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Abstract—Diffusion Weighted Magnetic Resonance Imaging
(DWI) is routinely used for early detection of cerebral ischemic
changes in acute stroke. Fast acquisition with a standard echo-
planar imaging technique generally compromises the image
signal-to-noise ratio and in-plane resolution resulting in a reduc-
tion of the conspicuity and definition of lesions in the acquired
data when viewed on a standard 8-bit display. We present a novel
method for automatically and adaptively determining the window
settings that enhance the contrast of the image relative to the
ischemic lesions. The method performs a coarse segmentation of
the lesions followed by contrast-to-noise ratio based computation
of the optimal window parameters. The proposed method was
tested on 24 datasets acquired with different protocols. The
contrast improvement of the lesions is validated through a mirror
region of interest analysis and by using the contrast improvement
ratio metric. The average obtained improvement in contrast
ranges from 25% to 60%. Preliminary results of segmentation
showed a good reduction in the false positives and improvement
in the lesion boundaries. A perception study of the windowed
results against 8 radiologists was conducted. Reduction of 14.17%
in the mean response time of detection was observed. Statistical
analysis performed using t-test validates the reduction in mean
response time to be significant. Results presented in the study
show promise in the method.

Index Terms—Diffusion weighted imaging, auto-windowing,
acute ischemic stroke, contrast enhancement

I. INTRODUCTION

Early detection of ischemic lesions in the brain helps

clinicians to classify the stroke sub-type and plan for treatment.

DWI imaging is a standard protocol used for early (within

6 hours of the onset of symptoms) detection of ischemic

changes in the brain [2]. DWI encodes the mobility of the

water molecules in the brain into sequence of images with

varied contrast. In areas of acute stroke, the diffusion process

is hindered resulting in a hyper-intense signal in the acquired

scan [2].

DWI acquisition is done using the standard echo-planar

imaging (EPI) technique. EPI induces a trade-off between

signal-to-noise ratio (SNR), time of acquisition and resolution

of the acquired image. The clinical practice is to conduct

a fast scan (<1 min) to gain a quick assessment to enable

further detailed and accurate diagnosis [2]. However, EPI

compromises the resolution as well as the SNR of acquired

scans and affects the precision with which subtle lesions can be

detected. A solution is to enhance the images to help increase

the contrast between the lesions and the normal tissue. This

is the focus of the paper.

II. BACKGROUND

Visibility of abnormalities in images is key to diagnosis

and can be improved via a contrast enhancement technique

or windowing. At the clinical level, radiologists routinely

adjust the window parameters (width and level) to obtain

the best overall contrast and brightness before arriving at

a diagnosis. This is partly to adapt to their display device

and partly tailored to an abnormality of interest. An op-

timal window setting for DWI, was manually determined

for Hypoxic-ischemic encephalopathy and shown to improve

diagnosis across patients and scanners [5]. Semi-automated

methods have also been utilized towards standardising the

display across patients and scanners [8]. Automated methods

for determining the window parameters have aimed at global

contrast enhancement. Techniques using spatial, anatomical

and histogram information [1] as well as pseudo colorisation

(of segmented results) [6] have been proposed. In the latter

case, different tissue classes for T2 weighted MR images

are identified from the histogram and the pseudo-colorisation

is done using fuzzy membership functions. The problem of

over-enhancement and high complexity of adaptive-histogram

equalization is overcome by proposing a local bi-histogram

equalization technique in [12] for medical images. A wavelet

transform-based approach [10] utilizes a linear function for

combining the transform coefficients across scales after thresh-

olding. Alternately, a histogram based method [3], incorporat-

ing the gradient and intensity information serves to enhance

the white matter lesions while suppressing the background in

FLAIR MRI.

Global contrast enhancement may result in loss of local

contrast thereby hindering the detectability of small sized

lesions and their boundaries in DWI. Such techniques can also

result in a non-linear transformation which will change the

relative contrast between different tissues which is undesir-

able. A linear transform which preserves the relative contrast

variations while enhancing the data is preferable.

The discrimination of subtle ischemic lesions can be con-

founded by presence of artifacts (for example, susceptibility-

related shine through, coil sensitivity, T2 shine through) and

acquisition related changes (b1000/b2000) [4]. The practice of

acquiring DWI sequences of different b-values produce varied



Fig. 1. Regions shown on histogram of a DWI brain volume with background
suppressed. Knee-point beyond which infarcts and shine-through artifacts lie,
shown in red.

contrast for the same brain tissue. In this paper, we present

an automated windowing technique for DWI scans which

adaptively determines the window parameters. The intent is to

help improve the discriminability of ischemic lesions. We also

report on an investigation carried out on the effectiveness of

the proposed algorithm on DWI acquired with different scan-

ners and b-values (b1000 and b2000). A perception study was

performed with expert radiologists to validate the algorithm

results. A detailed analysis of the perception study results is

reported.

III. METHOD

A. Materials

24 DWI volumes of confirmed stroke patients were collected

from two local hospitals which had different types of scanners

and used different methods of data acquisition. The different

b-value data are acquired sequentially on Scanner-1 and simul-

taneously in Scanner-2. The full data description is provided

in Table I. The Apparent Diffusion Coefficient (ADC) maps

from Scanner-1 were independently generated for both the

b1000 and b2000 data using the Stejskal-Tanner equations:

ADC=−(1/b)ln(S/S0), where S0 is the signal intensity with

gradient factor b=0 s/mm2 and S is the signal intensity with

gradient factor b=1000 or 2000 s/mm2 [9].

TABLE I
DATA DESCRIPTION.

Scanner Scanner-1 Scanner-2

Data Sets 16 8

Acquisition Sequential Simultaneous

Acquired Data
b=0, b=1000, b=0, b=1000,

b=2000, ADC = b=2000, ADC =
Post Acquisition In Acquisition

Voxel Size
0.98×0.98 1.95×1.95
×6.32 mm ×7.28 mm

Matrix Size 256×256×22 128×128×20

Pixel Depth 16 bits 12 bits

B. Concept

The auto-windowing problem requires finding two param-

eters, the optimum window level lo and width wo. Since the

goal is to improve the discriminability of the ischemic lesions,

Fig. 2. Knee-point (shown as a red star), global maximum Gmax and the
corresponding line fits.

an approach which achieves local rather than global contrast

enhancement is appropriate. Accordingly, we formulate the

problem as finding the window setting that maximizes the

local contrast for the lesions in a given dataset. Thus, the

first step in our approach is to do a coarse segmentation

of the lesions from the given DWI dataset. Next, the local

contrast is measured for a set of window parameters. The

desired best window is the one that yields maximum contrast

for the lesion(s) relative to the local background. In our work

we choose the Contrast-to-Noise Ratio (CNR) as the metric to

characterise the local contrast. We now present the proposed

auto-windowing method in detail.

C. Coarse Segmentation

We start with the following observations. In the case of an

acute stroke,

• Stroke volume � Brain volume.

• The infarct appears brighter than the brain tissue.

The first observation is intuitive and the second one is a

property of the DWI scan. Let Hv be the volume histogram

of the given DWI volume obtained after masking out the

background in the image. From our observations the following

conclusion can be made: pixels belonging to lesions will give

rise to short peaks at the higher end of Hv . This is illustrated

in Figure 1. Hence, a simple threshold set at the knee-point

after the global maximum in Hv can help select the desired

candidates. It is possible to employ a non-linear transformation

to find this knee-point accurately, however, a rough method

will suffice.

The knee-point is determined by a function which min-

imizes the error between two line fits which operates as

follows: Let Gmax be the global maximum in Hv . The

function iteratively finds a bisection point along the curve after

Gmax. At every iteration, the bisection point divides the curve

into two sets of points - curve points lying to the left and to the

right of the bisection point. Two lines are fit originating from

the bisection point to these set of curve points. The bisection

point which minimizes the sum of errors for the two line fits

is determined as the knee-point. Figure 2 illustrates the two

line fits with minimum error at the knee-point.



Fig. 3. The CNR surface plot obtained with different window parameters.

Fig. 4. Maximum CNR values for different window widths.

The given DWI volume data is thresholded at the knee-point

and all the pixels having intensities greater than the knee-

point are retained. A connected component analysis on these

pixels yields a set of coarsely segmented candidate lesions.

Connected components with a size less than 5% of the image

size were ignored. As seen from Figure 1 the gross anatomy

and the intensity distribution of the brain in the DWI scans

is relatively similar and hence this method correctly identifies

the threshold on all the DWI datasets. The CNR plots for the

obtained set of candidate lesions are generated as described in

the next section.

D. Generation of CNR plots

For each of the candidate lesions, the CNR is computed as:

CNR =
μc − μb√

(σ2
c + σ2

b ) /2

where, μx and σx are the mean and standard deviation of

the intensity of region x, respectively; c denotes core region;

b denotes background. The candidate lesion is considered as

the core region and the surrounding normal brain tissue in a

bounding box (with a 3 pixel margin) is considered as the

background region. The ‘normal’ tissue is characterised by

ADC values in the following range: [0.6−1.15]×10−3mm2/s
[9].

Two plots are generated for each volume as shown in Figure

3 & 4. Figure 3 is the plot of CNR(l, w) shown as a surface

plot. Figure 4 is the plot of max (CNR(w)). The interval

[1, N ], with N being the maximum intensity in the data, was

sampled to generate these plots.

l = nΔl ; n = 1, 2, . . .N

w = mΔw ; m = 1, 2, . . .N

In our implementation, the sampling intervals (Δl and Δw)

were fixed at 10. Experiments were done to test the effect of

varying the sampling interval on lo and wo. A trade-off has

been observed between consistency in the obtained window

parameters and the computational time with the increase in

sampling interval. The desired optimum level lo is found from

CNR(l, w) and is taken to be the value of l corresponding

to the highest CNR value. The desired optimum width wo is

chosen such that the variation in max (CNR(w)) is below a

fixed threshold. As seen from Figure 3, lo = 120 and from

Figure 4, wo = 140.

Since contrast is a subjective notion the choice of optimal

window parameters were made with the following reasoning:

Let gc and gb denote the gray values of the core and back-

ground respectively, for an infarct. Consider the case where

l = gc. In this case, the CNR will have a unique peak

for this window level, say CNRp, which will correspond to

the smallest w. This can also be observed from Figure 3.

Whereas, if l < gc, the visibility of the infarct reduces and

the background starts dominating. Beyond some w, the CNR

variation is minimal as the lesion is no longer visible (refer

Figure 4). Consequently, CNR will still attain a maximum

(< CNRp), for some w. Since our aim is to enhance the

contrast of the lesions, the width value, above which the

contrast of the lesions is not affected significantly, is chosen

as the desired wo.

Fig. 5. Results of Mirror ROI Analysis.

Fig. 6. Contrast Improvement Ratio (%).
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Fig. 7. Results of windowing on sample images from scanner 1 (a,b,c,d) and scanner 2 (e,f,g,h). (a),(e) original b1000 images. (b),(f) windowed b1000
results. (c),(g) original b2000 images. (d),(h) windowed b2000 results.

The proposed method is validated through two different

means (i) quantitative and qualitative assessment of lesion con-

trast improvement (ii) perception study analysis with experts.

The validation of the results is presented in the further sections.

IV. ASSESSMENT AND RESULTS

The assessment aimed at determining the effectiveness of

the proposed auto-windowing method across the following

independent parameters: multiple scanners and multiple diffu-

sion weighting (b1000 and b2000). We report on two different

types of assessments - a mirror region of interest analysis and

contrast improvement ratio. The former was done to determine

the quantitative improvement in contrast of the lesions relative

to the normal brain tissue in the anatomically similar region

[11]. Given a lesion, it was flipped about the mid-line and the

corresponding mirror region in the contra-lateral hemisphere

was found. For a given dataset, the mid-line was manually

detected and the contrast and the percentage improvement in

contrast were computed as,

CM =
|∑n

i μi −
∑n

i μ̃i|∑n
i μ̃i

; CMI = 100× (CMW
− CMNW

)

CMNW

where, μ and μ̃ are the mean intensity values of a lesion and

its mirrored region respectively and n is the number of lesions.

Here, CMW
and CMNW

are the CM values for windowed data

and non-windowed data respectively. This metric, in essence,

captures the improvement in the lesion contrast, relative to the

anatomically similar background brain tissue as represented by

the mirrored region. This can also be viewed as a measure of

contrast enhancement in a global sense where the improvement

in contrast of the lesion is measured against the normal brain

tissue globally, represented by the mirrored region.

Additionally, a contrast improvement ratio (CIR) [3] was

also computed to quantify the results of local contrast en-

hancement. The CIR is defined as,

CIR = 100×
∑n

i | ci − ĉi |2∑n
i ci

; cl =
|μc − μb|
|μc + μb|

where, c and ĉ represent the local contrast without and with

windowing respectively and n is the number of lesions. The

local contrast cl is defined based on the mean values of

the lesion (μc) and its local background (μb). The normal

brain tissue present in the bounding box with a 3 pixel

margin around the lesion is used to define the lesion’s local

background.

The results of quantitative evaluation of CIR are presented

in Figure 6. The average values of CIR were found to be

(25.82%, 25.59%) for (b1000, b2000) respectively. The CM

values for data with and without auto-windowing are plotted

in Figure 5 for both b1000 and b2000 datasets. The average

CMI values were found to be (34.35%, 59.71%) for (b1000,

b2000) respectively. The mean values of CMI and CIR were

computed across the scanner and the values were found to

be as shown in Table II. From the results we can infer that

windowing is more effective to data obtained from scanner-2

relative to scanner-1. The voxel size, matrix size and the pixel

depth of the data obtained from scanner-1 is higher relative to

that of the scanner-2. Thus, the data from scanner-2 has poorer

contrast and noisier relative to data from scanner-1. Hence the

improvement in local and the global contrast after windowing

as measured by CIR and CMI respectively is more in data

from scanner-2 relative to scanner-1.

Next, we note from Figure 5, that the CM values are high

for both windowed and non-windowed b2000 data in most of

the cases. Such a trend is to be expected since b2000 offers

higher contrast of the lesions relative to the b1000 data [7].

In our dataset, it was found that there was only one volume

where the lesions occurred in contra-lateral locations in the
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Fig. 8. Segmented lesions of data from Scanner 1 and 2. (e)-(j) Segmented
results of images in Figure 7(a), 7(c), 7(e), 7(g) (Before Windowing). (k)-
(p) Segmented results of images in Figure 7(b), 7(d), 7(f), 7(h) (After
Windowing). Blue:TP, Red:FP and Green:FN.

same slice (shown in Figure 7(a)).

Overall, the quantitative assessment of the proposed method

indicates that the method results in a significant improvement

in the contrast of the lesion relative to global brain tissue

background and relative to the local background. It is also

noteworthy that the reported results are obtained over datasets

with different acquisition protocols. This demonstrates the

robustness of the method.

Sample windowed results with the original data are shown

in Figure 7. It can be observed that the detectability and the

extent of the lesion boundaries is improved as well as the

background noise is suppressed in the auto-windowed results

which offers much more discrimination between the lesions

and the normal brain tissue.

In order to further validate the gain in local contrast

and assess the gain which can be expected in segmentation

with the proposed windowing approach, the coarse segmen-

tation method described in section III-C was employed on

the windowed data and the results were compared with the

ground truth obtained from experts (neuro-radiologists). Sam-

ple colour coded segmented results are shown in Figure 8. The

colour code is as follows: blue, red and green pixels indicate

true-positive (TP), false-positive (FP) and false-negative (FN)

pixels respectively. The results show that windowing helps

in a) reducing the FPs significantly and b) capturing the

true extent of the lesions. Future work will include further

improvement and an in-depth validation of the segmentation

results.

V. PERCEPTION STUDY AND RESULTS

The proposed windowing scheme generates results where

the lesions appear bright and can easily be distinguished thus

increasing the discriminability of the lesions. However, in

order to assess the clinical significance of such results, a

validation from the expert radiologists was required. In view

TABLE II
QUANTITATIVE COMPARISON OF RESULTS ACROSS SCANNERS.

Scanner
CMI CIR

b1000 b2000 b1000 b2000

Scanner1 23.59% 53.51% 21.39% 25.13%
Scanner2 39.73% 62.82% 34.67% 25.82%

of this, a perception study was conducted with the hypothesis

that the response time (RT) in identifying the number of

lesions in a presented slice of a DWI dataset is less in case of

windowed result as opposed to the case of an original image.

The experiment was conducted with different radiologists

with varied years of experience. In this section, the proposed

experiment that was done as part of the perception study and

analysis of the obtained results of the experiment is presented.

A. Experiment Setting

The objective of the experiment was to note the RT of the

radiologists in identifying if the presented slice of DWI is

normal or abnormal.

1) Stimuli: The stimuli used for the experiment was a set

of windowed and original DWI slices. This set comprised

of normal and stroke slices with different sized lesions, of

different b-values and obtained from two different scanners.

The categorical distribution of the slices is shown in Figure 9.

For each category 4 slices were chosen (2 from each scanner)

therefore amounting to a total of 64 slices.

2) Participants: 8 radiologists from Z hospital, with varied

years of experience participated in the experiment. The radiol-

ogists were broadly classified into two groups of Experts and

Learners as shown in table III.

3) Method: Each of the radiologists was randomly pre-

sented with the stimuli and the RT of classifying the presented

slice as normal or abnormal (binary output) was noted. The

expectation of the experiment was reduction in the mean RT

for classification of windowed data against that of the normal

data.

4) Experiment Environment: The RT of the radiologists

were accurately noted using the DirectRT software which is

designed for cognitive and perception tasks that require mil-

lisecond precision. The experiment was set up in the hospital

environment on the monitor regularly used by the radiologists

for analysing patient data in order to avoid introducing bias in

the measured RT due to different monitor settings (resolution,

contrast, brightness settings). The participants were presented

with few samples slices to get them acquainted with the

functioning of the software.

Fig. 9. Categorical distribution of the stimuli for the perception study. For
each sub-category the number of slices is shown.



TABLE III
EFFECT OF WINDOWING ON OBSERVERS WITH DIFFERENT EXPERTISE

LEVELS.

Category Radiologist
Years of Reduction in P-value
Experience Mean RT (%) (t-test Outcome)

Experts
E1 29 17.22 0.000657
E2 20 14.11 0.019214
E3 17 11.17 0.000846

Learners

L1 4 15.32 0.010151
L2 4 14.12 0.014375
L3 3 11.18 0.025503
L4 2 8.10 0.015574
L5 0.6 11.47 0.042163

B. Results of Perception Study

First, we examine the response time for decision making by

an observer. Table III gives the results of the RT obtained for

different radiologists. The t-test was used to ascertain the sta-

tistical significance of the obtained results. The p-value listed

in Table III characterizes the significance, with a p < 0.05
indicating a high degree of statistical significance. The mean

RTs can be seen to be reduced by 14.17% & 12.04% for

Experts and Learners respectively. Thus the analysis strongly

contributes to the initial expectation. It is noteworthy that there

is no observable trend in the RTs across expertise levels.

Next, we studied the effect of windowing and size of lesions

on the RT. The results of such an analysis are presented

in Table IV. The (-) sign indicates a reduction while a (+)

sign indicates increase in RT with windowing. Overall, it

is apparent that windowing serves to reduce the RT for the

learner group for slices with smaller lesions more than mixed

or larger ones. Detection of small-sized lesions in the data is

crucial and the most difficult task in abnormality detection and

hence these results are attractive. In contrast, the reduction in

RT does not seem to depend much on the lesion size for the

expert group. An interesting outcome is the trend observed for

normal slices across expertise levels. Experts took marginally

more time to analyse normal slices after windowing. Whereas

the average RT is reduced for the Learners. The normal data

in the stimuli contained slices with shine-through artifacts.

Thus reduction in RT validates the utility of windowing for

the Learners. The cautious decision making of the Experts in

ruling out artifacts, enhanced after windowing could possibly

lead to the marginal increase in the RT.

VI. CONCLUSIONS

A novel automated windowing technique was presented

for diffusion weighted MRI. The technique was shown to

significantly improve the contrast of ischemic stroke lesions

present in the DWI scan. The proposed method is effective for

different b-valued DWI scans (b1000 and b2000) and robust to

data acquired from different scanners with different acquisition

processes. The qualitative and quantitative results reported in

this study show promise in the proposed method. Improve-

ment in the lesion definition suggests the effectiveness of the

approach as pre-processing step for contrast enhancement in

a segmentation framework. The perception study performed

TABLE IV
EFFECT OF WINDOWING ON DETECTING LESIONS OF DIFFERENT SIZES.

Category Radiologist
Percentage Change in RT

Small Mixed Large Normal

Experts

E1 -17.85 -30.48 -13.60 +1.22
E2 -18.47 -2.34 -29.06 +0.45
E3 -16.24 -23.75 -9.11 +0.26

Mean -17.52 -18.86 -17.26 +0.64

Learners

L1 -36.43 -22.75 +3.02 -9.10
L2 -33.14 -16.88 -14.25 +6.04
L3 -23.33 -25.20 -6.69 -0.43
L4 -7.50 +6.42 -11.09 -16.56
L5 +5.63 -16.45 -4.95 -22.72

Mean -18.95 -14.97 -6.79 -8.55

with expert radiologists and detailed analysis of the results

indicates the effectiveness of the algorithm for clinical usage

from the radiologist’s point of view. The presented results and

the extensive evaluation validates the method and it may play

an important role in diagnosis of ischemic stroke in clinical

trials.
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