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Abstract

The notion of relative attributes as introduced by Parikh
and Grauman (ICCV, 2011) provides an appealing way
of comparing two images based on their visual properties
(or attributes) such as “smiling” for face images, “natu-
ralness” for outdoor images, etc. For learning such at-
tributes, a Ranking SVM based formulation was proposed
that uses globally represented pairs of annotated images. In
this paper, we extend this idea towards learning relative at-
tributes using local parts that are shared across categories.
First, instead of using a global representation, we introduce
a part-based representation combining a pair of images
that specifically compares corresponding parts. Then, with
each part we associate a locally adaptive “significance-
coefficient” that represents its discriminative ability with
respect to a particular attribute. For each attribute, the
significance-coefficients are learned simultaneously with a
max-margin ranking model in an iterative manner. Com-
pared to the baseline method, the new method is shown to
achieve significant improvement in relative attribute predic-
tion accuracy. Additionally, it is also shown to improve rel-
ative feedback based interactive image search.

1. Introduction
Visual attributes (or simply attributes) are perceptual

properties that can be used to describe an entity (“pointed
nose”), an object (“furry sheep”), or a scene (“natural out-
door”). These act as mid-level representations that are com-
prehensible for both human as well as machine, thus provid-
ing a strong means of filling-up the so-called semantic-gap.

Attributes have recently been used as a source of seman-
tic cues in diverse tasks such as object recognition [17, 18],
image description [24], learning unseen object categories
(or zero-shot learning) [18], etc. While most of these works
have focused on binary attributes (indicating presence or ab-
sence of some visual property), Parikh and Grauman [24]
proposed that it is more natural to consider the strength of
an attribute rather than its absolute presence/absence. This
led to the notion of “relative attributes”, where the strength

of an attribute in a given image can be described with re-
spect to some other image/category; e.g. “given face is less
chubby than person A and more chubby than person B”.
In [24], given a set of pairs of images depicting similar
and/or different strengths of some particular attribute, the
problem of learning a relative attribute classifier is posed as
one of learning a ranking model for that attribute similar to
Ranking SVM [12].

In this work, we build upon this idea by learning relative
attribute models using local parts that are shared across cat-
egories. First, we propose a part-based representation that
jointly represents a pair of images. A part corresponds to
a block around a landmark point detected using a domain-
specific method. This representation explicitly encodes cor-
respondences among parts, thus better capturing minute dif-
ferences in parts that make an attribute more prominent in
one image than another, as compared to a global represen-
tation as in [24]. Next, we update this part-based repre-
sentation by additionally learning weights corresponding to
each part that denote their contribution towards predicting
the strength of a given attribute. We call these weights
as “significance-coefficients” of parts. For each attribute,
the significance-coefficients are learned in a discriminative
manner simultaneously with a max-margin ranking model.
Thus, the best parts for predicting the relative attribute
“more smiling” will be different from those for predicting
“more eyes-open”. The steps of the proposed method are
illustrated in Figure 1. While the notion of parts is not new,
we believe that ours is the first attempt that explores the ap-
plicability of parts in a ranking scenario, and for learning
relative attribute ranking models in particular.

We compare the baseline method of [24] with the pro-
posed method under various settings. For this, we have col-
lected a new dataset of 10000 pairwise attribute-level anno-
tations using images from the “Labeled Faces in the Wild”
(LFW) dataset [11], particularly focusing on (i) large va-
riety among samples in terms of poses, lighting condition,
etc., and (ii) completely ignoring the category information
while collecting attribute annotations. Extensive experi-
ments demonstrate that the new method significantly im-
proves the prediction accuracy as compared to the baseline
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Figure 1. Given ordered pair of images, first we detect parts corresponding to different (facial) landmarks. Using these, a joint pairwise
part-based representation is formed that encodes (i) correspondence among different parts, & (ii) relative importance of each part for a given
attribute. Using this, a max-margin ranking model w is learned simultaneously with part weights s (red blocks) in an iterative manner.

method. Moreover, the learned parts also compare favor-
ably with human selected parts, thus indicating the intrinsic
capacity of the proposed framework for learning attribute-
specific semantic parts.

The paper is organized as follows. In Sec. 2, we give an
overview of some of the recent works based on attributes
and relative attributes. In Sec. 3, we discuss the method
of [24] for learning relative attribute ranking models. Then
we present the new part-based representations in Sec. 4,
followed by an algorithm for learning model variables in
Sec. 5. Experiments and results are discussed in Sec. 6, and
finally we conclude in Sec. 7.

2. Related Works

As discussed earlier, attributes are properties that are un-
derstandable by both human as well as machine. Because
of this, attributes have recently gained significant popular-
ity among several vision applications, where attribute iden-
tification is not the final goal but just an intermediate step.
In [8], objects are described using their attributes; e.g. in-
stead of classifying an image as that of a “sheep”, it is de-
scribed based on its properties such as “has horn”, “has
wool”, etc. This helps in describing even those objects
which have few or no examples during training phase. Sim-
ilar idea is used in [7, 18] where attribute-based feedback
is used for unseen category recognition. Attribute-based
feedback has been shown to be useful for anomaly detec-
tion [28] within an object category, and adding unlabeled
samples for category classfier learning [4]. Attributes have
also been used for multiple-query image search [30], where
input attributes along with other related attributes are used
in a structured-prediction based model. Along with various
applications, attributes have been used in several mid-level
tasks. These include identification of color/texture [10],
specific objects such as faces [17], and general object cate-
gories [18, 33]. In some cases, since it might not be possible
to learn discriminative attributes from individual images,
in [21], pairs of images are used to learn such attributes

based on human feedback.
While most of the above methods have focused on pres-

ence/absence of some attribute, in [24] the notion of relative
attributes was introduced. In this, two images are compared
based on the relative strength of some given attribute, thus
providing a semantically richer way of describing the vi-
sual world than using binary attributes. Since then, relative
attributes have been used in several applications, such as
customized image search [15, 16], where a user can inter-
actively describe and refine visual properties while search-
ing for some specific object. This has been further ex-
tended in recent works [14, 25]. In [14], generic attribute
models are learned that can adapt to different users’ prefer-
ences. In [25], novel features are introduced based on user’s
implied feedback, which subsequently help in improving
search performance. In [26], an active learning framework
based on relative attribute feedback is proposed. Here, the
teacher (human) not only corrects an incorrect prediction
made by learner (machine), but also tells why the predic-
tion is incorrect using attribute based feedback. This helps
the learner in propagating this understanding among other
examples, which subsequently improves the learning pro-
cess. This idea is extended in [2] where the learner learns
attribute classifiers along with category classifiers. In [29], a
semi-supervised constrained bootstrapping approach is pro-
posed that tries to benefit from inter-class attribute-based
relationships to avoid semantic drift during the learning pro-
cess. In [32], a novel framework for predicting relative
dominance among attributes within an image is proposed.
In [27], rather than using either binary or relative attributes,
their interactions are modeled to better describe images.

Our work closely relates with recent works [1, 5, 6, 13]
that use distinctive part/region-based representations for
scene classification [13] or fine-grained classification [1, 5,
6]. However, rather than identifying category-specific dis-
tinctive parts, our aim is to compare similar parts that are
shared across categories. This makes our problem some-
what more challenging, since our representation is expected
to capture small relative differences in the appearance of se-
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mantically similar parts, which contribute in making some
attribute prominent in one image than another.

3. Preliminaries
In [24], a Ranking SVM based method was used for

learning relative attribute classifiers. Ranking SVM [12] is
a max-margin ranking framework that learns linear models
to perform pairwise comparisons. This is conceptually dif-
ferent from the conventional one-vs-rest SVM that learns a
model using individual samples rather than pairs. Though
SVM scores can also be used to perform pairwise compar-
isons, usually Ranking SVM has been known to perform
better than SVM for such tasks. In [24] also, Ranking SVM
was shown to perform better than SVM on the task of rela-
tive attribute prediction. We now briefly discuss the method
used in [24] for learning relative attribute classifiers.

3.1. The Ranking SVM Model

Let I = {I1, . . . , In} be a collection of n images. Each
image Ii is represented by a global feature vector xi ∈ RN .
Suppose we have a fixed set of attributes A = {am}.
For each attribute am ∈ A, we are given a set Dm =
Om ∪ Sm consisting of ordered pairs of images. Here,
Om = {(Ii, Ij)} is such that image Ii has more strength of
attribute am than image Ij . And, Sm = {(Ii, Ij)} is such
that both Ii and Ij have nearly the same strength of attribute
am. Using Dm, the goal is to learn a ranking function fm

that, given a new pair of images Ip and Iq represented by
xp and xq respectively, predicts which image has greater
strength of attribute am. Under the assumption that fm is a
linear function of xp and xq , it is defined as:

fm(xp,xq; wm) = wm ·Ψ(xp,xq), (1)
Ψ(xp,xq) = xp − xq (2)

Here, wm is the parameter vector for attribute am, and
Ψ(xp,xq) is a joint representation formed using xp and xq .
Using fm, we determine which image has higher strength
for attribute am based on ym

pq = sign(fm(xp,xq; wm)).
ym

pq = 1 means Ip has higher strength of am than Iq , and
ym

pq = −1 means otherwise. In order to learn wm, follow-
ing constraints need to be satisfied:

wm ·Ψ(xi,xj) > 0 ∀(Ii, Ij) ∈ Om (3)
wm ·Ψ(xi,xj) = 0 ∀(Ii, Ij) ∈ Sm (4)

Since this is an NP-hard problem, its relaxed version is
solved by introducing slack variables. This leads to the fol-
lowing optimization problem (OP1):

OP1 : min
wm

1
2
||wm||22 + Cm(

∑
ξ2ij +

∑
α2

ij) (5)

s.t. wm ·Ψ(xi,xj) ≥ 1− ξij , ∀(Ii, Ij) ∈ Om (6)
||wm ·Ψ(xi,xj)||1 ≤ αij , ∀(Ii, Ij) ∈ Sm (7)

ξij ≥ 0; αij ≥ 0. (8)

Figure 2. Given an input image (left), the parts that correspond to
“visible-teeth” (middle) and “eyes-open” (right).

Here, || · ||22 denotes squared L2 norm, || · ||1 denotes L1

norm, and Cm > 0 is a constant that takes care of the trade-
off between regularization term and loss term. Note that
along with pairwise constraints as in [12], the optimization
problem now also includes similarity constraints. This is
solved in the primal form itself using Newton’s method [3].

4. Proposed Representations
The Ranking SVM method discussed above uses a joint

representation based on globally computed features (Eq. 2)
while determining the strength of some given attribute.
However, several attributes such as “visible-teeth”, “eyes-
open”, etc. are not representative of whole image, and cor-
respond to only some specific regions/parts. This means
there exists a weak association between an image and its at-
tribute label. E.g., Figure 2 shows the parts corresponding
to attributes “visible-teeth” and “eyes-open”. This inspires
us to build a representation that (i) encodes part/region-
specific features, without confusing across parts; and (ii)
explicitly encodes the relative significance of each part with
respect to a given attribute. With this motivation, next we
propose two part-based joint-representations for the task of
learning relative attribute classifiers.

4.1. Part-based Joint Representation

Given an image I , let P = {p1, . . . , pK} be the set of
its K parts. These parts can be obtained using a domain-
specific method; e.g., the method discussed in [35] can be
used for determining a set of localized parts in face images.
Each part pk,∀k ∈ {1, . . . ,K} is represented using an N1-
dimensional feature vector x̃k ∈ RN1 . Here, N1 = K × d1

such that each x̃k is a sparse vector with only d1 non-zero
entries in the kth interval representing part pk. Based on
this, given a pair of images Ip and Iq , we define a joint part-
based feature representation as below:

Ψ̃(x̃p, x̃q) =
K∑

k=1

(x̃k
p − x̃k

q ), (9)

where x̃p = {x̃k
p | ∀k ∈ {1, . . . ,K}}. The advantage of

this representation is that it specifically encodes correspon-
dence among parts; i.e., now the kth part of Ip is compared
with just the kth part of Iq . The assumption here is that such
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a direct comparison between localized pairs of parts would
provide stronger cues for learning relative attribute models
than using a single global representation as in Eq. 2. (This
assumption is also validated by improvements in prediction
accuracy as discussed in Sec. 6.)

4.2. Weighted Part-based Joint Representation

Though the joint representation proposed in the previous
section allows direct part-based comparison between a pair
of images, it does not provide information about which parts
actually symbolize some given attribute. This is particularly
desirable in case of local attributes, where only a few parts
are important in predicting attribute strength. With this mo-
tivation, we update the joint representation of Eq. 9 to pre-
cisely encode relative importance of parts.

As discussed in Sec. 4.1, let each image I be represented
by a set ofK parts. Additionally, let sk

m ∈ [0, 1] be a weight
associated with the kth part. This weight denotes the rel-
ative importance of the kth part compared to other parts
for predicting the strength of attribute am; i.e., larger the
weight, more important is that part, and vice-versa. Using
this, given a pair of images Ip and Iq , the new weighted
part-based joint feature representation is defined as:

Ψ̃s(x̃p, x̃q, sm) =
K∑

k=1

sk
m(x̃k

p − x̃k
q ), (10)

where sm = [s1m, . . . , s
K
m]T . Since sk

m expresses the rela-
tive significance of the kth part with respect to am, we call
it as the significance-coefficient of the kth part. These help
in explicitly encoding the relative importance of individual
parts in the joint representation.

5. Parameter Learning
Now we discuss how to learn the parameters for each at-

tribute using the two joint representations discussed above.
Note that we still need to satisfy the constraints as in Eq. 3
and Eq. 4 depending upon the representation followed.

5.1. For Part-based Joint Representation

In order to learn a ranking model based on the part-based
representation in Eq. 9, we optimize the following problem:

OP2 : min
wm

1
2
||wm||22 + Cm(

∑
ξ2ij +

∑
α2

ij) (11)

s.t. wm · Ψ̃(x̃i, x̃j) ≥ 1− ξij , ∀(Ii, Ij) ∈ Om (12)

||wm · Ψ̃(x̃i, x̃j)||1 ≤ αij , ∀(Ii, Ij) ∈ Sm (13)
ξij ≥ 0; αij ≥ 0. (14)

This is similar to OP1, except that now we use part-based
representation instead of global representation. This allows
us to use the same Newton’s method [3] for solving OP2.

5.2. For Weighted Part-based Joint Representation

For the weighted part-based joint representation in
Eq. 10, we need to learn two sets of parameters correspond-
ing to every attribute: ranking model wm, and significance-
coefficients sm. To do this, we solve the following opti-
mization problem (OP3):

OP3 : min
wm,sm

1
2
||wm||22 + Cm(

∑
ξ2ij +

∑
α2

ij) (15)

s.t. wm · Ψ̃s(x̃i, x̃j , sm) ≥ 1− ξij , ∀(Ii, Ij) ∈ Om (16)

||wm · Ψ̃s(x̃i, x̃j , sm)||1 ≤ αij , ∀(Ii, Ij) ∈ Sm (17)
ξij ≥ 0; αij ≥ 0; (18)

sk
m ≥ 0, ∀1 ≤ k ≤ K; e · sm = 1. (19)

where e = [1, . . . , 1]T is a constant vector with all entries
equal to 1. Note that the overall weight of all the parts is
constrained to be unit; i.e., sk

m ≥ 0, e · sm = 1, which en-
sures that all parts are fairly used. This is equivalent to con-
straining theL1-norm of sm to be 1 (i.e., L1-regularization),
thus implicitly imposing sparsity on sm [22, 31]. This is
desirable since usually only a few parts contribute towards
determining the strength of a given attribute.

5.2.1 Solving the optimization problem

We solve OP3 in the primal form itself using a block co-
ordinate descent algorithm. We consider each set of param-
eters wm and sm as two blocks, and optimize them in an
alternate manner. In the beginning, we initialize all entries
of wm to be zero, and all entries of sm to be equal to 1/K.

First we fix sm to optimize wm. For a fixed sm, the
problem becomes equivalent to OP2 (Eq. 11 to 14), and
hence can be solved in the same manner using [3].

Then we fix wm to optimize sm. Let X̃i =
[x̃1

i . . . x̃
K
i ] ∈ RN1×K be a matrix formed by appending

features corresponding to all parts of image Ii. Using this,
we compute z̃im = X̃T

i wm ∈ RK . This gives

wm · Ψ̃s(x̃i, x̃j , sm) = sm · z̃ijm, (20)
z̃ijm = z̃im − z̃jm. (21)

Substituting this inOP3 leads to the following optimization
problem for learning sm (for fixed wm):

OP4 : min
sm

C (
∑

(Ii,Ij)∈Qm

(1− sm · z̃ijm)2 +

∑
(Ii,Ij)∈Sm

||sm · z̃ijm||21 ) (22)

s.t. sk
m ≥ 0, ∀1 ≤ k ≤ K; e · sm = 1. (23)

where Qm ⊆ Om is the set of pairs that violate the margin
constraint. Note that Qm is not fixed, and may change at
every iteration. We solve OP4 using an iterative gradient
descent and projection method similar to [34].
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Figure 3. Input image (left), parts detected using [35] (middle),
and additional parts detected by us (right).

5.3. Computing Parts

The two joint representations as proposed in Sec. 4 are
based on an ordered set of corresponding parts computed
from a given pair of images. Given a method for computing
such parts, our framework is applicable irrespective of the
domain. This makes our framework domain adaptable.

In this work, we consider the domain of face images. To
compute parts from a given face image, we use the method
proposed in [35]. It is based on a mixture-of-tress model
to learn a shared pool of facial parts. Given a face image, it
computes a set of 68 parts covering facial landmarks such as
eyes, eyebrows, nose, mouth and jawline. Figure 3 shows a
face image (left) and its parts (middle) computed using this
method. Though these parts can be used to represent several
attributes such as “smiling”, “eyes-open”, etc., there are few
other attributes which are not covered by these parts such as
“bald-head”, “visible-forehead” and “dark-hair”. In order to
cover these attributes as well, we compute additional parts
using image-level statistics such as image-size and distance
from the earlier 68 parts. This gives an extended set of 83
parts for a given face image. Figure 3 (right) shows this
extended set of parts computed for the given image (left).

5.4. Relation with Latent Models

In the last few years, latent models have become popular
for several tasks, particularly for object detection [9]. These
models usually look for characteristics (e.g., parts) that are
shared within a category but distinctive across categories.
(As discussed in Sec. 2, recent works such as [1, 5, 13] also
have similar motivation, though they do not explicitly inves-
tigate the latent aspect.) Our work is similar to theirs in the
sense that we also seek attribute-specific distinctive parts by
incorporating significance-coefficients. However, in con-
trary to them, we require these parts to be shared across
categories. This is because our ranking method uses these
parts to learn attribute-specific models which are indepen-
dent of categories being depicted in training pairs.

6. Experiments
We compare the proposed method with that of [24] un-

der different settings on two datasets. First is the PubFig-29
dataset as used in [26]. It consists of 60 face categories
and 29 attributes, with attribute annotations being collected

Figure 4. Example pairs and their ground-truth annotations from
Pubfig-29 dataset. Due to category-level annotations, there exist
inconsistencies in (true) instance-level attribute visibility.

Figure 5. Example pairs from LFW-10 dataset. The images exhibit
high diversity in terms of age, pose, lighting, occulusion, etc.

at category-level; i.e., using pairs of categories rather than
pairs of images. Due to this, the annotations in this dataset
are not consistent for several attributes (see Figure 4) ; e.g.,
Scarlett Johansson may not be smiling more than Hugh Lau-
rie in all their images. To address this limitation, we have
collected a new dataset using a subset of LFW [11] images.
The new dataset has attribute-level annotations for 10000
image pairs and 10 attributes, and we call this as LFW-10
dataset. While collecting the annotations, we particularly
ignore the category information, thus making it more suit-
able for the task of learning relative attributes. The details
of this dataset are described next.

6.1. LFW-10 Dataset

We randomly select 2000 images from LFW
dataset [11]. Out of these, 1000 images are used for
creating training pairs and the remaining (unseen) 1000 for
testing pairs. The annotations are collected for 10 attributes,
with 500 training and testing pairs per attribute. In order
to minimize the chances of inconsistency in the dataset,
each image pair is got annotated from 5 trained annotators,
and final annotation is decided based on majority voting.
Figure 5 shows example pairs from this dataset.

6.2. Features for Parts

We represent each part using a Bag of Words (BoW) his-
togram over dense SIFT (DSIFT) [20] features. We con-
sider two settings for learning visual-word vocabulary: (1)
In the first setting, we learn a part-specific vocabulary for
every part. This is possible since our parts are fixed and
known. In practice, we learn a vocabulary of 100 visual
words for each part. This gives a 8300-dimensional (= 83
parts ×100) (sparse) feature vector per part. (2) In the
second setting, we learn a single vocabulary of 100 visual
words for all the parts. This again results into a 8300-

5



Method Accuracy

Global DSIFT + RSVM [24] 61.28

Global GIST + RGB + RSVM [24] 59.18

SPM (Upto 2 levels) + RSVM [24] 49.60

SPM (Upto 3 levels) + RSVM [24] 49.17

Unweighted parts + Part-specific vocab. (Ours) 62.54

Unweighted parts + Single vocab. (Ours) 62.83

Learned parts + Part-specific vocab. (Ours) 62.67

Learned parts + Single vocab. (Ours) 63.08

Table 1. Results on PubFig-29 dataset. Though all the methods
give comparable performance, these results are not really indica-
tive of their actual behaviour since the annotations in this dataset
are at category-level rather than instance-level.

dimensional (=83 parts ×100) feature vector for each part.

6.3. Baselines

We compare with the Ranking SVM method of [24] us-
ing the code provided by the authors 1. We use four features
for comparison: (i) BoW histogram over DSIFT features
with 1000 visual words, (ii) global 512-dimensional GIST
descriptor [23], (iii) global 512-dimensional GIST and 30-
dimensional RGB histogram (which was also used in [24]),
and (iv) spatial pyramid (SPM) [19] upto two and three lev-
els using DSIFT features and the same vocabulary as in (i).

As another baseline, we compare the quality of our part-
learning framework (Sec. 5.2) against human selected parts.
For this, we asked a human expert to select a subset of few
most representative parts corresponding to every attribute.
For a given attribute am, all the selected parts are assigned
equal weights and the remaining parts are assigned zero
weight, and then a ranking model wm is learned based on
these part weights. The intuition behind this experiment is
to analyze the trade-off between the performance obtained
using manually selected parts and learned parts.

6.4. Results

Table 1 compares different methods on PubFig-29
dataset. For each attribute, we consider 1500 training pairs
from 40 classes, and 1500 testing pairs from the remain-
ing 20 classes. As discussed before, since this dataset
has category-level annotations, there exist inconsistencies
in instance-level annotations. Due to this, average accura-
cies of different methods are quite close. Hence, we believe
that LFW-10 dataset is more suitable for comparisons.

Table 2 shows the average accuracies over all the at-
tributes obtained by different methods on LFW-10 dataset.
Several observations can be made from these results: (1)

1The code is available at https://filebox.ece.vt.edu/

˜parikh/relative.html.

Figure 6. For three attributes from LFW-10 dataset (“smiling”,
“visible-forehead” & “eyes-open” resp.) the first block shows the
top five parts and their weights learned using our method, and the
second block shows five parts selected by human expert.

Method Accuracy

Global DSIFT + RSVM [24] 64.61

Global GIST + RSVM [24] 68.89

Global GIST + RGB + RSVM [24] 69.89

SPM (Upto 2 levels) + RSVM [24] 50.73

SPM (Upto 3 levels) + RSVM [24] 50.01

Human selected parts + Part-specific Vocab. (Ours) 80.90

Human selected parts + Single Vocab. (Ours) 80.43

Unweighted parts + Part-specific vocab. (Ours) 80.49

Unweighted parts + Single vocab. (Ours) 80.19

Learned parts + Part-specific vocab. (Ours) 81.06

Learned parts + Single vocab. (Ours) 80.71

Table 2. Average relative attribute prediction accuracies using dif-
ferent methods on LFW-10 dataset.

The performance for SPM is comparable to chance accu-
racy. This is probably because the blocks are big enough
to capture minute differences in small parts for learning
attributes. This results in learning bigger parts that are
not really distinctive with respect to different attributes.
(2) The part-based representations always performs signif-
icantly better (more than 10% on absolute scale) than [24]
with different features. This clearly validates the signifi-
cance of these representations for learning relative attribute
models. (3) Using part-specific vocabulary performs better
than single vocabulary. One possible reason for this could
be that using vocabularies learned individually for each part
results into less confusion than using a single vocabulary
learned using all the parts. Investigating the effect of vo-
cabulary size for these two settings could be an interesting
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Figure 7. Top 10 parts learned using our method with maximum weights for each of the ten attributes in LFW-10 dataset. Greater is the
intensity of red, more important is that part, and vice-versa.

Figure 8. Performance for each of the ten attributes in LFW-10 dataset using different methods and representations.

direction for further research. (4) The performance after
combining learned significance-coefficients with parts is al-
ways better than unweighted parts (last two blocks of Ta-
ble 2). This reflects the importance of learning and incor-
porating part-specific weights into the joint representation.
(5) The results obtained using learned parts are better than
those using human selected parts. This could be because
for humans, it is difficult to precisely assign a weight to
every part (hence we used equal weights for all human se-
lected parts). However, this limitation is overcome by our
optimization framework (OP4) that allows to learn part-
specific weights for a given attribute. Figure 6 shows the
top five parts with highest significance-coefficients, and (a
subset of) five parts selected by human expert for three
attributes. Figure 7 shows the top ten learned parts with
highest significance-coefficients for all the ten attributes in
LFW-10 dataset. These demonstrate that even by using
weak associations between image pairs and their annota-
tions, our method can efficiently learn discriminative and
semantically representative parts for different attributes.

In Figure 8, we show the performance of different meth-
ods for each of the ten attributes in LFW-10 dataset. Here,
we can observe that the proposed methods always performs
better (sometimes significantly) or comparable to the base-
line method of [24]. Also, the performance of our method
closely matches with that obtained using human selected
parts, thus demonstrating its effectiveness.

6.5. Application to Interactive Image Search

Now, we illustrate the advantage of the proposed method
on the task of interactive image search using relative at-
tribute based feedback. Our feedback collection set-up is
similar to that of [25]. Given a target image, it needs to

be described relative to a few reference images (which are
different from the target image) based on relative attributes.
For a given attribute’s feedback with respect to a reference
image, the search set is partitioned into two disjoint sets us-
ing that attribute’s scores. The rank of all the images in the
search set are averaged over all feedbacks over all reference
images. To break-up ties, absolute classifier score differ-
ence with respect to reference image is used. The intuition
behind this set-up is that the images which match maximum
with attribute feedback should be ranked towards the top.

The 1000 test images of LFW-10 dataset comprise our
search set. We keep number of reference images to be either
one or two, and vary the number of attribute-based feed-
backs per reference in {2, 5, 10}. A total of 275 searches
are performed for each of the six settings, by collecting
feedbacks from 30 human evaluators. Figure 9 shows the
performance of different methods for the six settings. For
a given rank, we compute how many target images are pre-
dicted below that rank. This means that more is the number
of search images falling below a specified rank, better is the
performance. From the results, we can observe that the per-
formance of all the methods improves with increase in num-
ber of feedbacks and/or number of reference images. This is
expected since more interactions (feedbacks) result in better
describing the target image. These results demonstrate that
here also our method consistently outperforms the baseline
method, and achieves performance comparable to that using
human selected parts, thus validating its efficacy.
7. Conclusion

Inspired from the success of relative attributes, we have
presented a novel method that learns relative attribute mod-
els using local parts that are shared across categories. Our
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Figure 9. Performance variation of different methods on interactive image search with number of reference images and number of feed-
backs. Each plot shows the number of searches in which the target image is ranked below a particular rank. Larger is the number of
searches falling below a specified rank, better is the accuracy.

method achieves significant improvements compared to the
baseline method. Apart from this, the part-specific weights
learned using our method also provide semantic interpreta-
tion of different parts for diverse attributes.
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