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Abstract

Building bilateral semantic associations between images and texts is among the fun-
damental problems in computer vision. In this paper, we study two complementary
cross-modal prediction tasks: (i) predicting text(s) given an image (“Im2Text”), and (ii)
predicting image(s) given a piece of text (“Text2Im”). We make no assumption on the
specific form of text; i.e., it could be either a set of labels, phrases, or even captions. We
pose both these tasks in a retrieval framework. For Im2Text, given a query image, our
goal is to retrieve a ranked list of semantically relevant texts from an independent text-
corpus (i.e., texts with no corresponding images). Similarly, for Text2Im, given a query
text, we aim to retrieve a ranked list of semantically relevant images from a collection of
unannotated images (i.e., images without any associated textual meta-data).

We propose a novel Structural SVM based unified formulation for these two tasks.
For both visual and textual data, two types of representations are investigated. These are
based on: (1) unimodal probability distributions over topics learned using latent Dirich-
let allocation, and (2) explicitly learned multi-modal correlations using canonical corre-
lation analysis. Extensive experiments on three popular datasets (two medium and one
web-scale) demonstrate that our framework gives promising results compared to existing
models under various settings, thus confirming its efficacy for both the tasks.

1 Introduction
During the past decade, there has been a massive explosion of multimedia content on the
Internet. As a result, several interesting as well as challenging research problems have
emerged, one of them being automatically describing image content using text. While most
of the earlier as well as recent works have focused on automatically annotating images us-
ing semantic labels [4, 6, 10, 19, 35, 38], in the past few years, describing images using
phrases [11, 15, 29, 37], or one or more simple captions [5, 11, 14, 15, 16, 21, 22, 26, 37,
39, 40] have attained significant attention. A complementary problem to these is to automat-
ically associate one or more semantically relevant images given a piece of text (i.e., a label,
phrase or caption), and is commonly referred as the image retrieval task [2, 5, 6, 10, 24].

Although huge amount of independent visual and textual data are available today, only
a small portion of them is linked with semantic associations. Hence, it comes as a natural
choice to develop new models that can learn complex associations between the two modal-
ities using this small portion, and then to apply them to automatically build associations
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between the two in the larger independent space. In this work, we address this problem
of learning bilateral associations between visual and textual data. We study two comple-
mentary tasks: (i) predicting text(s) given an image (Im2Text), and (ii) predicting image(s)
given a piece of text (Text2Im). In contrast to several popular methods such as [5, 6, 10,
11, 15, 19, 22, 35, 37] that assume presence of data from both the modalities (visual and
textual) during the testing phase, our approach has a motivation similar to the few known
works (e.g. [12, 26]) that do not make such assumption. This means that for Im2Text, given
a query image, our method can retrieve a ranked list of semantically relevant texts from a
plain text-corpus that has no associated images. Similarly, for Text2Im, given a query text, it
can retrieve a ranked list of images from an independent collection of images without any as-
sociated textual meta-data. The major contributions of this work are: (1) We propose a novel
Structural SVM [32] based unified framework for both these tasks, which provides at least
two advantages. First, Structural SVM provides a natural framework to work with complex
and structured input/output spaces, and a unified framework helps in better understanding
and appreciating the complementary nature of the two problems. And second, in practice
this allows us to implement a general method, and adapt it for different forms of data with
minimal modifications. (2) We examine generalization of different methods across datasets
when textual data is in the form of captions. For this, we learn models from one dataset, and
perform retrieval on other. To our knowledge, ours is the first such study in this domain.

To validate the applicability of our method, we conduct experiments on three popular
datasets under different settings. We investigate two types of data representations: the first
representation is based on probability distributions over high-level topics, and the second
is based on explicitly learned cross-correlations based on the first representation. Rather
than using raw features, such representations provide a semantically more meaningful and
coherent platform for matching visual and textual data. Extensive evaluations demonstrate
the superiority of the proposed framework compared to existing techniques.

2 Related Works

The problems of image and text retrieval are well-studied research topics [2, 20, 24, 30, 31].
Most of the existing approaches are based on retrieval of unimodal data; i.e., both query
as well as retrieved data belong to the same modality (e.g., either image [31] or text [20]).
Another approach that is popular among web-based search engines is to use textual meta-data
associated with images during retrieval. Given a textual query, it is directly matched with this
meta-data instead of looking at corresponding image. However, such images constitute only
a small portion of the enormous amount of images available on the Internet, most of which
are without such meta-data. This limitation has led to a growing interest in the problem of
automatic image annotation [4, 6, 7, 10, 19, 35, 36, 38]. Such models can support label-based
queries during image retrieval without assuming availability of any associated textual meta-
data. Among these methods, perhaps WSABIE [38] is the only method that has been applied
for large-scale image annotation task. However, such models fail to capture the relationships
among different objects present in an image (e.g., “dog in car”). A recent work [29] relaxes
this constraint, and learns models for visual phrases (e.g. “person riding bicycle”). Lately,
there have been several attempts that use short captions to describe images [5, 11, 14, 15,
16, 21, 22, 33, 37, 39, 40] (and a few recent efforts such as [9, 28] to describe videos). Most
of these works first try to predict the visual content of an image using some off-the-shelf
computer vision technique (such as pre-trained object detectors and/or scene classifiers [14,
16, 21, 39], feature-based similarity with database images [11, 22, 37], or both [15, 22]).
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Training Testing

Figure 1: While training, given a dataset consisting of pairs of images and corresponding
texts (here captions), we learn models for the two tasks (Im2Text and Text2Im) using a joint
image-text representation. While testing for Im2Text, given a query image, we perform
retrieval on a collection of only textual samples using the learned model. Similarly, for
Text2Im, given a query text, retrieval is performed on a database consisting only of images.

This information is then fused using some Natural Language Generation (NLG) technique to
construct image descriptions. All these works have shown that though the idea of generating
captions provides a much larger space of possible descriptions that one could come-up with,
most of these usually fail to match human-standards. One primary reason for this is the
limitations of NLG which is still an emerging field. Few other works [5, 12, 22, 26] try to
partly address this by directly transferring existing (human-written) captions to new images
using visual clues. While [5, 22] do this by matching query image with database images,
[12, 26] perform this by matching images and captions in a projected space learned using
canonical correlation analysis (CCA). Though these demonstrate applicability of CCA on
small captioned data, a recent work [7] demonstrates its applicability to large scale datasets
for image annotation task when data has multiple views.

Our work relates with [3] which deals with multimodal clustering of web images that
could be associated with noisy and/or sparse metadata (e.g., text, GPS coordinates, etc.).
However, our primary aim is cross-modal retrieval by learning image-text associations with-
out using similarities within a modality. Our work also closely relates with [27], in which
images of text and text strings are first embedded into a vector space, and then a compatibil-
ity function is learned using Structural SVM that allows to perform both image retrieval as
well as recognition. However, in our case, textual data is also complex and structured (e.g.,
captions), unlike [27] where each text string is considered as an individual category.

3 Bilateral Image-Text Retrieval
Now we present our framework for cross-modal retrieval. First we consider the task of
retrieving semantically relevant text(s) given a query image (i.e., Im2Text). In Sec. 3.5, we
will discuss how the same framework can be adopted for performing Text2Im as well.

Let D = {(I1,T1), . . . ,(IN ,TN)} be a collection of images and corresponding texts. Each
image Ii is represented using a p-dimensional feature vector xi in space X = Rp. Simi-
larly, each text Ti is represented using a q-dimensional feature vector yi in space Y = Rq.
We consider the problem of learning functions f : X → Y using the input-output pairs
{(xi,yi)} ∈ X ×Y . Similar to the Structural SVM framework [32], our objective is to learn a
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discriminant function F :X ×Y →R that can be used to predict the optimal output y∗ given
an input x by maximizing F over the space Y . That is, y∗ = f (x;w) = argmax

y∈Y
F(x,y;w),

where w is the parameter vector that needs to be learned. We make the assumption of
F = w ·Ψ(x,y); i.e., F is a linear function of the joint feature representation Ψ(·) of input-
output pair. The task of learning w is then formulated as the following optimization problem:

min
w,ξ≥0

1
2
||w||22 +

C
N

N

∑
i=1

ξi s.t. w ·Ψ(xi,yi)≥ w ·Ψ(xi,y)+∆(yi,y)−ξi ∀i,y ∈ Y \{yi} (1)

where || · ||22 denotes squared L2-norm, C > 0 is a constant that controls the trade-off between
regularization term and loss term, ξi denotes slack variable, and ∆(yi,y) denotes loss function
that acts as a margin for penalizing any prediction other than the true output. The set of
constraints in the above optimization problem signify that for every sample xi, the parameter
vector w should be learned such that the prediction score for the true output (i.e. F(xi,yi;w))
remains higher than the prediction score for any other output by a margin.

3.1 Joint Image-Text Representation
The purpose of Ψ(·) is to provide a joint representation for input and output data depending
on their individual representations. As discussed in Sec 4, we use identical representations
for both visual (image) and textual data based on probability distributions over latent top-
ics learned from corresponding modalities. Thus, for a given sample (image or text), each
dimension of its feature vector corresponds to the probability of that particular topic. Since
these topics are learned independently for images and text (as the two modalities are fun-
damentally different in their original forms), it is not straightforward to obtain direct corre-
spondence among the topics of the two modalities. However, given an image-text pair (I,T ),
we know that essentially both I and T represent similar semantic content, though in different
forms. This means that there should exist some (indirect) correspondence across their topics
as well. To learn this correspondence, one feasible choice is to consider all possible pairs of
topics across the two modalities (by taking a cross-product between them), and then learn
weights over these pairs. These weights would signify the relative correspondence of every
topic-pair; i.e., if a topic-pair has high score, then it is quite likely that the individual topics
in that pair represent similar semantic concept in the two modalities. With this motivation,
we propose to use the joint representation constructed from the input-output representations
x and y using their tensor product. That is, each dimension of x is multiplicatively combined
with every dimension of y to get Ψ(x,y) = x⊗ y ∈ Rr, where r = p× q. This represen-
tation has apparent advantage not only in efficiently capturing linear correlations between
input-output modalities, but also provides computational benefits.

3.2 Loss Function
The function ∆(·) in Eq. 1 is a problem specific loss function. It acts as a margin in the
Structural SVM framework, and is used to penalize incorrect predictions against the true
output. It is defined such that given an input-output pair (xi,yi) and any incorrect output y,
the value of ∆(yi,y) should depend on similarity between yi and y. If yi and y are similar,
the loss value should be small and vice-versa.

Projecting output (textual) data into a semantic space defined in the form of a vector
space Y allows us to adopt any suitable distance metric defined in vector space as our choice
of loss function. Though this projection can be highly non-linear in nature, the assumption
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here is that the projected space keeps the semantic proximity of the data intact; i.e., data
points that are semantically similar are closer to each other in the projected vector space,
than the data points that are semantically dissimilar to each other 1. Here we consider two
popular distance metrics as loss functions: Manhattan distance ∆M (·) and squared Euclidean
distance ∆E (·). Thus, the two loss function are defined as:

∆M (yi,y) = ||yi−y||1, and ∆E (yi,y) = ||yi−y||22 , (2)

where || · ||1 denotes L1-norm. Since both ∆M (·) and ∆E (·) are distance metrics, they satisfy
the properties of a valid loss function; i.e., ∆Z (yi,yi) = 0, ∆Z (yi,y j) ≥ 0 for i 6= j, and
∆Z (yi,y j) ≥ ∆Z(yi,yi) for i 6= j (where Z ∈ {M,E}). These loss functions can be evaluated
efficiently, which also helps in efficiently computing the most violated constraint [32] while
solving Eq. 1, as discussed next.

3.3 Solving the Optimization Problem
We solve Eq. 1 using a cutting-plane algorithm [32]. It requires efficient computation of
the most violated constraint during each iteration. Given an input-output pair (xi,yi), the
most violated constraint is the constraint corresponding to the incorrect prediction ŷ with
maximum score predicted using the current learned parameter vector w. It is given by:

ŷ = argmax
y∈Y\{yi}

∆(yi,y)+w ·Ψ(xi,y)−w ·Ψ(xi,yi) (3)

Since the last term is constant with respect to y, it can be dropped. For the two loss functions
in Eq. 2, this maps to the following problems respectively:

ŷM = argmax
y∈Y\{yi}

||yi−y||1 +w ·Ψ(xi,y), and ŷE = argmax
y∈Y\{yi}

||yi−y||22 +w ·Ψ(xi,y) (4)

It can be easily verified that both the equations correspond to maximizing a convex function.
In practice, since we consider normalized feature representations (Sec. 4), every element of
a feature vector remains bounded within a range. Precisely, we assume that every y ∈ [a,b]q,
and is either L1- or L2-normalized. This allows us to solve the problems in Eq. 4 efficiently
using an iterative gradient-ascent and projection method. To solve the optimization problem
in Eq. 1, we use [34].

3.4 Retrieving a Ranked List of Output
Consider an independent database T ′ = {T ′1 , . . . ,T ′|T ′|} consisting of only textual samples,
where each T ′k is represented using a feature vector y′k ∈ Y . Once the parameter vector w is
learned, given a query image J represented by xJ ∈X , Im2Text requires ranking the elements
of T ′ according to their semantic relevance with J. This can be performed by sorting the
elements of T ′ based on the score F(xJ ,yk;w) = w ·Ψ(xJ ,yk), ∀k ∈ {1, . . . , |T ′|} (with
higher score corresponding to greater relevance and vice-versa), thus allowing to retrieve a
ranked list of texts given an image.

3.5 Performing Text2Im
It is simple to verify that in order to perform Text2Im under the same framework, all we
require is to swap the input and output spaces; i.e. now y ∈ Y would represent the input

1Since an analogous projection is also applied on the input (image) data, this allows us to learn a mapping (i.e.,
w) between input-output space in a discriminative manner.
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space defined over textual features, and x ∈X would represent the output space defined over
image features. Because we use identical representations for both visual and textual data
(discussed in Sec. 4), the loss functions defined in Eq. 2 over textual feature will remain
valid for visual features as well. However, since this is an inverse problem of Im2Text, we
learn separate model in this case. As the proposed approach performs the two complemen-
tary tasks (Im2Text and Text2Im) under a single unified framework, we shall refer to it as
Bilateral Image-Text Retrieval (or BITR). Figure 1 explains the gist of our framework.

4 Representing Visual and Textual Data
We consider two types of representations for visual and textual data. The first representation
captures high-level semantics of data in the form of unimodal topic distributions. We refer to
this as semantic representation (or SR). The second representation combines SR with cross-
modal correlations learned using CCA between input and output space. We refer to this as
correlated semantic representation (or CSR). The two representations are described below.

4.1 Semantic Representation (SR)
This representation is based on probability distribution over topics learned using latent Dirich-
let allocation model [1]. It is one of the most popular probabilistic generative topic models,
and has been known to efficiently capture complex semantics of data. It first discovers topics
from documents (collections of discrete units) based on multinomial distribution, and then
provides a representation for each document as a probability distribution over these topics.

4.1.1 Representing Images

Each image is first represented as a histogram of Bag-of-Words (BoW) of dense SIFT fea-
tures [18]. From training images of SBU dataset [22], 0.5M SIFT features are randomly
sampled, and a vocabulary of 1000 visual words is learned using k-means algorithm. Us-
ing this vocabulary, visual topics are learned using 5000 random images from SBU dataset.
Finally, each image is represented as a probability distribution over the learned topics.

4.1.2 Representing Text

Representation of textual data varies under different settings depending upon its given form:
Representing Captions: To learn textual topics, we use the captions of SBU dataset [22].
First, we build a vocabulary of around 0.18M (textual) keywords after removing stop-words,
and then use captions of training data to learn topics. Finally, each caption is represented as
a probability distribution over these topics.
Representing Phrases: Here we assume an annotated dataset where each image is tagged
with a set of phrases. We learn textual topics by considering each phrase as a discrete unit,
and then represent each phrase as a probability distribution over them.
Representing Labels: Similar to the previous case, we assume an annotated dataset of im-
ages tagged with a set of labels. While learning topics, each label is considered as a discrete
unit. After that, each label is represented as a probability distribution over the learned topics.

4.2 Correlated Semantic Representation (CSR)
This is based on the assumption that an image and its corresponding text are two hetero-
geneous representations of similar information. Under this assumption, given the inde-
pendently obtained semantic representations for visual and textual data (Sec. 4.1), they are
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mapped into maximally correlated vector subspaces using CCA [13]. In practice, the new
representations are L2-normalized before forming the joint representation.

5 Experiments
Now we demonstrate the applicability of our method for different forms of textual data.
We learn 100 topics individually for each modality; i.e. each visual and textual sample is
represented using a 100-dimensional feature vector (p = q = 100). In all the experiments, we
report results using the two loss functions given in Eq. 2, and will refer to them as BITR-M
and BITR-E respectively. Also, we will denote the particular representation being employed
using (SR) or (CSR).

As discussed in Sec. 2, WSABIE [38] and CCA [13] are two well-known methods that
can scale to large datasets and have been shown to work well for learning cross-modal as-
sociations. Hence, we show comparisons with these in all our experiments. While CCA
based methods have been used previously under such settings [12, 26], WSABIE [38] was
originally proposed for the task of label-ranking and hence can not be directly applied for
captions. We do this by adapting the WSABIE algorithm such that instead of learning a sep-
arate parameter vector for each label, we learn a single parameter matrix for all the captions.
This is analogous to the parameter matrix being learned for visual features in the WSABIE
algorithm 2. Both CCA and WSABIE learn separate projection matrices for input and output
data. In practice, they both may converge to a lower dimensional space compared to the
dimensionality of given data. However, in all our experiments, we project data into the same
space for both these methods. This not only minimizes information loss, but also allows fair
comparisons and avoids the need of tuning on optimal number of projections required by
each. Also, for CCA, we use normalized correlation in order to compute similarity between
two projected features, since it was found to achieve best results in [26]. Along with these
two methods, we also consider weighted k-nearest neighbours (wKNN) algorithm (similar
to [10]) and one-vs.-rest SVM for additional comparisons in Experiment-3 while considering
phrases/labels as textual data, as these methods are easily applicable in that setting.

5.1 Experiment-1 (Image-Caption Retrieval)
Here we consider textual data to be in the form of captions. We conduct experiments on
three datasets: UIUC Pascal Sentence dataset [25], IAPR TC-12 benchmark [8], and SBU-
Captioned Photo dataset [22]. While Pascal Sentence and IAPR TC-12 benchmark are
medium-scale datasets that contain 1000 and 19627 captioned images respectively, SBU
Photo is a web-scale dataset with 1M captioned images. In both IAPR TC-12 and SBU
datasets, there is one caption per image, while in Pascal Sentence dataset, each image is cap-
tioned with five independent captions.
Experimental Setting: For SBU dataset, we follow the train/test split of [22], which in-
cludes 500 test images and rest (0.9995M) as training images. To learn parameters for differ-
ent models, we use a subset of 0.1M samples randomly sampled from training data. During
testing phase, we perform retrieval over all training samples (captions for Im2Text, and im-
ages for Text2Im). For the other two datasets, we compute performance over all the samples
similar to [11, 39]. This is done by creating ten partitions, and each time considering one for
testing and rest for training. For evaluation, we use BLEU [23] and Rouge [17] metrics 3.

2More details on our extension of WSABIE for captions are provided in the supplementary file.
3To compute BLEU scores, we use the code provided by NIST (version-13a). And to compute Rouge scores,

we use Release-1.5.5 provided by http://www.berouge.com/Pages/default.aspx.
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Figure 2: Results for image-caption retrieval (Sec. 5.1).

Data Set→ Pascal IAPR TC-12 SBU

Method ↓ B-1 B-2 B-3 R-1 B-1 B-2 B-3 R-1 B-1 B-2 B-3 R-1

Ordonez et al. [22] − − − − − − − − 0.13 − − −

Gupta et al. [11] 0.36 0.09 0.01 0.21 0.15 0.06 0.01 0.14 − − − −

Ours 0.33 0.10 0.06 0.23 0.32 0.13 0.07 0.33 0.14 0.05 0.03 0.10

Table 1: Comparison between previously reported results and our best results for Im2Text
under Experiment-1 (B-n means n-gram BLEU score, and R-1 means 1-gram Rouge score).

These have also been used by previous methods [11, 14, 16, 22, 37] that describe images
(i.e., Im2Text). For both these metrics, higher score means better performance. For both
Im2Text and Text2Im, we report mean one-gram BLEU and Rouge scores. For Im2Text,
these scores are averaged over the top five retrieved captions, by matching them with the
ground-truth caption of query image. For Text2Im, we compute these scores by matching
the query caption with ground-truth captions of top five retrieved images.
Results: Figure 2 shows performance of different methods on the three datasets for the two
tasks. Following observations can be made from these results: (i) For most of the cases,
BITR-E (CSR) outperforms all other methods. This implies that Euclidean distance based
loss better models dataset specific patterns. (ii) For all the three methods (i.e., WSABIE,
BITR-E and BITR-M), the performance usually improves by using CSR as compared to SR.
This reflects the advantage of explicitly infusing cross-correlations into data representation.
(iii) For Pascal dataset, relative performances of different methods follow almost similar
trends for Im2Text and Text2Im. However, there is comparatively more diversity on the
other two datasets. This could be because Pascal dataset is relatively much smaller than the
other two datasets, and the number of semantic concepts it covers is quite less. This may
result into dataset specific biases into the learned models, and thus reflects the necessity of
evaluations on big and diverse datasets such as IAPR TC-12 and SBU.

In Table 1, we compare our best results on Im2Text with [22] and [11] 4. Since both [22]
and [11] use a dataset consisting of both the modalities during testing phase, and [11] gen-
erates captions rather than retrieving them, these results are not directly comparable. How-

4While [22] and [11] are the only works that have previously reported results on SBU and IAPR TC-12 datasets
respectively, it was shown in [11] that their method outperformed other methods such as [14, 39] on the Pascal
dataset. Hence we compare only with these two methods.
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Figure 3: Results for cross-dataset image-caption retrieval (Sec. 5.2).

ever, it is worth noticing that even by matching images directly with captions, our method
performs comparable or superior than the other two. This reflects the effectiveness of our
framework in learning semantic associations between the two modalities.

5.2 Experiment-2 (Cross-dataset Image-Caption Retrieval)
In this experiment, we analyze the generalization ability of different methods across datasets.
For this, we consider textual data to be in the form of captions as in Experiment-1, and follow
the same evaluation protocol. Here, instead of learning models for each dataset individually,
we use the models learned using SBU dataset in Experiment-1 and evaluate the performance
on the other two datasets, i.e. Pascal and IAPR TC-12. Precisely, for Im2Text, we consider
query images from Pascal or IAPR TC-12 dataset, and perform retrieval on the captions of
SBU dataset. Similarly, for Text2Im, we consider query caption from Pascal or IAPR TC-
12 dataset, and perform retrieval on the image collection of SBU dataset. The goal of this
experiment is to analyze the effect of dataset specific biases, and to the best of our knowledge,
ours is the first such study in this domain.
Results: Figure 3 shows the results for this experiment. Following observations can be
made from these results: (i) For all the methods, the performance degrades significantly
compared to that in Experiment-1. This reflects the impact of dataset specific biases, and thus
emphasizes the necessity of performing cross-dataset evaluations. (ii) Unlike Experiment-1,
BITR-M usually performs better than BITR-E. This is because Manhattan distance is known
to be more robust than Euclidean distance against noise/outliers in data. Moreover, it (BITR-
M (CSR)) also mostly outperforms other methods. This suggests that ∆M(·) could practically
be a better choice than ∆E(·) for real-world applications.

5.3 Experiment-3 (Image-Phrase and Image-Label Retrieval)
Here we consider textual data to be in the form of either phrases or labels, and demonstrate
results on IAPR TC-12 dataset [8]. In case of phrases, we extract them from available cap-
tions using the Stanford CoreNLP toolkit 5. In practice, we extract three types of phrases:
(noun, verb), (noun, preposition, noun) and (verb, preposition, noun). In case of labels, we
use the same set of annotations as in [10, 19, 35].
Experimental Setting: We create ten partitions of the dataset and report averaged results
over ten trials, each time considering one partition for testing and rest for training. For
Im2Text, given a query image, we rank the phrases (labels) as discussed in Sec. 3.4. For
Text2Im, given a query phrase (label), we rank images in an analogous manner. Here, since

5http://nlp.stanford.edu/software/corenlp.shtml
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Figure 4: Results for image-phrase retrieval on IAPR TC-12 dataset.

Im2Text Text2Im

Figure 5: Results for image-label retrieval on IAPR TC-12 dataset.

we are dealing with individual phrases (labels), we use the original WSABIE algorithm [38],
and not the modified one as in Experiment-1. We follow the popular metrics of Precision@1
(P@1), Precision@5 (P@5) and mean Average Precision (mAP) for performance evaluation.
Results: Figure 4 and Figure 5 compare different methods when textual data is in the form
of phrases and labels respectively. Note that in contrast to all other methods, wKNN makes
use of data from both the modalities during testing phase. Due to this, despite its simplicity,
it mostly achieves very encouraging results compared to other methods. Under this setting
also, our methods (particularly BITR-E (CSR)) demonstrate competitive performance, and
perform comparable/superior to all other methods. We can also observe that the results for
phrases and labels follow quite similar trends. This is expected since in both the experiments,
we consider each phrase/label as a discrete unit, thus focusing only on the co-occurrence
of phrases/labels. An interesting direction for future work would be to build better repre-
sentations for phrases that could capture hierarchical semantic correlations (among words
co-occurring in a phrase, and among phrases co-occurring in an annotation).

6 Conclusion

We have presented a novel Structural SVM based framework to perform cross-modal mul-
timedia retrieval. Under this framework, we have investigated two types of data representa-
tions based on high-level semantic topics and cross-correlations. We have demonstrated the
applicability of our method for different forms of textual data using two medium and one
web-scale dataset. For both Im2Text and Text2Im, our method achieved promising results
and mostly outperformed existing techniques. In this work, we have considered visual (im-
age) and textual data as the two modalities, nevertheless the fundamental ideas discussed are
straightaway applicable to cross-modal retrieval tasks in other domains as well.
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