default 900KB blocks (denoted by underline).

V. EXPERIMENTAL RESULTS

We evaluate the performance of our hybrid BWC (Section
V-A), multi-core and all-core BWC (Section V-B) on differ-
ent datasets and on different CPUs and GPUs. The following
standard datasets for lossless data compression were used in
our experiments:

• Enwik8 [14]: The first 108 bytes of the English
wikipedia dump on March 3, 2006. We also use
wikipedia’s enwiki-latest-abstract-10.xml (henceforth,
referred to as wiki-xml) dataset [18].

• Publicly available source of linux kernel 2.6.11
(199MB).

• Silesia data corpus, a widely used standard data com-
pression benchmark which has large files from various
sources viz. database, codes, medical images etc. [6].
We tar (concatenate) all the files and use the tarred file
(silesia.tar) as a dataset.

In our results, we compare the performance of our hybrid
BWC pipeline against single-core CPU BWC (Section V-A).
These results show that our hybrid BWC pipeline performs
about 2.9× better than the highly tuned CPU BWC and
thus, about 8× faster than the previous GPU BWC [15].
The reader should note that this is the first time a speedup
has been achieved on GPU for BWC. Finally, we show the
speedup we achieve through multi-core BWC and our all-
core BWC implementation on a high-end as well as a low-
end system (Section V-B). The dataset and the code used for
our experiments is available at http://cvit.iiit.ac.in/resources/
bzip2GPU/bzip2Cvit.tar.gz.

A. Results: Hybrid BWC

We measure the runtime of our hybrid BWC (as described
in Section III-C) against the state-of-the-art CPU BWC
implementation in Bzip2. Table I gives the total runtime
and compressed file size on different datasets using different
block sizes and with varying percentage of perturbation.
Larger block size provides better compression, this is be-
cause BWT can now group together characters from a
larger area for the MTF and Huffman steps and this has
already been demonstrated by Burrows and Wheeler [3].
The performance of our hybrid BWC algorithm improves
with increase in block size (except only for linux dataset
with no perturbation), while the CPU performance becomes
worse. For wiki-xml dataset, from 900KB to 9MB block size
(without perturbation) the runtime of our hybrid algorithm
improves by 15% (36.88s to 31.51s) while the runtime of the
CPU BWC more than doubles (38.29s to 80.76s). Also, the
compressed file size reduces by 14% (15.29 to 13.13MB)
with 9MB blocks. Thus, our hybrid BWC scales better with
block size and can be used to obtain better compression in
lesser time as compared to CPU BWC.

To further improve our speedup and address worst-case
datasets viz. linux-2.6.11.tar, we use string perturbation. We
see that with increase in perturbation (random characters
added), the runtime of CPU BWC is nearly same but the run-
time of our hybrid BWC improves. Even for the worst-case
linux dataset we beat the CPU with perturbation >= 0.01%
and on large blocks. Through perturbation we are adding
additional entropy to the input and the compressed file size
increases. The current state-of-the-art runtime/compression
is provided by CPU BWC running with 900Kb block size
and no perturbation (marked by underline). Table I shows

http://cvit.iiit.ac.in/resources/bzip2GPU/bzip2Cvit.tar.gz
http://cvit.iiit.ac.in/resources/bzip2GPU/bzip2Cvit.tar.gz


NVIDIA GTX 580 (GPU) + Intel Core i7 920 (CPU)

Dataset

Total time for all-core BWC (CPU+GPU) (s),
(#blocks processed by GPU / #total blocks)

Different number of CPU threads in addition to one CPU+GPU thread
Speedup (bold)
vs. single CPU

(underlined)0 CPU 1 CPU 2 CPU 3 CPU 4 CPU 6 CPU 7 CPU

enwik8 8.4
(12/12)

6.5
(9/12)

5.8
(7/12)

4.7
(6/12)

4.7
(5/12)

4.6
(5/12)

3.9
(4/12) 4.05

wiki-xml 27.6
(18/18)

23.6
(13/18)

19.6
(10/18)

16.4
(10/18)

16.6
(8/18)

18.9
(7/18)

18.6
(6/18) 4.87

linux 23.8
(22/22)

14.3
(13/22)

10.88
(8/22)

9.3
(8/22)

9.1
(7/22)

7.7
(5/22)

7.9
(4/22) 4.16

silesia 24
(23/23)

16.8
(16/23)

13.3
(12/23)

12.6
(12/23)

12.7
(11/23)

11.4
(9/23)

11.0
(8/23) 4.20

Only Intel Core i7 920 (CPU)

Dataset

Total time for multi-core BWC (CPU only) (s)
Different number of CPU threads

(No GPU involved)
Speedup (bold)
vs. single CPU

(underlined)1 CPU 2 CPU 3 CPU 4 CPU 5 CPU 7 CPU 8 CPU
enwik8 15.8 9.1 6.4 5.0 5.0 4.9 4.9 3.22

wiki-xml 79.9 44.5 32.3 28.4 25.6 26.2 26.1 3.06
linux 32.1 17.6 13.3 10.7 10.0 10.3 9.9 3.24
silesia 46.3 30.9 21.5 21.4 21.1 17.4 18.4 2.66

Table II: For this table, we use a high-end system with Intel Core i7 CPU and Nvidia GTX 580 GPU. The table shows
runtime for all-core BWC (CPU+GPU) and multi-core BWC (CPU only). Also, if we compare n CPU threads to n − 1
CPU threads and 1 CPU+GPU thread, the runtimes of latter are better. This again shows our hybrid BWC is faster than
CPU BWC.
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Figure 5: Our hybrid BWC (with 9MB blocks) pipeline
performs marginally better than CPU BWC with 900KB
blocks (which does much less work) and gives max. 2.9×
speedup when compared to CPU BWC with 9MB blocks.
Using 9MB blocks gives gain in compression ratio.

that with 0.1% perturbation and block size greater than
4.5MB, we obtain better runtime as well as compression
(marked by bold values) on all 4 datasets as compared to the
state-of-the-art (marked by underline). The light-blue bars
in Figure 5 show the speedup (1.04− 1.38×) obtained with
respect to BWC on 900KB blocks and green line in the same
figure shows the corresponding reduction in compressed file
size (2.9 − 8.4%). Note that, in comparison to the state-
of-the-art, our hybrid BWC implementation (using 9MB

Blocks) is outperforming the CPU, even when the CPU is
doing much less work (BWT performance is worse than
linear in block size) by using only 900KB blocks. Also, to
achieve the same compression ratio (using large block size)
on the CPU will take much more time as compared to our
hybrid algorithm (the speedup when both standard CPU and
our hybrid BWC uses 9MB block size is indicated by dark-
blue bars in Figure 5).

B. Results: All-Core BWC

We use the work queue based all-core framework and
run multi-core BWC (i.e. only the CPU cores) and all-core
BWC (which uses both all CPU cores and GPU) on all our
datasets. The block size is fixed to 9MB and perturbation
to 0.1%, since we obtained optimal performance for these
parameters (Table I).

High-End System. In the first setup, we compare the
performance of the multi-core and all-core BWC on a
high end system comprising of Intel Core i7 920 CPU
and Nvidia GTX 580 GPU. The results are given in
Table II. The 4-core Intel i7 CPU, with hyper-threading
supports 8 threads at a time efficiently and in practice,



NVIDIA GTX 280 (GPU) + Intel Core2Duo E6750 (CPU)

Dataset

Total time for all-core BWC (CPU+GPU) (s),
(#blocks processed by GPU / #total blocks)

Different #CPU threads in addition to 1 CPU+GPU thread
Best Speedup (bold) vs.
single CPU (underlined)

0 CPU 1 CPU 2 CPU 3 CPU 4 CPU

enwik8 20.5
(12/12)

19.3
(6/12)

19.8
(5/12)

20.1
(4/12)

20.0
(3/12) 1.33

wiki-xml 90
(18/18)

77.4
(12/18)

77.6
(10/18)

77.8
(8/18)

85.1
(6/18) 1.67

linux 77.3
(22/22)

46.1
(11/22)

40.3
(7/22)

39.8
(6/22)

39.2
(5/22) 1.21

silesia 74.3
(23/23)

57.0
(14/23)

53.3
(10/32)

53.6
(9/23)

54.0
(10/23) 1.30

Only Intel Core2Duo E6750 (CPU)

Dataset
Total time for multi-core BWC (CPU only) (s)

Different number of CPU threads (No GPU involved) Best Speedup (bold) vs.
single CPU (underlined)1 CPU 2 CPU 3 CPU 4 CPU 5 CPU

enwik8 26.4 22.4 21.9 22.5 22.3 1.20
wiki-xml 129.9 106.0 108.3 109.6 108.1 1.22

linux 47.6 36.2 37.5 37.7 37.7 1.31
silesia 69.59 55.26 53.77 56.1 56.0 1.29

Table III: For this table, we use a low-end Intel Core2Duo E6750 CPU and Nvidia GTX 280 (low/med-end) GPU. The table
shows runtimes for all-core BWC (CPU+GPU) and multi-core BWC (CPU only).

increasing the number of threads above 8 did not improve
the performance. Thus in our experiments we vary the
number of CPU threads between 1 to 8. In this range,
as expected, for both implementations, the performance
generally improves with more threads. Also in Table II, on
adding a single additional CPU thread to the CPU+GPU
thread, we see that GPU still processes 9 out of 12 blocks,
13 out of 18 blocks for enwik8 and wiki-xml respectively.
This reaffirms that our hybrid BWC is 2 times faster as
compared to CPU BWC on these datasets and the work-load
is balanced according to speed of CoSts. The best runtimes
on enwik8, wiki-xml, linux and silesia.tar datasets for the
multi-core BWC are 4.9s, 26.1s, 9.9s, 17.4s respectively,
which improve to 3.9s (1.25×), 16.4 (1.59×), 7.7s (1.28×)
and 11.0s (1.58×) using the all-core BWC. If we look
at the speedup with respect to the single-core CPU BWC
implementation, we see that our all-core BWC achieves
a consistent speedup greater than 4× for all the datasets
compared to the about 3.24× speedup obtained by the
multi-core BWC. This shows that our all-core CPU+GPU
BWC scales to all the available cores (GPU in addition to
the CPU) in the system and provides maximum speedup.

Low-End System. In the second setup, we compare the
performance of multi-core BWC and all-core BWC on

Intel Core2Duo E6750 CPU with Nvidia GTX 280 (Table
III). This is a less powerful GPU with limited support
for parallelism as compared to Nvidia GTX 580. The best
speedup obtained on GTX 280 setup is 1.67×, while the
multi-core BWC gives best speedup of 1.22×.

VI. CONCLUSION

In this paper, we presented an all-core framework to
exploit accelerators available on a user’s system. We demon-
strated the practical utility of our all-core framework by
implementing the Burrows Wheeler Compression (BWC)
pipeline. We demonstrated a speedup on BWC on the GPU
for the first time. Our hybrid BWC achieves good speedup
over highly tuned CPU BWC. It also handles large block size
efficiently, providing better compression ratio along with
better runtime as compared to state-of-the-art. Our all-core
framework uses all CPU cores and GPU cores effectively,
balancing the load between available resources. Everyday
users haven’t gained much from enhanced computing power
of today’s heterogeneous parallel processing platforms. This
is an area that needs attention as multi-core CPUs, many-
core GPUs, and other accelerators become more prevalent.
The ideas of all-core framework and results on an end-to-
end application we presented can improve the application
performance on emerging accelerator based platforms.
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