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Abstract

We address the problem of automatic image annotation in large vocabulary datasets.
In such datasets, for a given label, there could be several other labels that act as its
confusing labels. Three possible factors for this are (i) incomplete-labeling (“cars” vs.
“vehicle”), (ii) label-ambiguity (“flowers” vs. “blooms”), and (iii) structural-overlap
(“lion” vs. “tiger”). While previous studies in this domain have mostly focused on
nearest-neighbour based models, we show that even the conventional one-vs-rest SVM
significantly outperforms several benchmark models. We also demonstrate that with a
simple modification in the hinge-loss of SVM, it is possible to significantly improve its
performance. In particular, we introduce a tolerance-parameter in the hinge-loss. This
makes the new model more tolerant against the errors in the classification of samples
tagged with confusing labels as compared to other samples. This tolerance parameter
is automatically determined using visual similarity and dataset statistics. Experimental
evaluations demonstrate that our method (referred to as SVM with Variable Tolerance or
SVM-VT) shows promising results on the task of image annotation on three challenging
datasets, and establishes a baseline for such models in this domain.

1 Introduction
Automatic image annotation is an interesting problem, where each image is associated with a
set of labels and the goal is to learn a model that assigns multiple labels to a new image. This
has applications in several tasks such as image retrieval, object recognition, robot navigation,
etc. Hence this has emerged as an important research area during the last decade [2, 5,
6, 8, 11, 19, 23]. In annotation datasets with large vocabularies of few hundred or more
labels, there exist three practical issues: (a) Incomplete-labeling: The training samples are
not exhaustively tagged with all relevant labels from vocabulary. This is because while
building a dataset, human annotators find some labels as “obvious” and miss them while
preparing the ground-truth. E.g., an image tagged with “car” might not be tagged with
“vehicle”. (b) Label-ambiguity: There are some labels that convey same semantic meaning
and thus can be used interchangeably, due to which usually only one of them is assigned
by annotator. E.g., an image tagged with “flowers” may not be tagged with “blooms” as
both convey the same meaning. (c) Structural-overlap: There are some labels that, in
spite of being different, share structural properties. E.g., though “tiger” and “lion” are two
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cars, tracks, prototype grass, flowers, petals sky, grass, plane, lion tree, grass, tiger, park

Figure 1: Example images from the Corel-5k dataset [4] and corresponding ground-truth
labels. First image is an example of incomplete-labeling (tagged with “car” but not with
“vehicle”); second image is an example of label-ambiguity (tagged with “flowers”, though
“blooms” would also have been equally correct); & third and fourth images are examples of
structural-overlap (“lion” and “tiger” are two different but structurally related labels).

different labels, structurally they are very similar. Figure 1 shows such examples from Corel-
5k dataset [4]. All these issues combinedly give rise to the existence of sets of confusing
labels within a vocabulary. It is important to note that some of such confusing labels might
actually be one of the positive labels for a given image, but remain missing in the ground-
truth due to these issues. In other words, for a given label la, a confusing label lb is a label that
is/could-be used in-place-of/together-with la, due to: incompleteness, ambiguity or overlap
problems. In this work, our goal is to learn from such data where for a given label, there
could be several other labels in the vocabulary that act as its confusing labels. We shall refer
this problem as “image annotation in presence of confusing labels”.

Among the image annotation models being proposed in the past, generative or nearest-
neighbour (NN)-based models [5, 8, 11, 19, 23] have particularly been shown to be success-
ful for large vocabulary datasets such as Corel-5k [4], ESP Game [20] and IAPRTC-12 [7].
The reason behind this is that in NN-based models, given a sample, the labels that are not
present in the ground-truth of its neighbouring samples are simply ignored, rather than being
considered as negative. This makes such models somewhat tolerant against the issue of con-
fusing labels. In contrary, simple one-vs-rest Support Vector Machine (or SVM) [3, 18] has
remained almost unexplored in this domain. This might be due to its strict discriminative
nature: it considers everything other than positive as equally negative. E.g., while learning a
model for “flowers”, samples labeled with “blooms” are considered as negative examples.
Due to this, for a given label, the samples that are either incompletely labeled, or tagged with
another label that is semantically/structurally similar to the given label get confused as neg-
ative examples. This, in turn, inhibits learning good decision boundaries, and hence affects
the performance of the learned SVM model.

In this work, we demonstrate that despite this strict discriminative behaviour, simple
SVM itself can give superior performance than several benchmark image annotation mod-
els. Moreover, we claim that if it is made tolerant against confusing labels, then it is possible
to achieve significant improvements in its performance. To support this, we propose an
extension of the SVM model that (i) is more tolerant against the errors made in the classi-
fication of samples tagged with one or more confusing labels; and (ii) penalizes such errors
by smaller amount as compared to those in other samples. This is performed by introducing
a tolerance-parameter in the conventional SVM model that takes care of both these require-
ments. We call this model as Suppor Vector Machine with Variable Tolerance (or SVM-VT),
and show that it can be as efficiently optimized as the standard SVM. Empirical studies on
three popular image annotation datasets demonstrate that it achieves very promising results,
thus establishing a baseline for such models in this domain.
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2 The SVM-VT Model
Let S = {x1, . . . ,xm} be a collection of m samples and V = {l1, ..., ln} be a vocabulary of n
labels. The dataset T = {(x1,L1), . . . ,(xm,Lm)} is a set of tuples of the form (xi,Li) where
xi is a sample and Li ⊆ V is the set of its labels. Let S+

i be the set of samples that are
annotated with the label li. We consider these samples as positive examples of li, and denote
the remaining samples as S̄+

i = S\S+
i , ∀i ∈ {1, . . . ,n}. From now onwards, we shall discuss

considering a single label and omit the subscript index for brevity.
For a given label l, the conventional SVM considers the samples in S+ as its positive

examples and those in S̄+ as its negative examples. Using these two sets, a linear classifier
w is learnt (separately for each label) by solving the following optimization problem:

min
w

λ

2
||w||2 +

1
m

m

∑
j=1

[1− y j(w ·x j)]+, (1)

where [z]+ = max(0,z) denotes the hinge-loss, λ > 0 is used to control the trade-off between
regularization and loss, and y j = 1 if x j ∈ S+ and−1 otherwise. Solving this leads to finding
a hyper-plane w that best separates the samples in S+ and S̄+ with maximum margin.

In order to make SVM tolerant against the confusing samples, we define a new loss
function based on the hinge-loss. It introduces a tolerance-parameter “t” that adjusts both
the margin as well the gradient update-rule for each sample separately. Specifically, we
formalize the SVM-VT model as that of solving the following optimization problem:

min
w

λ

2
||w||2 +

1
m

m

∑
j=1

[1− y jt j(w ·x j)]+, (2)

where the additional parameter t j ∈ [0,1] controls the tolerance against the errors made in
the classification of sample x j. The hyperplane w is now learnt such that it is more strict
towards correctly classifying samples with high value of t j and any such error leads to a
large shift in hyperplane. In other words, the hyperplane is more tolerant against errors
made in classification of samples with low value of t j and such errors lead to a small shift in
hyperplane. If t j = 1 ∀ j, it becomes exactly the same as that of the standard SVM as shown
in equation 1. In this way, SVM-VT can be viewed as a (strict) generalization of SVM.

In Figure 2 (left), we show how the hinge-loss function varies with different values of t
for some sample x. On X-axis and Y-axis, we represent the value of y(w ·x) and that of the
hinge-loss respectively. It can be seen that for small value of t, the hinge-loss remains small
even for large misclassification errors. As we increase t, the hinge-loss becomes more and
more sensitive towards misclassification errors and hence they get more penalized. Another
interesting thing to notice is that as we reduce t, the hinge-loss fires even for the samples
which are correctly classified with high confidence, though the loss value remains very small.
This is desirable when we are confused about the exact label of a sample and want to penalize
its highly confident correct classification. Also, if we set t = 0 for some particular sample,
then the classifier becomes infinitely tolerant against the error made in its classification.

2.1 Determining the tolerance parameter
As discussed in section 1, for a given label l, there could exist several other labels in the
vocabulary that act as its confusing labels. Due to this, there could be possibly many samples
in the set S̄+ that are tagged with some confusing label of l (which we call as confusing
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Figure 2: Loss function with variation in the tolerance-parameter. The horizontals axis repre-
sents the value of y(w ·x) and vertical axis represents the loss. On the left, the conventional
hinge-loss corresponds to t = 1, and the proposed t_hinge varies with different values of
0≤ t ≤ 1. On the right, the step-function corresponds to misclassification error (err) and the
one in bold represents r_hinge.

samples). Though in practice it is possible to automatically learn the tolerance parameter in
equation 2 using either non-convex optimization or convex-relaxation, it would not solve our
purpose of identifying such samples. This is because doing so will look only at the features
of the samples without considering other semantic properties. Here we propose a heuristic
approach for determining the t-value for each sample given a label that tries to address the
three issues discussed in section 1.

For a given label l, we consider three factors to determine the semantic relatedness of
each sample x j ∈ S̄+ with that label:
(a) Reverse nearest-neighbours based score: For a fixed value of K (= 5), let pk be the
number of samples in S+ that have x j as their kth nearest neighbour. Then we define

score1(x j|l) =
∑

K
k=1(

pk
k )

∑
K
k=1 pk + ε

(3)

where ε > 0 is a small number to avoid division by zero.
(b) Visual similarity based score: We compute the visual similarity score sim(·) (scaled into
range [0,1]) of x j with its nearest neighbour x∗i ∈ S+ using JEC [11] method and define

score2(x j|l) = sim(x j,x∗i ) (4)

(c) Label co-occurrence based score: Given a label l, let y ∈ {0,1}m be such that its ith entry
is 1 if the ith training image is tagged with l, and 0 otherwise. We compute co-occurrence
score co_occur(li, l j) between two labels li and l j by computing cosine similarity between
their corresponding vectors yi and y j. Now, let x j be tagged with labels L j. We define

score3(x j|l) = max
l j∈L j

co_occur(l, l j) (5)

Intuitively, while score3 tries to address incomplete-labeling, score1 and score2 try to address
the issues of label-ambiguity and structural-overlap. Based on these three scores, we define
the tolerance parameter for sample x j given label l as

t j = 1− 1
3
(score1(x j|l)+ score2(x j|l)+ score3(x j|l)) (6)

From equation 6, it can be seen that for a given sample in S̄+, smaller tolerance value
corresponds to higher chance of it being related to a given label and vice-versa. However,
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since it is very difficult to claim if a negative sample is actually positive, we still consider
y j = −1 ∀x j ∈ S̄+. This is because our aim is to learn a classifier that is tolerant against
confusing labels, rather than getting learnt on them. Also, we take t j = 1 ∀x j ∈ S+ assuming
that all the positive samples are correctly annotated.

In Figure 3, we show the negative samples (along with their ground-truth labels) with
least t-scores for two labels each from the three datasets. Several interesting observations can
be made from these examples. All these negative samples actually look semantically related
(near positive) with the corresponding labels. In first row, the negative samples for the label
“clouds” demonstrate examples of incomplete-labeling, as “clouds” are clearly visible in
these images but missing in their ground-truth. Similar is the case with the negative samples
for the labels “teeth”, “toy”, “horse”, and “bedcover”. The first negative sample for the
label “man” is an example of structural-overlap, because though “man” is not there in this
images, it has “woman” that is structurally related with “man”. The second negative sample
for the same label is an example of label-ambiguity since in this image “people” is used to
refer the “man” climbing the tree. Thus, these examples verify the ability of our method in
identifying so-called confusing samples.

2.2 Dual-form
By rewriting equation 2, the dual form of SVM-VT can be easily derived as below:

min
w,ξ≥0

λ

2
||w||2 +

1
m

m

∑
j=1

ξ j s.t. ξ j ≥ 1− y jt j(w ·x j) ∀ j ∈ {1, . . . ,m} (7)

= max
α

m

∑
i=1

αi−
1

2λ

m

∑
i=1

m

∑
j=1

αiα jyiy jtit j(xi ·x j) s.t. 0≤ αi ≤
1
m
∀i ∈ {1, . . . ,m} (8)

The dual of SVM-VT is very much similar to that of the conventional SVM, thus allowing
efficient optimization.

2.3 Properties of SVM-VT
For a sample x j, let us denote the conventional hinge-loss and misclassification error by

hinge(w,x j,y j) = [1− (y j(w ·x j)]+
err(w,x j,y j) = δ (y j(w ·x j) < 0)

where δ (·) is 1 if the argument holds true and 0 otherwise. Then it can be easily shown that
the hinge-loss provides an upper-bound on the misclassification error. Now, let us denote the
modified hinge-loss of SVM-VT as

t_hinge(w,x j,y j, t j) = [1− y jt j(w ·x j)]+

Proposition 1. For t j ∈ [0,1], t_hinge(w,x j,y j, t j) ≥ err(w,x j,y j), i.e. t_hinge provides an
upper-bound on the misclassification error.

Also, the robust hinge-loss is ususally considered as more stable than the conventional
hinge-loss [10, 12]. It is given by:

r_hinge(w,x j,y j) = min(1,hinge(w,x j,y j))

However, since this is a non-convex function, it is difficult to optimize. From Figure 2, it can
be easily seen that t_hinge provides an upper-bound on r_hinge for t ∈ [0,1].

Proposition 2. For t j ∈ [0,1], t_hinge(w,x j,y j, t j) ≥ r_hinge(w,x j,y j) ≥ err(w,x j,y j).
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C
or

el
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k
“clouds” “man”

t = 0.4537 t = 0.4595 t = 0.4643 t = 0.4725
grass, ruins, stone grass, road, ruins, people, woman tree, people

pyramid

E
SP

G
am

e

“teeth” “toy”

t = 0.3331 t = 0.3331 t = 0.3327 t = 0.3327
dress, girl, hair, lady, eye, face, girl, hair, baby, blonde, doll, hair army, doll, green,

old, smile, woman nose, photo, picture, helmet, man, soldier, war
smile, woman

IA
PR

T
C

-1
2

“horse” “bedcover”

t = 0.3333 t = 0.4151 t = 0.3326 t = 0.3521
sky forest, middle, tourist bed, bedside, lamp, bed, bedside, blanket,

room, table, wall curtain, lamp, room,
table, window

Figure 3: For example labels (in blue) from the three datasets, the top “negative” samples
that have least t-scores and corresponding ground-truth labels (for a given label, smaller
t-score of a negative sample implies higher semantic relevance with that label).

2.4 Comparison with Other Methods

Several extensions of SVM have been proposed in the past that try to modify the loss-
function. Here we give a brief overview of some of these methods whose formulation looks
similar to that of SVM-VT, and discuss how SVM-VT differs from them. In [14], a separate
scaling parameter is used for hinge-loss of positive and negative classes. This is generalized
in [22] where hinge-loss corresponding to each sample is scaled individually by a parame-
ter in the range [0,1]. In [16], the loss is made sensitive to the distance of a sample from
class-centroid. One similarity among all these methods is that they try to learn a classifier
that is robust against outliers, by looking only at the features of samples. SVM-VT dif-
fers from these models in at least two ways. First, while these methods modify either the
margin constraint [16] or the (classifier) update-rule [14, 22] of the conventiional SVM, the
proposed hinge-loss of SVM-VT modifies both of these simultaneously. Second, all these
methods consider only the distribution of samples in feature space, whereas the hinge-loss
of SVM-VT has an associated semantic meaning that relates samples and labels based on
semantic properties in addition to visual features.

For the image annotation task, Structured SVM (or SSVM) [17] seems to be an appro-
priate model. Intuitively, the idea behind SSVM is to benefit from the structure in the output
space. Through SVM-VT we have tried to infuse this idea in the SVM model, though indi-
rectly. This is because while learning the classifier for a given label, the amount of penalty
for each non-positive sample differs depending on how much confusion it introduces in the
classifier training. A sample that is more confusing for a given label adds a smaller penalty as
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Dataset Labels No. of Training Img. No. of Test Img. Avg. Labels/Img. Avg. Images/Label

Corel-5k 260 4,500 499 3.4 58.6
ESP Game 268 18,689 2,081 4.7 362.7
IAPRTC-12 291 17,665 1,962 5.7 347.7

Table 1: Statistics of the three image annotation datasets used in our experiments.

compared to others. This way, each negative becomes a negative in its own way as in SSVM.
However, the time-complexity and/or memory requirements during training of SSVM-based
models such as [1, 9] increase significantly as we move to very large datasets with large vo-
cabularies. This usually makes it difficult to scale such models for the practical scenarios
of large-scale learning (an interesting exception being the WSABIE model proposed in [21]
that was shown to outperform SVM in terms of performance, time-complexity as well as
memory requirements). SVM-VT provides the flexibility of both introducing semantics in
classifier-training as well as efficient optimization comparable to binary SVM. Our work
also relates with [13] that uses correlation between labels to improve annotation.

3 Experiments
3.1 Datasets and Features

We use three datasets popular in the image annotation task [5, 8, 11, 19]. These are Corel-
5k [4], ESP Game [20] and IAPRTC-12 [7]. While Corel-5k has become the de-facto
dataset in this domain, the other two datasets are very challenging with significant diversity
among their samples. Table 1 shows general statistics of these datasets.

In our experiments, we use the same features as those in [8]. These include global RGB,
HSV, LAB and GIST features; and local SIFT and Hue descriptors extracted densely from
multi-scale grid as well as from Harris-Laplacian interest points. All features other than
GIST are also computed over three equal horizontal partitions. This gives a set of 15 features
per image. In our experiments, we also report results using chi-squared kernel. For SVM,
SVM-VT and their kernelized versions, we calibrate the scores using [15].

3.2 Evaluation

We use the same evaluation criteria as being used by previous methods [6, 8, 11, 19, 23].
Given a new sample, first we compute the score for each label using the corresponding
classifier, and then assign it the five top-scoring labels. To evaluate annotation performance,
we use three measures. These are (a) average precision per label P, (b) average recall per
label R, and (c) number of labels that are correctly recalled for at least one sample N+.
Given a label li and its positive sample-set S+

i , let Qi be the set of images for which it is

predicted. Then the precision for label li will be |S
+
i ∩Qi|
|Qi| , and recall will be |S

+
i ∩Qi|
|S+

i |
. These

values are computed for each label and averaged to obtain P and R scores. We also compute
average F1-score per label (F1 = 2PR/(P+R)) to analyze the trade-off between P and R.

Table 2 shows the annotation performance of different methods. It can be seen that our
method consistently improves performance over the conventional one-vs-rest SVM. Also,
it performs comparable or better than even the recently proposed annotation methods such
as [6, 8, 23] (except for IAPRTC-12 dataset where its performance is inferior only to the
best results of [8]). We also compare with two SVM-based models [1, 9]. In [9], we use
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Dataset→ Corel-5k ESP Game IAPRTC-12

Method ↓ P R F1 N+ P R F1 N+ P R F1 N+

MBRM[5] 0.24 0.25 0.245 122 0.18 0.19 0.185 209 0.24 0.23 0.235 233

SML[2] 0.23 0.29 0.257 137 - - - - - - - -

JEC[11] 0.27 0.32 0.293 139 0.22 0.25 0.234 224 0.28 0.29 0.285 250

TagProp-ML[8] 0.31 0.37 0.337 146 0.49 0.20 0.284 213 0.48 0.25 0.329 227

TagProp-σML[8] 0.33 0.42 0.370 160 0.39 0.27 0.319 239 0.46 0.35 0.398 266
GS[23] 0.30 0.33 0.314 146 - - - - 0.32 0.29 0.304 252

RF[6] 0.29 0.40 0.336 157 0.41 0.26 0.318 235 0.44 0.31 0.364 253

M3L[9] 0.27 0.34 0.301 138 0.31 0.25 0.277 234 0.35 0.25 0.291 233

KM3L[9] 0.33 0.37 0.349 146 0.40 0.26 0.315 239 0.44 0.28 0.342 242

MLR-GL[1] 0.15 0.13 0.139 74 0.19 0.15 0.168 181 0.19 0.13 0.154 169

KMLR-GL[1] 0.18 0.16 0.169 85 0.22 0.17 0.192 190 0.23 0.16 0.189 174

SVM 0.24 0.37 0.291 164 0.25 0.26 0.255 254 0.29 0.28 0.285 262

KSVM 0.29 0.43 0.346 174 0.30 0.28 0.290 256 0.43 0.27 0.332 266

SVM-VT (Ours) 0.27 0.39 0.319 171 0.29 0.30 0.295 257 0.33 0.31 0.320 265

KSVM-VT (Ours) 0.32 0.42 0.363 179 0.33 0.32 0.325 259 0.47 0.29 0.359 268

Table 2: Performance comparison among different methods on the three image annotation
datasets. The prefix ‘K’ corresponds to kernelization. Previous and our best results are
highlighted in bold.

Dataset→ Corel-5k ESP Game IAPRTC-12

Method ↓ P R F1 N+ P R F1 N+ P R F1 N+

2PKNN+ML[19] 0.44 0.46 0.450 191 0.53 0.27 0.357 252 0.54 0.37 0.439 278

KSVM-VT 0.32 0.42 0.363 179 0.33 0.32 0.325 259 0.47 0.29 0.359 268

Table 3: Performance comparison between the current state-of-the-art [19] and the best re-
sults of this work.

label co-occurrence scores to form the prior matrix. Here also, SVM-VT provides supe-
rior performance than both of these. This demonstrates its efficiency in capturing semantic
correlations even in an independent manner. Table 3 compares our results with [19] that
tries to benefit from label-specific local neighbourhoods and achieves current state-of-the-art
performance on standard datasets. Though our results are somewhat inferior to that of [19],
our method offers reduced run-time and better scalability. Figure 4 shows some qualitative
results obtained using our method. These results reflect semantic connectedness among the
labels predicted by our method; e.g. {railroad, train, locomotive}, {boat, ship, ocean}, etc.

4 Discussion
The SVM-VT model, despite its simplicity, offers several advantages over the existing dis-
criminative and NN-based methods for image annotation which we discuss below:

(a) Scalability: Most of the discriminative methods for multi-label problems such as [1,
9] learn model(s) for all the labels in a vocabulary jointly in a single optimization problem.
Though this provides the advantage of incorporating inter-label relationships, it is sometimes
difficult to scale such methods to very large vocabularies. In contrast, SVM-VT provides
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C
or
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reefs, mare, foals, pillar, temple, pyramid, formula, wall, tracks, railroad, train, locomotive,
horses, field stone, sculpture cars, road smoke, tree

E
SP

G
am

e

photo, family, glasses, home, house, sky, boat, ship, ocean, face, smile, eye,
picture, girl tree, white sky, water hair, model

IA
PR

T
C

-1
2

cycling, jersey, cyclist, court, dress, tennis, curtain, bed, window, cliff, man, helmet,
bike, short player, grandstand room, bedcover trouser, hill

Figure 4: Example images from the three datasets and corresponding top 5 labels predicted
using KSVM-VT method.

a framework for learning a model for each label in an independent manner, and at the same
time takes care of inter-label relationships as well. Given an efficient way of computing the
tolerance parameter, this can be scaled to very large vocabularies similar to SVM.

(b) Time-complexity: Once we have computed the tolerance parameter, time-complexity
of SVM-VT is almost comparable to that of SVM. Since each classifier can be learnt inde-
pendent of others, practically it is possible to learn all them simultaneously. Once we have
learned all the classifiers, predicting labels for a new image becomes several times faster
than the NN-based models [5, 8, 11, 19].

(c) Performance: As discussed before, the performance of SVM has remained (almost)
unexplored in the task of image annotation on standard datasets. We demonstrated that
simple SVM itself achieves superior performance than several existing methods. Moreover,
SVM-VT demonstrates that it is possible to achieve significant improvement in performance
by relaxing the strict discriminative behaviour of the SVM classifier. To the best of our
knowledge, this is the first study where a discriminative one-vs-rest type of model has been
shown to give promising results on image annotation task with large vocabularies.

Along with the SVM-VT model, we have also proposed a method for determining se-
mantic relationships of negative samples with a given label based on visual similarity and
dataset statistics. As vocabulary size grows, such relationships start getting prominent. How-
ever, due to limitations of human annotations, these give rise to the three issues discussed
before. We show that using our method, we are able to find such relationships efficiently.

5 Conclusion and Future Work
We propose SVM-VT model for handling the issues of incomplete-labeling, label-ambiguity
and structural-overlap that are frequently encountered in large vocabulary image annotation
datasets. Our model is generic and can find applications in a wide variety of classification
as well as multi-label tasks. We experimentally demonstrate that despite its simplicity, it
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performs superior than several existing methods. In future, we would like to extend our
work to the scenario where even some of the positive samples act as confusing samples.
This, in turn, would help in learning models that are robust against incorrect ground-truth.
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