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Abstract—Sparse representations have emerged as a powerful
approach for encoding images in a large class of machine
recognition problems including face recognition. These methods
rely on the use of an over-complete basis set for representing an
image. This often assumes the availability of a large number of
labeled training images, especially for high dimensional data. In
many practical problems, the number of labeled training samples
are very limited leading to significant degradations in classifica-
tion performance. To address the problem of lack of training
samples, we propose a semi-supervised algorithm that labels
the unlabeled samples through a multi-stage label propagation
combined with sparse representation. In this representation, each
image is decomposed as a linear combination of its nearest basis
images, which has the advantage of both locality and sparsity.
Extensive experiments on publicly available face databases show
that the results are significantly better compared to state-of-the-
art face recognition methods in semi-supervised setting and are
on par with fully supervised techniques.

Keywords—Face recognition; semi-supervised learning; sparse
representation.

I. INTRODUCTION

Face recognition techniques over the years have employed
a variety of representations of the face such as Eigenface,
Fisherface, Laplacianface, etc. [1]. Each of these techniques,
tries to learn a basis or feature space by optimizing an objective
function with a specific goal. Eigenface utilizes PCA to maxi-
mize the variance of the training images, while Fisherface tries
to maximize the separability of the classes in the feature space.
In the recent years, ideas from Sparse Representation and
Compressed Sensing have been applied to face recognition,
where the representation is obtained by an objective function
that leads to sparsity [2] in an over-complete basis. The
representation over this basis is obtained using l1-regularized
least square approximation. The least square approximation
tends to reduce reconstruction error, while l1-regularization
gives rise to sparsity of representation. The test image is thus
represented in terms of a few basis images, and is assigned
a label of the class that gives minimum reconstruction error.
The approach has proved to be very effective and achieves
state-of-the-art results.

Motivated from the success of sparse coding, researchers
have developed various models for face recognition and other
applications [3]. One significant direction is learning dictio-
naries for reconstructive tasks such as denoising [4], [5] and
discriminative dictionaries for classification tasks [6]. Patel et
al. [7] and Zhang et al. [8] explained how the dictionaries
can be learned and applied for face recognition using sparse
representation. Sparse representation based face recognition
methods need a large amount of training data to have an

over-complete dictionary, which is essential to obtain a sparse
representation. The sparse representation is found to be dis-
criminative [2] as the non-zero weights are mostly at locations
corresponding to training images similar to a query image,
thus helping in classification. Sparsity, thus is the key for the
success of these algorithms, but this has a dependency on the
size of the dictionary.

However, in many practical situations we will have limited
number of training samples. For example, in automatic face
labeling/tagging of photo collections and albums, it is neces-
sary to recognize the faces with limited user-tagged photos
for a better user experience. Similarly, in scenarios such as
deploying a monitoring system for access control in factories
or attendance checks in classrooms, if we can work with a
couple of labeled samples that are already collected for other
purposes such as ID cards or employee registration, we can
avoid the costly phase of manual labeling of faces. Designing
an accurate classifier with limited labeled training samples is
the focus of this paper.

A possible solution to deal with the lack of labeled samples
is to learn a model using both the labeled and unlabeled
samples using semi-supervised learning techniques [9]. There
are attempts made to deal with lack of training samples.
In [10], self-taught learning was proposed based on sparse
representation, where a dictionary is learned using unlabeled
samples. Labeled samples are coded sparsely over the learned
dictionary and a classifier is learned using SVM. Projection
based methods, [11], [12], [13] have been proposed for face
recognition with few training samples. Roli et al. [11], com-
puted the eigenspace using the labeled samples. Unlabeled
samples that are closer to the projected mean templates of
each class are selected and augmented to the labeled set and
the procedure is repeated till all the unlabeled samples are
labeled. In Semi-supervised discriminant analysis [13], labeled
data was used to infer the discriminative structure of the data
while the intrinsic geometric structure of the data is inferred
from both labeled and unlabeled samples. Zhao et al. [12]
used an approach similar to [11] except that feature space is
computed using LDA.

In this paper, we propose a graph based multi-stage label
propagation algorithm based on sparse representation for semi-
supervised face recognition. In each stage, unlabeled sam-
ples are labeled using the label propagation algorithm [14]
and only highly confident samples are selected. We propose
a nearest neighbor based sparse coding (NNSC) algorithm
to obtain the graph weights. NNSC is similar to [15], [2]
and represents each sample as a linear combination of its
nearest neighbors (see Fig. 1). However, it is many times
faster than sparse representation based classifier (SRC) with
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Fig. 1: Overview of our proposed NNSC algorithm. Test
image is represented as a linear combination of its nearest
neighbors and assigned a label of the class which gives
minimum reconstruction error.

similar performance. In our representation, a connection is
formed only within a neighborhood for each node, while SRC
might give connections between far away nodes. We also
show an extension of our algorithm for out-of-class samples
using a classifier similar to SRC, which tries to minimize
the reconstruction error. The query image is assigned the
label of the class whose samples minimize the reconstruction
error. Experiments on AR and CMU PIE data sets clearly
demonstrate the superiority of the approach compared to the
existing methods.

II. SPARSE MODELS FOR FACE RECOGNITION

Given an image x ∈ Rd, along with an over-complete basis
or dictionary A ∈ Rd×n with d elements, n � d, the image is
represented as a linear combination of “few” elements of the
dictionary A. In other words, x is approximated as: x ≈ Aw,
where w is sparse and is computed as:

argmin
w
||w||0 subject to x ≈ Aw, (1)

where ||.||0 denotes l0-pseudo norm and indicates the number
of non-zero elements in w. Solving the above l0 minimization
problem is NP-hard and is usually done with greedy methods
such as Matching Pursuits (MP) or by l1-convex relaxation.
Dictionary A could be a pre-specified, such as wavelets or
training images itself [2], or they could be learned [4], [6]
using the following objective function.

argmin
A,w
||w||0 subject to x ≈ Aw (2)

Sparse representation thus could involve two tasks, learning
a dictionary, and finding a sparse representation over the
dictionary. However, when there are less training samples, it
may not be possible to learn a good dictionary that gives a
sparse decomposition for the training samples.

A. Supervised and Unsupervised Methods

We have a small set Xl ={x(1)l , x
(2)
l , . . . , x

(m)
l } of m

labeled examples with their labels y(i) ∈ {1,2,...,C} and a large
set of n unlabeled examples Xu = {x(1)u , x

(2)
u , . . . , x

(n)
u }. The

subscripts “l” and “u” indicate labeled and unlabeled images.

In unsupervised sparse coding methods, image is decom-
posed as a linear combination of a few elements of unlabeled
basis. Any image x can be represented sparsely over the
dictionary A, which is not labeled as shown in Eq. (2).
Dictionary A could be pre-specified or learned using training
images. These methods are suitable for reconstructive tasks
such as denoising [5], [4] or to understand the structure of the
data [10].

In supervised sparse coding, label information of the
training samples Xl is used to build models that will help
classification tasks. In this approach, an image x can be coded
sparsely over a dictionary A that is labeled as shown below.

argmin
A,w
||w||0 subject to x ≈

n∑
i=1

a
(li)
i .wi, (3)

where a
(li)
i s are basis elements belonging to class li. In

supervised methods, a discriminative basis can be learned such
that samples of each class is best represented by the basis
learned for that class [6], [8]. SRC [2] used a similar technique,
where a given query image is decomposed over a labeled
dictionary (training samples in SRC).

B. Semi-supervised Local Coding

When the number of training samples in Xl are limited,
semi-supervised methods that exploits the unlabeled samples
Xu to understand the structure of the data can be useful.
Unlabeled samples are abundant and easy to collect and better
accuracies can be achieved if they are used properly along with
the labeled training samples.

Sparse coding in general, requires large number of samples
whether in supervised or unsupervised mode. If the images
themselves are used as dictionaries [2], then a large number
of training images are required to make sure that it is overcom-
plete to ensure sparsity. Also, learning the dictionary using a
few images may not give optimal results. In such cases where
the number of samples is less, semi-supervised methods that
uses both labeled and unlabeled samples can be employed to
improve the classification performance. There are many semi-
supervised methods that are used in practice and the reader
may refer to [9] for a detailed survey.

III. SEMI-SUPERVISED LEARNING FOR FACE
RECOGNITION

We will consider an example to understand the scenario of
our problem. Assume that the training set consists of a single
image for each of the 100 subjects in the AR database [16].
We will use SRC [2], a popular and effective technique to
serve as a baseline. The first row of Fig 2 shows a query
(Fig. 2(a)) and the first ten training samples (Fig. 2(b)). SRC
correctly identifies the given query as belonging to the second
class, which is quite similar to the query. However, the query
in Fig. 2(c) was not recognized as class two due to the
significant expression difference. Now we increase the training
set by adding another example per subject that includes some
expression variation to the training set (see Fig. 2(d)) and
again use SRC to recognize the label of sample in Fig. 2(c).
This time SRC correctly identifies the sample. While this is
a specific case, the observations holds true across databases
as indicated by our experiments given in later sections. In
practical situations, when we have limited training samples,
supervised methods do not perform well as they are unable
to account for the kind of variations encountered in practical
situations. Semi-supervised methods can be employed in such
cases that uses unlabeled samples to improve the performance
of the recognition system.

We now look into the proposed semi-supervised face
recognition algorithm based on local sparse coding and its
extension to out-of-sample data.
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Fig. 2: Demonstration about the effect of lack of training
samples. SRC identified the (a) first image correctly but failed
to identify the (c) second image with (b) small dictionary
d1 (one sample per subject). Using (d) large dictionary (two
samples per subject), it identified both images correctly.

A. Transductive learning
Given a set X={x1, x2, .., xl, xl+1..xn} of training sam-

ples. xi ∈ Rd, i = {1, 2, .., l} are a set of labeled sam-
ples belonging to class {1,2,..,c} and remaining samples, xi,
i = {l+1, l+2, .., n} are unlabeled. The objective is to predict
the labels of the unlabeled samples and subsequently use them
to get a better representation of a novel test image to improve
the classification performance.

Construct an undirected graph 〈V,E〉 with similarity matrix
W, using both labeled and unlabeled points. Each node in
the graph corresponds to a face and the edges E represents
similarities between them. Large edge weights wij indicate
that corresponding nodes/faces are very similar. One could
use simple k-nearest neighbor method to compute the weights
where wij=1 if xi is among the k-nearest neighbors of xj
or vice-versa and 0 otherwise. Another option for similarity
measure is Gaussian function: wij = exp(−||xi − xj ||2/2σ2)
where σ controls the spread of the Gaussian function.

For face recognition, the above mentioned similarity mea-
sures may not be accurate as they are sensitive to illumination
and expression variations. Representing a face as a linear
combination of training samples is found to be robust to these
variations as reported in SRC. Such a method obtains better
weights to reveal the relation among different face samples.
However, SRC ignores the neighborhood information and thus
gives non-zero weights even for the far-away samples in the
process of reducing the reconstruction error. Inspired by (SRC)
and locality constrained linear coding (LLC), we propose a
nearest neighbor based sparse coding (NNSC) that considers
both locality and sparsity. In this representation, each sample
is represented as a linear combination of its nearest neighbors.
We use the NNSC representation to construct the similarity
matrix of the graph.

ŵi = argmin
wi

||xi −Bi wi||2 + λ||wi||2 s.t ∀k wik ≥ 0 (4)

where the columns of Bi are the k-nearest neighbors, N(xi)
of xi. We add a positive constraint since graph weights are
supposed to be greater than 0. We add a regularization term
inspired by CRC [17], which results in a representation that
is discriminative. λ is a Lagrangian constant that controls the
trade-off between the two terms.

Construct the matrix W ∈ Rn×n as:

Wij =

{
ŵi(p), if xj ∈ N(xi)

0, otherwise,

where i, j ∈ {1, 2, .., n} and ŵi(p) denotes the p-th element
of vector ŵi. Weights obtained by this method may not
be symmetric i.e wij 6= wji. We make the final weights
symmetric with the operation: wij = wji = (wij+wji)/2.
We normalize the weight matrix symmetrically as done in
the spectral clustering in order to ensure convergence of label
propagation algorithm as shown below.

L = D−1/2WD−1/2 where Dii =
∑
j

Wij (5)

Let F ∈ Rn×c be a matrix from which the label yi of
a sample xi, {i = 1, 2, .., n} can be obtained as yi =
argmax

j
Fij , where j = {1, 2, .., c}. For the labeled samples

xi, {i = 1, 2, .., l} we define Yij=1 if yi=j and 0 otherwise.
For unlabeled samples Yij = 0 for all j where j ={1,2,..,c}.

We assume that the label of a sample can be computed as
a linear combination of the labels of other samples with the
weights being computed through sparse coding of the sample.
We propagate the labels of the labeled samples to the unlabeled
ones using the constructed graph weights. Using the label
propagation framework, we let unlabeled samples receive some
amount of label information from its neigbours and retain a
part of its initial information at every iteration. The amount of
information it receives depends on the corresponding normal-
ized weights.

We begin the iteration with F (0) = Y , and for any t ≥ 1,
the labeling matrix F is given by,

F (t+ 1) = αLF (t) + (1− α)Y, (6)

where Y is the initial labeling of the samples and α is a
parameter that decides the amount of information a sample
receives at each iteration. It is well known from the label
propagation literature [14] that the above iterative method
converges to F ∗ = (1 − α)(I − αL)−1Y . The labels of
unlabeled samples can be predicted using yi = argmax

j
F ∗
ij .

B. Multi-stage label propagation
In the ideal case, each row of F ∗ contains a single non-

zero component corresponding to the true class. The ratio of
two largest components in a row in such case will be infinite.
However in practice, the ratio will be large only when majority
of the samples contributing to the reconstruction belong to
a particular class. We can use the ratio to measure how
‘confident’ is the labeling decision after the convergence of
label propagation. We propose a multi-stage label propagation
algorithm, where we select only highly confident labelings
after the convergence of each stage of the label propagation
algorithm. If the ratio of two largest labeling components of
a sample i in F ∗

ij ∀ j = {1, 2, .., c} exceeds a threshold,
the labeling of the sample is considered as confident. Such
samples are considered to be labeled for the next stage of
label propagation. We will show in our experimental results,
how this multi-stage approach gives a significant improvement
over single stage label propagation, especially when there are
very few labeled samples and the dataset contains large intra-
class variations.

Another advantage of this method is that we can reject
the samples such as outliers or out-of-database class images,
which might otherwise reduce the performance on test images.
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Fig. 3: Examples from (a) Yale (b) AR and (c) CMU PIE
databases. (a) and (c) have illumination and lighting variations
while (b) has varying expression and illumination.

C. Extension to Out-of-Sample data

The goal of any classification algorithm is to predict
the labels of novel test images correctly. To classify a test
image, we can use the reconstruction error as the criterion
for classification as done in [2], [17]. Given a test image
q ∈ Rd, its representation w over its k nearest neighbors,
Bq = [x1, x2, . . . , xk], is obtained using Eq. (4) (without
positive constraint). For each class i, we construct a function
δi : Rk → Rk which gets the coefficients associated with the
i-th class in Bq .

δ
(j)
i = ŵj if xj ∈ N(q); j = 1, 2, . . . , k (7)

where the non-zero entries of δi correspond to entries belong-
ing to class i from w. Test image is then assigned the label of
the class that minimizes the reconstruction error.

label(q) = argmin
i
||q −Bqδi||2 (8)

IV. RESULTS AND DISCUSSIONS

We use Extended Yale B, AR and CMU PIE (shown in
Fig. 3) data sets to carry out our experiments. We select the
error tolerance, e = 0.05 for SRC in all the experiments and
choose L1LS [18] l1-regularized least squares solver to solve
the minimization problem in SRC.

A. NNSC-LP Semi-supervised Method

Extended Yale B database [19] consists of 2414 frontal
face images of 38 individuals captured under various lighting
conditions. Each image is of size 192 × 168. We resize the
image to 80× 80. We randomly select half of the images for
training (32 images per class) and other half for testing. Few
images are shown in Fig. 3(a).

To create a semi-supervised setting, we keep the labels of
only few training samples per class (3 to 24) and remove the
labels for the rest of training samples. We select the maximum
number of stages to 10 and the ratio of two largest labeling
component F ∗

ij (first and second largest labeling component
) to 1 : 2.5. We choose k, that indicates number of nearest
neighbors in NNSC to 120. We use both labeled and unlabeled
samples to find the feature space using PCA. We select
the dimension of eigenface to 504 (to compare with results
reported for SRC), α = 0.9 and λ = 0.01.

For different trials, we keep the labels of 3, 5, 10, 16 and
24 training samples in our experiments and labels of rest of the
samples are removed. To measure the performance of multi-
stage method, test accuracy is calculated after every stage.
Fig. 5(a), shows the recognition rates of the test set after every
stage for initial labeled samples 3, 5, 10, 16 and 24. It is clear
from the figure that for every stage there is an improvement
in the accuracy.
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Fig. 4: (a) Number of unlabeled samples selected after every
stage on Yale and AR database for three labeled examples and
threshold ratio=1.5. (b) Effect of convergence and accuracy
for various values of ratio threshold on Yale database with
three labeled samples.
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Fig. 5: (a) Recognition rates on (a) Extended Yale B
database and (b) AR database vs. NNSC-LP stages for
varying labeled samples.

When the number of labeled samples considered are 16
and 24, gain in accuracy is not significant as there are enough
labeled samples already available. The significant gain in
accuracy can be observed for the trails with 3 and 5 labeled
samples where there is almost 20% increase in the recognition
rates that indicates the advantage of semi-supervised methods
when there are limited training samples.

Fig. 4(a) shows the number of unlabeled samples selected
after every stage for Yale and AR database with the ratio
of two largest labeling component F ∗

ij = 1.5 and 3 labeled
examples per subject. It is clear that, large number of training
samples are selected in the first few stages and hence larger
gain during these stages. These highly confident samples
selected in the first few stages will help in labeling the hard
samples in the later stages.

The selection of threshold ratio to select highly confident
samples is important for performance. It decides the growth
rate of labeled training set at every stage. There is a trade off
between accuracy and maximum number of stages as can be
seen in Fig. 4(b).

B. Comparison with Other Methods
AR database: We consider a subset of AR face data

base [16] consisting of 50 male and 50 female subjects. For
each subject there are 14 images with varying expressions and
illuminations. Each image is of size 165 × 120. We convert the
images to grayscale and resize to 80 × 80. Images are taken
in two different sessions. We select seven images from session
1 for training and remaining seven images from session 2 for
testing. Few images from this database are shown in Fig. 3(b).
We select the dimension of eigenspace to 504, α = 0.9 and
λ = 0.1. For SRC, we selected a eigenspace dimension that



TABLE I: Recognition rates [%] of various methods on AR
database for different number of labeled examples.

Method 1 Train 2 Train 3 Train
SRC [2] 54.4 61.2 65.4

CRC [17] 55.4 62.1 65.5
PCA self-training [11] 62.0 71.0 66.0
LDA self-training [12] 74.5 77.8 80.3

NNSC 59.4 61.6 66.0
NNSC-LP 79.5 81.4 82.6

TABLE II: Recognition rates on CMU PIE database in
(mean±std-dev%).

Method Unlabeled set Test set
Eigenface 25.3±1.7 25.3±1.6

Laplacianface 56.1±2.3 56.4±2.4
LapSVM [21] 56.5±1.6 56.9±2.6
LapRLS [21] 57.5±1.6 57.9±2.6

SDA [13] 59.0±2.0 59.5±2.7
LDA self-training [12] 84.5±9.5 71.3±6.5

SRC [2] 74.7±1.32 74.9±1.3
CRC [17] 74.9±1.41 75.1±1.32

NNSC 75.0±1.35 74.3±1.3
NNSC-LP 92.1±1.3 92.3±1.5

maintain a 75% overcomplete dictionary. We set the number of
nearest neighbors k for NNSC to 100, the ratio of two largest
labeling component F ∗

ij to 1 : 1.5 and maximum number of
stages to 10. We conduct three trials with 1, 2 and 3 labeled
samples. The recognition rates of the test set at various stages
is shown in Fig. 5(b).

Table I shows the comparison of our multi-stage NNSC-LP
accuracy with other methods. It is clear from the table that,
the performance of our NNSC-LP algorithm is superior than
other mentioned methods.

C. Single Training Image Face Recognition
CMU PIE consists of 68 subjects with 41, 368 face images

with varying illumination, pose, expression and lighting. As
reported in [13], [12], we choose a subset of only frontal faces
(C27) with only illumination and lighting variations which
results in 43 images per subject. The images are cropped
to 32 × 32. We used PCA to reduce the dimension of the
image to 504 and k is set to 50, α = 0.9 and λ = 0.01.
For SRC, dimension is reduced to 50 to have an overcomplete
dictionary. We set the maximum stages to 15 and the ratio
of two largest labeling component F ∗

ij to 1 : 1.5. For any
trial, 30 images are selected for training and remaining 13
are selected for test. Among the 30 training images, only
one image is randomly selected and labeled and remaining
29 samples remain unlabeled. The experiment is carried out 20
times and the results are averaged over 20 trials. The results in
Table II show superiority of our NNSC-LP algorithm compared
to other methods.

D. Effect of parameters: k, λ and α
We observed that the parameters λ and α affected the per-

formance of the results. For all the experiments, we obtained
best results with α = 0.9 and λ in the range 0.01 − 0.1. We
empirically selected the value of ‘k’ for NNSC. We found that
algorithm is not very sensitive to ‘k’ and a value of 100−200
seemed to work well in practice.

V. CONCLUSIONS

We demonstrate the effect of limited labeled training sam-
ples on the accuracy of sparse coding based recognition tech-
niques and how it can be overcome through a semi-supervised
approach. The proposed NNSC-LP algorithm accurately labels
the unlabeled samples and utilizes them for recognition. NNSC
combines the concepts of sparsity and locality. Unlike, SRC,
which uses l1 norm to get the sparse representation, NNSC
represents a sample over a few selected neighbors and thus is
faster. Experimental results clearly demonstrates the superior-
ity of the proposed method over existing methods when only
a few labeled samples are available.
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