Designing Perspectively-Correct Multiplanar
Displays

Pawan Harish and P. J. Narayanan
Center for Visual Information Technology
IlIT, Hyderabad, India

Abstract —Displays have remained at and passive amidst the many chan ges in their fundamental technologies. One natural
step ahead is to create displays that merge seamlessly in shape and appearance to one's natural surroundings. In this paper,
we present a system to design, render to, and build view-dependent multiplanar displays, of arbitrary shape built using planar,
polygonal facets. Our system provides high quality, interactive rendering of 3D environments to a head-tracked viewer on arbitrary
planar display shapes. We develop a novel rendering scheme that creates exact image and depth at each display facet. The
facets thus align exactly at boundaries without inconsistencies in comparison with existing methods. Our approach scales well
to large numbers of display facets. This is achieved using a single-pass rendering of all facets using a parallel, per-frame, view-
dependent binning and prewarping of scene triangles. The method places no constraints on the scene or display and allows for
fully dynamic scenes to be rendered at high resolutions using a single pass of rasterization. These are implemented ef ¢ iently
on the GPUs. A general realization of our system envisions a display of an arbitrary shape built using polygonal facets. The
display is driven using one or more quilt images into which the the pixels are packed. We present a few prototype displays to
establish the scalability of our system to different shapes, form factors, and complexity: from a cube made out of LCD panels to
spherical/cylindrical projected setups to arbitrary complex shapes in simulation. Performance is shown in terms of both quality
and rendering speeds of our system for increasing scene and display facet sizes. A subjective user study is also presented to
evaluate the user experience using a walk-around display to a at panel in a game-like setting.

F

Index Terms —Non-rectangular displays, sh tank virtual reality, a- ~ CAD simulations. With the advent of powerful computing
bitrary shaped displays, 3D visualization, view-dependent rendering, methods, real-time3D content capture and creation is
fast culliung, user interaction. now possible [1]. As a result much work has gone into

understanding and improving interaction wiBid content

on displays. Virtual reality, haptics and computer human
1 INTRODUCTION interaction all deal with the centeral idea to seamlessly

transition from the real to the virutal world. A necessary
Displays have transformed rapidly over the past few yeaggtension of this paradigm should include displays that
and have become a common occurance in our day to dagamlessly merge with the world and are natural to view
life. They have evolved from the basic CRT to displayand interact with. The goal of such a display is to blur
based on cheaper and better technologies such as L@ boundary between real and displayed objects. This
Plasma, OLED, DLP etc. These technologies have imetion has two parts: (a) the display itself being part of
proved various aspects of a display system, including powe viewer space and (b) content displayed on it being
consumption, color gamut, vertical refresh rate and pixatcurate depictions. If the shape of the display is arlyitrar
resolution amongst others. The shape and planarity ofttee rst part of the notion is resolved. The display can take
display, however, have not changed. Displays still remairsthape of any object in the user's surrounding. Rendered
at, inactive and rectangular stand-alone windows feedingnages on such a display must also be accurate such that
images to an observer viewing it. This passive viewinthe depiction agrees with the natural perspective of the
platform has restricted displays in many ways. These imiewer. Interaction must also be retained along with qualit
clude non-intuitive interaction, lack of focus+contextdanrendering to provide a consistent view of the virtual world.
lack of three dimensional viewing to name a few. A few
attempts have been made to address these issues in relzenhis article, we present a framework to design, build
times. Most notable are the introduction of touch screemsid render tanultiplanar displays which are built out of
and computer human interaction methods which attemptratiltiple polygonalfacets We show prespectively correct
making displays more active. 3D on to such a display to a single head tracked viewer.

In effect, our framework extends sh tank virtual reality

Simultaniously, much work has gone into capturing an ; .
creating3D content. A bulk of content shown on displaysg:TVR) displays to generic polygonal shapes. Our system

todav is three-dimensional. ranaing from games to com Iscales to arbitrary shapes, which sets it apart from other
y - ranging 9 PRrVvR displays which are limited to a few number of facets.

harishpk@research.iiit.ac.in Rendering to FTVR displays has a tradeoff bgtwgen achiev-

pin@iiit.ac.in able quality and the number of facets. Projective Texture




Mapping (PTM), has been shown to produce FTVR effesiew the literature related to these in this section, segjesl
on any surface, albiet suffers from quality degradation [2lhto multi-surface displays, FTVR displays and rendering
Off-axis rendering can produce quality images at highéo FTVR displays.

rendering costs, however, suffers from depth artifacts [:jil . . _ . . )
We present a novel rendering scheme that produces corféifitisurface Displays: Multiple display panels using

images on and across facet boundaries, generating a éBp_nitors or projected §urfaces havc_a been usgd to _increase
lective view of the virutal world. Our rendering scheméiX€l resolution for various applications [4]. Tiled diapl
produces artifact free images as shown in comparishfllS using LCDs or projectors scale this to extremely
with existing methods. Rendering cost is reduced usiftigh resolutions [5], [6]. Display walls allow focus and

a novel parallel binning of scene triangles to the displdgPNtext 1o be achieved simultaneously [7], which is also
geometry implemented on commodity GPUs, whcih helpi’s':h'eved using non-tiled arrangements such as displaying

the system scale to arbitrary display shapes. To reduce fh&igh-resolution focus window within a lower resolution
rendering load we render all facet images in a single pac@ntext [8]. Non-planar arrangements of displays have also

of rasterization, generating a quilt of all facet imagesahi P€€n explored, an example is the sh eye view generated

can be un-mapped to the display geometry either usitf§ind multiple projectors projecting on to a dome using
multiple VGA outputs or using specialized hardware. OJf*ture mapping [9], [10]. Bimber et al. [2] extended
system is implemented on commodity GPUs and can scl¢ WO pass texture mapping approach to any surface
to display shapes consisting of well over a thousand facet§ing Stéreoscopic projection. Raskar et al. modied ob-
Our design provides both quality and interactivity needed |6Ct @ppearance for any given geometry in [11], which is
many applications such as medical visualization, comput&irther enhanced in using multiple projectors to creaté-hig

aided design, simulations and games. The framework cdfSolution appearance editing [12]. Such advancements

tributes (a) a system to drive a generic multiplanar displdj?ve SPawned much work in auto-calibrating systems for

through one or more rectangular quilt images which cemu'ti projector qisplays [13], both in term_s of color and ge-
be generated by standard graphics systems retaining p&g]etrlc corrections. O'ther non-planar displays that enabl
density, (b) a method to correctly render images to a set $€"S to interact with information content from all an_gles
arbitrarily oriented planar shapes to provide a perspelgtiv '2ve also been showcased [14], [15], [16], [17]. Multisur-
correct view across facets boundaries (the image as w&fe displays usually show information with multiple parts
as the depth buffer are correct, guaranteeing consist@htthe display showing different data. Single or multiple
views on facets), and (c) a scalable, single-pass renderlfgfrs can interact and share the same display using touch
mechanism that sorts the scene polygons to display fac8EStures. Multisurface displays provide novel interactio

in parallel and prewarps the scene, enabling renderidgd @Ppearance onto arbitrary shapes, but are limited to
of all facets in a single pass of rasterization. Interactii/0 dimensional or information content.

rendering .rates gnq correct facet rendering are the guidipgyR Displays: FTVR displays have extended multisur-
concerns in designing our system. Our system is capall@e gisplays to render volumetric data for one or more

of rendering fully dynamic, deformable, triangulated 2N o 51 tracked viewers [18]. An early immersive implemen-
containing ove20 triangles to a display shape consisting,tion is the CAVE virtual environment [19] that uses

of over1600facets aBSHz_. The setup uses a single NV_idiafour back-lit projection planes enclosing the viewer. View
GTX580 GPU for rendering and also for parallel Sort'”g'dependent images are displayed on the projection screens

The rest of this paper describes our framework. Sectionb¥ tracking the viewer's head. Stereoscopic projection is
presents the related work covering similar technologiésed to further enhance the experience. Recent FTVR dis-
to the one presented in this article. Section 3 providé$ays include Cubby with three back-lit projection screens
the detailed implementation of our system. The overadnd a head tracker for a small closed FTVR environment
system design is presented followed by rendering aff@gt allows interaction with virtual objects using preorsi
quality evaluation as compared to other rendering metho@9ls [20], [21]. By inverting the facets of a CAVE, with
(Section 3.1). Scalability to arbitrary shapes is presentéhe facets of the display pointing outwards, Cubee creates
in Section 3.2. We validate our framework using several Walk-around cubic FTVR display [22]. PCubee enhances
prototype displays, using LCD panels, projected setups aftés to @ hand-held display coupled with a motion sensor
synthetic simulated scenarios in Section 4.1. In Secti@n /nd a head tracker [23]. The display can then be moved
we evaluate the individual aspects of our pipeline in tern@ound and observed from any angle. FTVR displays are
of rendering speeds. We also present a user study showdiRited to small number of facets, usually a cube, due to

ing the utility of an arbitrary shaped walk-around displajncreasing rendering load as the number of facets increase.
in Section 5. Iwata implemented a non-cubic, rhombic dodecahedral dis-

play using projectors to cover the full solid angle [24].

2 RELATED WORK Rendering 3D Content To FTVR Displays Off-axis
rendering is used to render 3D environments to FTVR

Our work is related to multiple previous works includingdisplays. Deering proposed accurate head tracking along

multiplanar, non-planar, curved and FTVR displays. We ravith stereo image pair generation for a single display



[25]. This was extended to multiple planes in the CAVE CO/ y| View Dependent View Dependent
virtual environment [19]. The method renders each fac | bynamic scene Triangle Sorting Rendering
using an off-axis, _asymmet_ric frustum_to cover_the disple $ R <> ‘ ::/;ecv;[:_\’eg:;;?nné ‘
rectangle. Rendering load increases linearly with the nur | pispiay ceometry % y Dopth
ber of facets. The method, though extensively used, c %‘Qggg}ﬁ?ge Correcting
produce geometrically incorrect images at the periphery | ™" —W Per Facet VBO Shaders
the frustum for an outside-to-inside display con guratiot Predefined Image

as discussed in Section 3.1. Correct view can be produc . Mapping Ul image N l
using ray-casting at every pixel for any given displa X Al il 2

shape albeit at high costs. Hou et al. proposes a mu
perspective rendering method for any given surface [2¢
Though not intended for FTVR displays it can be extende
and employed for the same. The method is implemented
GPUs using appropriate shaders and can handle dynal
scenes. It, however, interpolates barycentric coordiat

per pixel and requires back projecting of rays at everI¥ig. 1. The multiplanar display system. Top: Rendering

pixel - which translates to per pixel raycasting and '[husI eline. Bottom: Driving the displav usina auilt images
slows down the rendering speed for large scenes. Anot/he? ' | 9 play 94 ges.
alternative is to use homography pre-warping to render to
Eg\t/h% ddipé?é/:\tgza?]p‘)o[éﬁ]é d(r?alljr\/vglrlf-vallcr)gjn(\;vcézléprasyefzégn e ren(_jer_ed and the user location. The sy_stem generates
scalable culling pipeline is required to feed FTVR rend@ri.n € quil images based on the user 'OC‘?‘“O” and sends
methods if arbitrary number of planes are to be used ianese to_the d_|spla_1y hardware for un-mapping. The process
display con guration is descrlbed_ in Figure 1. _As the rst stepZ the scene is
' sorted to display facets in parallel (Section 3.2). This
helps scale our rendering mechanism to arbitrary shapes,
3 MULTIPLANAR DISPLAYS reducing the rendering load per facet and retaining inter-
activity of dynamicaly changing scenes. Next, the scene
We describe the design, scaling and the rendering to mig-rendered using facet-speci c homography and per-pixel
tiplanar displays in this section. A general multiplanas-di depth correction, which guarantees a consistent, arfifeet
play is piecewise planar, consisting of a number of polygiew of the scene on the display (Section 3.1). A pre-
onal facets forming the shape. For instance, one's persomarping based quilt image generation facilitates singlesp
workspace or desk could be a multiplanar display wittendering (Section 3.2.2). The system is implemented using
horizontal, vertical, and slanted facets. In our desiggcheaCUDA GPUs, which perform both the parallel sorting and
display facet is built using an LCD panel, microprojectar, arendering in a single pass of rasterization. The presented
a suitable display mechanism and can show stereoscopic@peline generates quality views from the user's perspecti
based on the technology used. A standard polygonal meathinteractive frame rates and can also be used for an inside-
model describes the display geometry in our scheme, withroutside display con guration such as the CAVE.
any number, shape, and size of facets. Each pixel of the
display is addressed using a three-dimensional coordinate
(f;i;j ), wheref is the facet id, ranging froml to the 3.1 Accurate View Dependent Rendering
number of facets, an;] ) is the pixel id within the facet.
Facets can be controlled independently using a graphiesthis section, we describe a novel scheme to render to
channel for each. This, however, does not scale well moultiplanar display facets. Our scheme generates quality
a large number of facets. Multiple facets can be drivdmages per facet without artifacts, eliminating incoresist
together by assigning a mapping from each facet to cies across facet boundaries. Quality comparison withrothe
rectangular quilt image, generated by a single graphitggndering methods is also presented.

icmh:nggl. 5’;’" ts e?:;engitelzni?n farg?/tegiﬁl:tlggr ';tﬂeﬁglet:jpl(eﬁqﬂ'r&iven the viewer position and a look-direction, a symmetric
ges g y P 9ULEstum about the view direction preserves maximum detail.

1) Un-maping of facet images given the quilt image @R virtual viewer cameraC, can be assigned to the viewer

be achived using multiple VGA outputs or specialize . . : )
: . or generality. The position of, is tracked and known in a
hardware. We consider the un-mapping to be a part of the . .
. . . . _common frame of reference to that of the displayi&ual
display hardware. This scheme ensures quality rendering on . o .
view planenormal to the view direction passing through

display facets as the facet resolution dictates the size A center of the display can also be assumed without loss

number of quilt images needed and not vice-versa, thu§ . - .
- . ) of generality, as shown in Figure 2. The view-dependent
mentaining pixel density on each facet.

virtual plane intersects multiple facets of the displayclta
The inputs to our system are the display con guratiofaceti can be assigned a facet cam&a its imagel; can
(as a mesh model), mapping to the quilt image, scenett®en be related to the viewer camera imageby a3 3

i
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Fig. 4. Graphics pipeline with canonical space. The
perspective division and viewport scaling stages only
modify the scale of the point in canonical space.

facet image as pixels ih, may not map to any pixel in
C, li, and may require additional interpolation to Il. The
homography is also not af ne, i.e., its last row is not of
the form[0 O 1] This produces an arbitrary homogeneous
Fig. 2. Viewer camera C, viewing the display and the ~scale factor per pixel, removing which warrants per pixel
virtual plane passing through the center of the display. normalization of the facet imagé¢;. These problems can

C., C,, C3 are cameras corresponding to each display be solved by integrating homography into the rendering
facet. process to perform interpolation and pixel normalization

using the graphics pipeline.

Cs

The homography can be equivalently computed and used in
the normalized device coordinates, canonical space, since
li =Hy ly; 81 #acets (1) the relative positions of pixels do not change after it in
" ) . _the graphics pipeline (Figure 4). This avoids pixel normal-
Each visible facet will have such a homography relating i{S,4ion and interpolation since the perspective divisiad a
image to the V|rt'ual plane. Rende.nrhg_coHeCtlvel.y USING yjiewport scaling stages follow the canonical space in the
the above equation produces the illusion of the image lying, jics pipeline. This idea was outlined in the context of

on the virtual plane when observed frofy. To ensuré ., ection of an off-axis projection by Raskar [28]. The
exact rendering, we rendéy such that the appearance an‘f.l)rocess of transforming a scene paiito the faceti can
depth corresponds tG, at every visible pixel. now be given as

homography matrix as given below [30].

Computing Facet Homography Given the rotation matrix
R and the translation vectdr betweenC; andC,, normal

n, distanced of the virtual plane, and intrinsic parametergyhere Py represents perspective division transformation

Ki andK of the cameradij, can be computed directly asand v the viewport transformationP and M, are the

Hy = Ky[R  TnT=dK; *[30] (Figure 3). We compute projection and modelview matrices of came@a.

the homography for each facet independently in each frame . )

based on the viewer position. Homographies are compute§Pth Correction: Depth values at pixels may go out

in parallel on the GPU from known information abodg  Of the canonical space range of ;1] using the above

andC; using a thread for each facet. scheme. For a poinfXc; Yc;Zc)  MyX in the camera
frame when multiplied by projection and homography

Facet Homography in Canonical Space Facet images, matrices, the effect can be understood as follows:

I;, can be generated by applying the homography to the 2 O3 2 2 3 2 2 3

viewer image,l,. This approach has its limitations. It is XO hi1 h12 Ohyg_lx A 0B 0 X

an expensive per pixel operation and requitesto be §YOZ_ ha1 hao 0h23§:yé:|-|§0 CD YCZ 3)
z z

available ahead of time. It can also produce holes in the 40 010 00E F3Z¢
W0 h31h3201 lw 00 10 1

li = VPgHy PMX; (2)

The matrix to the left of X ¢; Y¢; Z;) is a standard OpenGL

Observing plane projection matrix. The nal depth valug®=wP after apply-

Distance ing the homography may not lie in tHe 1;1] range as
dfrom C; I,  z° (depth without homography) belongs fo 1;1]
’ ‘ S andw?is now a function ofix andl,. Uniformly scaling
& ; the depth by a-scale factor less thahcan bring the depths
Normal n in A within range, but will not guarantee correct ordering. This
C; Frame N can lead to poor depth resolution and push through artifacts

) \/ ) as seen in Figure 5(a). Raskar [28] suggests a scale factor of
Camera C, Camera C, (1j haijj hazj). This reduces the depth resolution and can
[RIT] to Camera C; suffer from near plane clipping. Multiplanar displays can

Fig. 3. Computating Homography transformation be- have serious artifacts at facet junctions using this method
tween two cameras. as shown in Figure 5(b).
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(a) Scale< 1 (b) Raskar (c) Our method

Fig. 5. The depth problem: comparison of approaches.
(a) depth errors due to reduced z-range at eye, lip and

ear. (b) error due to near plane clipping artifacts. (c) our ) ) )
method without artifacts Fig. 6. Top view of CAVE and multiplanar display

setups with off-axis frustas. The view angle is large for
multiplanar display using this approach.

The depth buffer for each facet will have the same depth \
from the viewer camer&, . The depth resolution is exactly
same on all facets, ensuring uniformity at facet junctions

We change the depth of each pixel in a fragment shade®
which has access t2°. The Z values of the vertices are (a) Off-Axis (b) Our method

sent by the vertex shader and are interpolated to nZake Fig. 7. Comparing off-axis projection with our render-

available at each pixel. The shader computes®s a ratio g scheme. Scene consists of two proximate rectan-
of these two and sends it to the framebuffer. Figure 5(E;]es and a push-through sphere.

shows the correct image using our scheme. Early-z culling

is avoided by setting a constant depth value df at all

vertices. Rasterization is not affected by this and theezrr Of our system. It produces an intermediate image which is
depth values are computed later by the fragment shaddapped to multiple facets using interpolation. This cad lea

Algorithm 1 outlines the vertex and fragment shaders us&yduality degradation due to image re-sampling. A detailed
in our rendering scheme. visual comparison with Projective Texture Mapping can be

found in the Appendix at the end of this article.

The problem can be solved exactly by setting the dep
values at each pixel as

2[ L1k (4)

N

Algorithm 1 Depth Correcting Shaders

Off-axis rendering [25] has been the rendering mechanism

1. f Vertex_Shader(V)g _ for FTVR based displays like the CAVE, Cubby, etc. The
2: Perform xed-pipeline operations _ method renders each facet using a view plane parallel to
3: Compute camera space vertex coordinates the facet using oblique frustum boundaries (Figure 6). The
4: SendV; to pixel shader with interpolation rendering is not geometrically correct due to depth errors.
5: Setz coordinate of output vertex asl Depth for each facet varies with the viewer location and is
6: not consistent across facet boundaries. Akeley and Sutrepor
7. f Fragment_Shader(V)g _ that the error increases linearly with the angle of view and
8: Perform xed-pipeline operations for color is particularly large if the scene resides in corners of the
9: TransformV to canonical space Ak frustum [3]. In a display con guration like the CAVE, this
10: Set depth as the ratio af coordinate ofV and V. angle of view is small and errors are rarely visible. In an

outside-to-inside con guration, the scene always resides

one corner of the frustum and the angles could be large
3.1.1 Comparison with Other Approaches (Figure 6). This results in visual artifacts that can be seen

across facet boundaries. Figure 7(a) shows the rendering
We compare our rendering scheme with alternative methoafstwo proximate planes using off-axis rendering. Depth
used to render to FTVR displays. The goal of our systemésrors can be seen as opposed to our rendering scheme
to provide quality rendering at interactive frame ratese THFigure 7(b)). Figure 8 shows depth variation for various
comparison thus focuses on quality, both on the facet amthods across a facet boundary for a scene consisting
the combined effect from the user's perspective. Off-axisf a single line. We see that only our method ensures
rendering renders the scene directly to the facet and theensistent views at the junction of two facets. Multiplanar
is capable of producing quality images. It is the primargisplay rendering to arbitrary display shapes requires thi
alternative to our method. Projective Texture Mappingroperty to avoid artifacts. Correct image and depth at each
(PTM) can also be used to generate a similar effect to tfacet ensures quality rendering needed for visualization
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Fig. 8. Comparing depth buffers for various ap-
proaches at the boundary of two facets. Note no sud-
den change in depth values for the shader approach,
ensuring continuity at facet boundaries.

Fig. 9. Triangle sorting based on per vertex raycasting

divide our sorting into two passes based on this observation
pe rst pass handles the rst case while the second pass

applications. The rendering load for our scheme is minim . ) .
eals with residual triangles.

as evaluated in Section 4.2, Figure 19.
Pre-Processing To reduce the number of tests performed
per ray, we pre-process the display facets into a statieectr

3.2 Scaling to a Large Number of Display Facets structure, with each octree leaf assigned facets it intéesse
. spatially. We use a depth lev@lwith 512leaf nodes, stored
Current FTVR rendering methods need to render the sceggean array in the GPU shared memory for fast access [31].

N . “Teaves only.
We propose two load balancing ideas to aid our rendering y

scheme in this section: (i) A parallel scene sorting alfanit First Pass The rst pass assigns a facet id to triangles
which sorts the triangles of the scene to the display faceigsed on facet ids of its vertices. Each triangle gets asgign
quickly on the GPU per frame. (i) A rendering scheme that single facet id if all its vertices have the same facet id, as
renders the quilt of multiple facet images in a single passown in Algorithm 2. The scene triangle id and its facet id
of rasterization. These can be combined with our renderigge stored as a tuple in a temporary array TFID on the GPU,
mechanism to achieve real-time rendering of fully dynamighich is later used to bring all triangles of a facet together
scenes for displays consisting of thousands or more facetsr typical scenes, this pass assigns facet id80& to
Methods based on spatial hierarchies have been showrpt®s of the total scene triangles. The remaining triangles
cull the scene to reduce the rendering load per facet but &igve different facet ids at their vertices and undergo the
hard to extend to dynamic/deforming scenes due to thelcond pass. Figure 11(a) depicts triangles passing the rs
static design. Because of our parallel design, our methggss for the Bunny model on a spherical display.
outperforms spatial hierarchies as reported in Section 4.2

Algorithm 2 First Pass

3.2.1 Visibility Determination and Triangle Sorting 1: tid  GetThreadID () fthread id = triangle idg

] 2: count size of(TFID)
We sort the geometry of the scene at the triangle levels. it for all verticesvid of triangletid, facetid [vid] is
with triangles of the scene sorted in parallel to respective ggmethen
facets of the display per frame. This provides exibility to ,. TFID[count]  (tid; facetid [vid])
our system in handling dynamically changing scenes. Thg.  count count + 1
parallel implementation also scales well to a large numbeg. ang it
of display facets. Per vertex ray-casting implemented on
the GPU is used to achieve this in real-time. Figure 9
shows our sorting approach for a large humber of facets.
A ray is shot from the viewer location to each scene
vertex. The intersection of the ray with a given facet of the

display determines its facet id. The information is stored ‘

on the GPU memory in a temporary arrgacetid. Three & \
situations can arise from per vertex ray casting as shown i ) — - _
Figure 10. In most scenes, cabgields maximum number o™ S S tange . have aiferent fatetids

of triangles. The second and third cases yield fewer number . _
of triangles, but require more expensive computations. \f@d- 10. Cases occurring from per vertex ray casting

Display Facet




Algorithm 3 Second Pass Kernel Algorithm 4 The Scene Sorting Algorithm

1: tid  GetThreadlID () fthread id = triangle idg 1: for all scene triangles in parallelo
2: count size of(TFID) 2:  Perform the rst pass
3: Project scene triangle using Viewer Caméra 3: Compact triangle ids that failed the rst pass
4: for all facetsfid 2 Emulated Octree Nodedo 4. Perform the second pass
5. Project facefid using viewer camerg&, 5. Store scene triangle-display facet pair in TFID
6: if triangle-facet intersection [32] OR projected facet6: end for
lies inside projected scene trianglen 7: Split TFID using display facet as the key
7: TFID[count] (tid;fid ) 8: for all entries of TFID in paralletlo
8: count count+1 9:  Copy scene triangle data to display facet id VBO
9: end if 10: end for
10: end for

3.2.2 Rendering the Quilt Image for all Display Facets

Second Pass The second pass examines all triangles that

remain (Figure 11(b)). In this pass, scene triangles ahd this section we describe a method for reducing the
display facets are projected using viewer camera, and a faget image rendering load for a large number of facets.
triangle-facet intersection test is performed usingllgt's Rendering to each facet independently requires a setup
procedure [32]. Overlap test shown in c&sef Figure 10 is Phase of the graphics pipeline. This overhead can increase
also performed. Facet ids are assigned to the triangle if a#igni cantly as the number of facets increase. For speed, we
of the tests are positive. Multiple facet ids may be assigné@nder all facet images in a single pass of rasterization. A
to a single triangle during this pass. Each such trianglFade-off exists between the required resolution and numbe
facet ids tuple is added to the TFID array. Algorithm ®f rasterization passes, as high facet resolution canteicta
summarizes these steps. We also reduce the work ddaget packing into multiple quilt images — each requiring
by the GPU for the second pass of the algorithm usiry Separate rasterization pass. An optimal packing is thus
thread compaction [33], ensuring only as many threads dtéeded to utilize the quilt image space ef ciently.

executed on the GPU as the number of residual trianglelgrom Equation 2, we observe that each display facet has

The TFID array holds the triangle—facet id tuples for aft different projection matrix Hy P). The difference in
possible triangle-facet intersection cases after the rekcd’rojection matrix warrants independent rasterizatiotiireg
pass. We bring all triangles belonging to a facet together Bjfeépendent viewports and projection matrices for each
performing a split [34] operation on TFID using the facet id@cet. This can slow the rendering as the number of facets
as the key. A kernel runs over the length of the split TFIfficrease. We can avoid this by pre-warping each paint
array and copies the scene triangle data to the indepencfé’ﬁ_te?‘Ch fac_et. The mapping for a facet imaigen the
VBOs per facet in parallel. VBOs thus created undergdHilt image is a xed 2D transformation (Figure 1). Let
the rendering process reported in Section 3.1 to produfe denote this in the canonical space. The poniper
accurate views for each facet as shown in Figure 11(&gcet is modied by the facet-speci ¢ quilt image mapping
with colors indicating different facet ids. (Yi), homographyKii, ) and the projection and modelview
matrices PM,) to fY;H;, PM,Xg. This modi ed point
The Scene Sorting Procedure The overall sorting proce- can be thought of as a point in another canonical space with
dure is described in Algorithm 4. Our algorithm increaseigss modelview and projection matrices set as identity. The
the number of triangles to be rendered, replicating triengpoint in this space depends on facetijcout the pipeline
data to facets in which they appear during the second pass,
but this increase is small in practice and emperically the
rendering is faster than both spatial hierarchies and inc
pendent rendering for each facet as reported in Section z«‘;,;:':;ﬁ"
An average increase @ 5% is seen for the number of % /- i
triangles. ’

A
AAAAAARANT

(a) Scene in Canonical Space (b) Rendered Quilt Image

(a) First Pass (b) Second Pass (c) Rendering Fig. 12. The canonical space triangle separation and

) ) ) _ the corresponding rendered quilt image
Fig. 11. The stages of our triangle sorting algorithm



parameters are same for all facets. This enables the sar CPU GPU
rendering pipeline to render all facets to the quilt image in Update Model VBO P| Dynamic Model VBO
a single pass of rasterization using Update » Compute Parallel H,

Viewer Location
# fXCEtS Parallel Sorting

Quilt = VPgly,Ip YiHiy, PM,fVBO;g; (5)
Transformations

i=1

oo o

Rendering Quilt Image
Depth Correcting
Shaders

where V is the viewport for the quilt imagePy the
perspective division stage ang,, andlp the modelview
and projection matrices respectively set to identity.

A vertex X in the list of faceti can be pre-warped to
YiHiy PM, X after the scene sorting stage. The facet VBOs h‘

created at the end of the sorting phase are thus modi e Facets

while copying the data from the TIFD array. Figure 12(a)

shows such a transformed scene in the canonical spdcig. 14. The Overall Rendering Process

with colors indicating facet ids. It can be seen that VBOs

deform under these transformations. However, projectinge cost low. Our setup allows us to render scenes with
them to the quilt image generates the correct image QgL 15 200K triangles in real-time to a display made up of
facet as shown in Figure 12(b). For a display wit00 5 5 1600 facets on current generation GPUs. For larger

facets, al5 20%decrease in rendering time is seen UsiNgeenes the framerate drops to below interactive rates as
this method compared to setting up the graphics pipeliagown in Figure 21. Multi-GPU solutions can be used

for each VBO at the same facet resolution. to enhance the speed in such cases, as the problem is
parallel-friendly. Distribution of the quilt image to phgal
3.2.3 Packing Facets Into the Quilt Image facets can be done using appropriate electronics in the

display system [23] or using a system with multiple display
Facet packing transformatioM; is a 2D transformation channels and coordinated rendering. We use VGA outputs
matrix per facet that maps a facet image to the quidind texture mapping for our prototype diplays.
image. This can be done without any interpolation using
equal number of pixels in eacty; differs from texture
mapping as a result. Optimal packing of polygonal shapds DISPLAYS AND PERFORMANCE
in a 2D plane is an NP hard problem [35]. We can use a
heuristic packing arrangement that attempts to utilize th@ this section, we describe prototype displays that we
qui|t image space Optima”y_ This is a preprocessing St&bli't and simulated to validate our multiplanar dlsplay
done while designing the display con guration. A Simp|éframework. We also give performance results for different
packing algorithm would be to assign a bounding rectangi@rm factors comprising of varying number of facets and
to each facet polygon and pack them in a linear order acrd¥éentations along with scene complexity to study the
the dimensions of the quiltimage, as used in Figure 12. THi§alability of the framework across different factors.
scheme may not utilize the image space ef ciently. Better
packing using a BFS tree can be used to generate a tighter |
quilt image as shown in Figure 13. 4.1 Display Prototypes

Building a multiplanar display of a general shape requires
engineering at the display device level that only a dis-
play company can undertake. The objective of considering
different prototypes is to establish (a) the generality of
the multiplanar display framework, (b) the correctness of
displaying 3D information using our method on challeng-
Fig. 13. Display as seen from user's point of view and ing display con gurations, and (c) the scalability of the
its facet packing into the quilt image using a BFS tree  approach to arbitrarily large displays. We use three types
of display prototypes for this. Examples showing dynamic
three dimensional scenes and information on our prototypes

3.3 The Rendering Pipeline can be found in the accompanying video.

Figure 14 describes the overall rendering process for ogn 1 | cD based Setup

multiplanar display system. The scene being displayed can

be completely dynamic since triangle sorting and VB@Ve prototype a cube display using off the shelf LCD
creation takes place every frame. We can use one or mpamnels with up tdb display facets located around the cube.
commodity GPUs for the processing and rendering, keepififpe prototype is similar to the Cubee [22], but uses our



Fig. 15. LCD based display showing various static and
dynamic scenes

rendering scheme as opposed to off-axis rendering. T
display follows our rendering process with facet mappin
achieved using VGA outputs. The cube is setup by loose
placing LCD panels in the desired con guration. Off the
shelf LCDs are used to construct the display shown
Figure 15. We can take a xed geometry le to specify the
display or infer it using a calibration step. Viewer locatis
tracked using an infrared based head tracker, TrackIR5 [3
intended for use in gaming applications. With a refresh rate
of 120Hz the latency is minimized and the location of the
viewer is given within an error o5 10%

Calibration: We calibrate the cube using a simple pro- o ] )
cedure based on ARToolkit [37] markers. We establigiid- 16. Projection Based setups showing various
transformations from an origin marker to facet marker2c€nes on sphere, cylinder and desktop form factors

using a camera. This helps recover the plane of the display

and its center point. Combined with the display dimensiongilt image rendering and depth correcting shaders. The
the facet's corners are now fully known. The cube can hfverse mapping stage is absent as there is no hardware
calibrated in less than a minute, with no SpeCial hardwa[m_mapping for these setups. We rep]ace this step with
or equipment. The procedure can be easily extended tqefture mapping to generate the nal output. It should be

general polygonal display. noted that though we use texture mapping in these setups,

Brightness Correction: Brightness/color correction is an@ Physical display will not require this, as images will be
important issue for tiled display setups [38]. For LCDS@rectly mapped to facets. '_I'he.overall dlsple_ly resqlutmn i
intensity and colors fadeout with increasing viewing anglé/S affected because of this, since the nal image is thW“
We use a simple method to compensate for this; we charifand an off-the-shelf projector, of which only abot%

intensity of pixels based on the dot product of the fac&*€ls lie on the given shape.

normal and the view vector with maximum intensity airo maintain the resolution quality, as if built using LCD

visual experience. quilt image resolution of64M pixels (maximum texture

Hardware Details of the 3D Cube We used a PC with Sizé supported on current GPUs). This can be further

two Nvidia Quadro FX5600cards to drive al-panel cube improved by changing facet mapping and using more than

display. The display supports anaglyphic stereo displ&€ rasterization pass.:l’hese prototypes are mtended to
and monoscopic walk-around display. Shutter-based ste onstr_ate the scalability of our system to various fqrm

using Nvidia 3DVision glasses can be built using highf_actors_ with large number of display f_ac_ets and to prowgle

frequency LCDs as the GPUs are genlocked. The LCH§ estimate of system performance if implemented using

have visible and thick borders, which affect the quality JfroPer electronics. Figure 16 shows projection based setup

view. However, the display areas are modeled correctffiSplaying static and dynamic scenes on spherical (840
Thus, the borders appear like supporting bars of the b ets), cylindrical (216 facets) and desktop (816 facets)

in which the object is kept (Figure 15). form factors.

4.1.2 Projection based Setups 4.1.3 Simulated Display Setups

Since LCD based curved surfaces consisting of thousantfe also demonstrate rendering to display surfaces that may
of facets are hard to physically implement, we show thge concave or self intersecting using simulated setups. For
scalability of our system using projection based setuphese setups we render to facets using our pipeline, map
These setups use our pipeline to generate the quilt imape rendered images to the display geometry and observe
by following the stages of parallel sorting, facet rendgrin from the user's perspective. Thus, system performance in
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Il Our System (Sort+Render)

[ ]Octree Hierarchy : Depth 3 (Sort+Render)
200( | M Independent Facet Rendering
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§150
Fig. 17. Simulated setups showing various scenes on §
teapot, spring and knot form factors =100t

%]

terms of rendering time and scalability of the simulate_qg’
display is a conservative estimate of a real display of ti™ 50f
same shape, if built. 84M pixel quilt image is rendered

for each of these setups since the nal image is viewe
on a low resolution display. Figure 17 shows form factor 20 120 840 902 1024 1200 1620

shaped like a teapot (1024 faceis), spring (902 facels) ¢ e, 120Fh Spuaes e, Toter oot Sover
a knot (1200 facets). The system is capable of rendergf

to these shapes in real time. In the triangle sorting sta g .18' .Comparlng pe;rformance of our system W.'th
ray-casting nds the facet nearest to the viewer locatio pat'al hierarchy and independent rendering for in-
This ensures correct depth ordering for facets and alldtseasing number of facets.

triangles to the correct facet even when the surface is self
intersecting, as is the case in knot and spring.

[ ISorting 1st Pass
45/ Il Sorting 2nd Pass
é 40 gScan+Split+Homography
. Rendering
4.2 Performance Evaluation S 35| mEDepth Correcting Shaders
O
v 30r

g 25

A single Nvidia GTX 580 with 1:5GB of RAM on an
Intel Core ¥ 930 processor with4AGB RAM is used as
a testbed for the following experiments. All experimentS 20
are reported a64 mega pixel quilt image resolution with O 15
times are averaged overl®00frame walk-through. = 10

Comparison with Spatial Hierachies: To compare our 5r
method with spatial hierarchies, we implemented a dynamr o 1024 1200 1620

octree structure. The octree is built every frame over tt Icosa 120Poly Spherel Spring Teapot Knot Sphere2

scene triangles on the GPU. Each triangle is assigned .. Increasing Number of Facets, Model: 69K Triangles

a thread. Each thread nds the octree leaves its triangtg. 19. Time breakup for our system, showing time
intersects spatially and sets it as a part of the VBO of thaken by each step of our rendering pipeline.

respective octree leaf nodes. The scene hierarchy is culled

to facet frustums in parallel and VBOs of the intersected

leaf nodes are rendered to the corresponding facets. We tisee taken by our system as shown in Figure 19. We see
an octree depth of three, with12 leaf nodes. Increasing that even on a larger display with600 facets (sphere2)
the depth reduces triangles rendered per facet but inaeaser method can take less time than on a display with fewer
the culling time and hence overall performance is reducealimber of facets (teapo1,024 facets) because of a more
Dynamic scenes require building the entire structure eveeyen topology. In case of teapot the sorting times vary with
frame, which slows down this approach for larger scendbe viewpoint when the handle and the nose are in view.
We found spatial hierarchies to be slower than our methddhis observation can help design a better display. Almost
due to the increase in computation as the number of facerual number of facets across various views will provide a
increase, as shown in Figure 18. The number of trianglbstter performance.

rendered per facet increased by a facto2afompared to _. . .
. . . F(l)gure 19 gives the time breakup of our system for the
our sorting. Fast sorting on today's GPUs make our methg . A .
. . . same experiment reported in Figure 18. We see the sorting
faster than a spatial hierarchy based method, which has : N .
. . ime dominates the overall pipeline, more speci cally the
more irregular operations that may not map well to the : : . o
Second pass of sorting takes maximum time. This is because
data-parallel hardware. . . .
of the expensive triangle-facet overlap tests performed in
Figure 18 shows an increase in rendering time as th@s step. Even though the number of threads used is less,
number of facets increase for both octree hierarchy atfis pass requires projections of facets and triangles and
the independent rendering approach. Our method, howevamputes intersection of these projections in camera space
exhibits uneven per-frame times due to view dependefhe times also vary with the viewer location as more facets
sorting. The topology of the display surface and visibland triangles can come in view at various viewpoints. The

facets decide the sorting time, which dominates the overalure clearly shows triangle sorting to be critical in our




11
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we see the frame rate drops to abaullO frames per
6 second. For larger models the sorting load can be distidbute
2 to multiple GPUs driving thousands of facets. It can be seen
Ss that our system produces real-time frame rates only up to
2 20K triangles for various display con guratons on a single
24 GPU.
=
c3
é ) 4.3 Limitations of the Display
~ 1 The main drawback of our framework is its view depen-
dence. Correct perspective is available only to a single
viewer. Others see a distorted image due to a view depen-

256K 1M 4M  16M  6aM dent homography being applied to facet images. This is,

Number of Pixels in the Quilt Image however, a common feature of all head-tracked displays.
Fig. 20. Rendering speed w.r.t. increasing quilt image The scene triangle sorting step is the most time-consuming
size for a scene consisting of 69K triangles and a of all steps, especially the second pass. Performance can,

display comprising of 1200 facets. however, be improved using multiple GPUs to sort the
scene to multiple facets and to generate multiple quilts,
10 6K Triangles as the steps are highly parallel. An implementation of our
Bl 69K Triangles system requires hardware un-mapping of the quilt image at
9 . 174K Triangles the display end. A display manufacturer can easily create
S10 *%;ESEEZEQ:ZZ 1 such a setup using suitable electronics. Our LCD-based
S 522K Triangles system used different VGA outputs instead. Our projected
2 B 647K Triangles system sacri ced resolution to avoid this un-mapping. Our
§1027-871K Triangles ] | 1 framework is highly scalable inspite of these issues.
£
()
E104 | 5 USER STUDY: UTILITY OF A SPHERICAL
WALK -AROUND DISPLAY
10° | | We study user interaction with a spherical display to
20 120 840 902 1024 1200 1620 evaluate the ease of use of a walk-around monoscopic

) Incj‘r.easmg Number O.f F.acets . display in this section. Rendering is not evaluated since
Fig. 21. Scalability of our system with increasing scene  he display used in this study is a projected setup - which
complexity for various display con gurations. only provides a mock platform for look and feel of our

system if implemented using proper electronics. Please see

Section 3.1.1 for comparison of various rendering methods.
scheme. We also note that depth correcting shaders are figk aim of this study is to see if walk-around displays
expensive as one additional parameter is interpolated Byyide a more natural way to view and interact with virtual
the rasterizer and only one division is computed per pixedbjects as compared to at screens. The focus is on user
Similarly, the homography computation, transformation Qfyperience and thus a full implementation of our system is
vertices and splitting of triangles to facet VBOs are ng{on essential. The spherical shape is chosen for its natural
limiting factors. viewing properties. A WiiMote is used to interact with the

Figure 20 examines the rendering time for increasing nurfliSPIay, to move the cursor in camera space and also to
ber of pixels for our method. Rendering depends on facefl€ct objects shown inside the display. We design a simple
packing and typically for a closed shape only ab@étto pgth- nding task with a hollow connegted cube structure
40% pixels are rendered per frame. The Il rate of currenf/ith marked start and nish nodes (Figure 22). The goal
generation GPUs is high and thus even increasing the quilt

image size to very large dimensions does not affect tl

rendering times by much.

In Figure 21, we examine the scalability of our syster
with increasing number of scene triangles6—871K)

and increasing number of facet®0¢1620. Increasing the
number of scene triangles increases the number of threuus

needed for sorting stages. This results in larger sort timg@_ 22. Hollow cube structure used for user evalua-
and increases the overall rendering time .8XtK triangles ion. Goalis to nd a path from green to red node
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is to nd a path between two specially marked nodethe sphere than on the LCD. Motions should also help in
through the edges of the cube. Moving around the displagpth cues and improve perception. However, because of
is essential to evaluate a path in this exercise. The safoeer resolution on the sphere, users complained about low
experiment is also conducted on a at display with the sanquality of viewing adversely affecting perception on the
mode of input, with additional buttons assigned to mowvephere. Users also indicated that perception might also be
user viewpoint. The rotation angle and the rotation speeffected because of their familiarity with LCD. Figure 2B8(a
are also restricted to simulate walking around scenario ¢avors motion on the sphere f@0% of the users indicating
the at panel. that it is easier to move around a spherical display.

Each user is given the same three tasks to perform on L&Dbjectively, an overwhelming majority of users preferred
and Sphere with a mock task on each to get familiarizesphere over LCD as shown in Figure 23(b). They indicated
with the display and input modes. We store the select@dwas easier to plan the path on the sphere, and depth
path length (PL), number of backtracking steps (Undosjariations were much clearer on the sphere. Interaction is
viewpoints and the overall time taken to perform the tasiso favored suggesting moving around a display to be more
that are later used to evaluate a subjective measure de nicgmfortable than moving using buttons, also con rmed by
ease of use. A questionnaire comprising three aspects of the result of Figure 23(a).

experiment is also rated by the user: (i) Ease of visibility,

which rates how easy it is to perceive the object/path based

on moving around the object on a spherical display & CONCLUSIONS AND FUTURE WORK

opposed to rotating the object on a at panel, (ii) Ease of

interactivity rates the user input, moving viewpoints @sinwe presented a framework to correctly render 3D scenes
buttons as opposed to physically moving around and (i) multiplanar displays with a large number of facets.

an overall rating which states the user preference. Our approach produces correct rendering and maintains

We de ne ease of us¢EOU) based on recorded parameter§teractivity of the application even when the facet count
using a penalizing and rewarding mechanism. Time také}freases to over a thousand facets. We also demonstrated
should be penalized along with deviation from the optimufft® Scalability of our system with increasing resolution,
path length (OPL) for each task. Motions help in perceptictf€ne complexity, and number of facets. The framework
and thus should be rewarded. Backtracking should alfgfilitates rendering to virtually any display con guraii

be penalized. Considering these we de ne ease of use &ssshown in simulation. Practical setups using LCD panels
follows are not hard to build into any shape using appropriate elec-

OPL Motions trpnics. This can providg a whole new interaction paradigm
EOU = + (6) with the virtual world. With current display technology and
PL+ Undos Time Taken advancements in motion-in-gaming our framework ideally
The rst term captures the perceptual aspect whereas thdits the needs of interactive applications at minimal.cost
second term captures interaction with the display. Botbsers like the additional interactivity of such displaysov
terms are normalized to have a maximum valueOdd at panels.

and are given equal weightage. The metric gives a measufe . . . .
%suallzatlon applications can benet from quality render

of how easy it is to move around, interact and perceiv q int tive f i ided b ;
objects in a display based on our experiment. Fifteen t and Interactive frame rates provided by our system.
'ed|cal visualization, design prototyping, moleculareint

subjects evaluated EOU on an LCD and on the spheri ’ ; e hiah it dering. O ‘
display. Figure 23(a) states their achieved EQU averag@ﬁ |o_r(;s € Ci rqulre_ Itg qi‘_a' ﬁ_re';' e][mg. rl]” sy?:l;”_n can
over three tasks. It can be seen that both at panel argt.[lov.' '€ a glass box interactive display Tor such appiiceio

articipative games is another area that general polyhedra

; displays can invigorate, especially walk-around displays

; With the advent of new motion capture technologies like

f the Microsoft Kinect, Sony Move and Nintendo Wii, games

’ bene t greatly from novel user interactions. Head tracking

. is integral to these technologies and hence can drive 3D
displays for a single viewer. Pairing this technology with

s at displays limits its potential.

5 7 8 9
Test Subject ID

Average Ease of Use Over 3 Tasks

o
12 3 4 5 10 11 12 13 14 15 01 2 3 4 5

67 8 9
Test Subject ID

(a) Ease of Use for various (b) Subjective user ratings We would like to explore interactions on such displays
test subjets. using touch panels. Such a setup could then enable natural
user interfaces for currently challenging problems. For
example, with the use of a touch panel spherical walk-
spherical display show nearly the same deviation fromround display an artist could sculpt a virtual object as
the optimal path length. This is expected as both usleough he were actually working on a real statue. Many
monoscopic viewing and are only aided by motion for deptBD displays are about to become practical in the coming
cues. It can also be seen that it is easier to move arowehrs. Our framework combined with these can provide a

Fig. 23. Results of our user study



truly enhanced visual experience of 3D environments afid)
interactivity to the users of the future.
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