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ABSTRACT

Text line segmentation is a basic step in any OCR sys-
tem. Its failure deteriorates the performance of OCR en-
gines. This is especially true for the Indian languages due
to the nature of scripts. Many segmentation algorithms are
proposed in literature. Often these algorithms fail to adapt
dynamically to a given page and thus tend to yield poor seg-
mentation for some specific regions or some specific pages. In
this work we design a text line segmentation post processor
which automatically localizes and corrects the segmentation
errors. The proposed segmentation post processor, which
works in a “learning by examples” framework, is not only
independent to segmentation algorithms but also robust to
the diversity of scanned pages.

We show over 5% improvement in text line segmentation
on a large dataset of scanned pages for multiple Indian lan-
guages.

1. INTRODUCTION
The failure in text line segmentation profoundly affects

the overall accuracy of an OCR engine. Line segmentation
algorithms are one of the widely studied and evolving top-
ics in document image analysis literature [1, 9, 15, 6]. Most
of these segmentation algorithms perform satisfactorily well,
but tend to fail in some specific region or for some specific
pages. The main cause of such failures is that these algo-
rithms are heavily dependent on the parameters and thus
fail to adapt to a given page dynamically. Moreover, the
interest of the document image analysis community in this
area is also obvious from the consistent appearance of page
segmentation work (see [2], [3], [4]) in competitions at IC-

DAR.
Many segmentation algorithms have been proposed in lit-

erature. These algorithms can be grouped into three cat-
egories: top-down [13], bottom-up [16, 5] or hybrid algo-
rithms [1]. Nevertheless, the complexity and variations in
the document images make the task of segmenting a given
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document page into lines still challenging. The exhaustive
experiments on scanned document of a large collection of
Indian language dataset are conducted in [10, 12]. These
experiments indicate that the well known algorithms tend
to perform poor for these languages. This is mainly due to
characteristics of the scripts.

Conceptually, any line segmentation algorithm tries to op-
timize an objective function such that the inter line variance
and the variance of the line heights is minimized. The pop-
ular segmentation algorithms [1, 5, 13, 16] in literature do it
in a greedy way. A heuristic refinement of segmentation is
also an integral part of many of the good implementation of
these algorithms. Such algorithms do not take an advantage
of training examples to learn the parameters. We take a dif-
ferent path and propose a methodological way of solving this
problem by designing a segmentation post-processor which
automatically localizes and corrects the text line segmenta-
tion errors. The error localization and correction is driven
by training examples.

Extending the work of [12] on localizing segmentation er-
rors, we design a post-processor which automatically local-
izes and corrects the errors. For this we formulate the prob-
lem of locating line segmentation errors as a multi-class clas-
sification problem, where each segmented line is classified
into one of the five classes i.e., correct, under-segmented,
over-segmented, false alarm or missing dangling modifier.
For this we use a small set of document images as a train-
ing data and assume availability of ground truth for this.
We, then compute some line level features (described in Sec-
tion 4.2) for every segmented line in the training data and a
given page. Once these features are computed, each line in
a given page is classified into either one of the error type or
correct. Once segmentation errors are localized, we correct
those based on the error type and confidence of error using
our segmentation correction algorithm. The segmentation
post-processor transforms the segmented line such that its
probability of becoming correct increases.

The proposed system localizes the segmentation errors
based on learning from the examples of a training set, thus
the method is robust and applicable to a wide variety of
pages. We experimentally show improvement in text line
segmentation by applying the post-processor to the segmen-
tation output of a projection profile based algorithm.

The remainder of the paper is organized as follows. In
Section 2 we discuss the related work of the problem. In Sec-
tion 4, we describe the proposed segmentation post-processor
i.e. automatic localization and correction of line segmenta-
tion errors. Section 5 elaborates experiments and results.
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Figure 1: Typical segmentation errors in Indian scripts as discussed in [12] (a) Two lines are merged into
one line (under-segmentation) (b) One line is spilt into two lines (over segmentation) (c) A dangling modifier
shown in a small red circle is missed (missing component). Missing component errors especially occur in
many Indian languages.

Figure 2: Various Segmentation Errors with re-
spect to ground truth. Here colour green, blue, red
and black represent correct segmentation, under-
segmentation, over-segmentation and false alarm re-
spectively. (Best Viewed in Colour).

We finally conclude our work in Section 6.

2. RELATED WORK
Many segmentation algorithms have been proposed in lit-

erature. The popular ones are Recursive XY cut [13], White-
space analysis [5], Docstrum [14], Voronoi diagram based [8],
and RLSA [16]. Description of these algorithms is not in the
scope of this work. However, readers are encouraged to re-
fer [15] for this. There are many ways to classify these algo-
rithms, the most popular being as top-down and bottom-up.

In the first category, page is recursively segmented until cer-
tain termination conditions are met. While the bottom up
methods group segments and form words, lines and blocks.
There are also methods which combine these two.

Most of these segmentation algorithms suffer from some
or other line segmentation errors. Some typical example
of line segmentation errors are shown in Figure 2. These
errors often occur due to the failure of segmentation algo-
rithms to adapt the parameters locally. Segmentation algo-
rithms could have a global parameter, or even have a local
parameter. However, defining all the possible failure cases
and thereafter adjusting the parameters make the algorithm
highly heuristics. Such heuristic algorithms (and their im-
plementations) often become very brittle. (i.e., fails in un-
predictable manner in unknown situations). As a result,
to make the algorithm more predictable, researchers often
design principled methods. These principled methods may
show larger errors than heuristic methods on selected pages;
but they become more predictable and analyzable.

In this work, we want to go one more step forward. We
want to automatically detect the failures of the segmentation
algorithms (i.e., without a ground truth) and then rectify
the errors by post-processing locally.

Modern computer vision community has shown interest
in the similar line, where image segmentation algorithms are
evaluated automatically i.e. without using ground truth.[17]
provides a detail survey of automatic (unsupervised) evalu-
ation of image segmentation algorithms. In unsupervised
evaluation of segmentation, availability of the ground truth
is not assumed. Rather a set of features are computed from
the segmented image and based on these features perfor-



mance of image segmentation algorithms are measured. We
are highly inspired by such methods and in this work we go
one step further and not only automatically localize the line
segmentation errors but also correct them.

3. SEGMENTATION ERRORS
The text line segmentation errors can be can be defined

in a set theocratic notation as in [15]. For the sake of com-
pleteness, we summarize these definitions here. Let S and G
be the set of lines denoting segmentation output and ground
truth respectively. Then we can define segmentation errors
as follows.

Correct.
A Line B ∈ S is said to be correct if there exists a unique

line A ∈ G such that A ∩B is significant.

Over-segmented.
A line B ∈ S is said to be over-segmented if there exist

at-least one more line B
′

∈ S and A ∈ G such that both
A ∩B and A ∩ B

′

are significant.

Under-segmented.
A line B ∈ S is said be under-segmented if there exist

multiple lines A’s in G such that A ∩B is significant.

Missing component.
A line B ∈ S is said to be missing component if there

exists a unique line A ∈ G such that A∩B is not significant,
i.e., by calling line A as missing component we mean that
line A has missed some dangling modifier either above or
below the line.

False alarm.
A line B ∈ S is said to be a false alarm if there does not

exist any line A ∈ G such that A ∩ B 6= φ.
Figure 2 explains these errors pictorially. Here colour

green, blue, red and black represent correct segmentation,
under-segmentation, over-segmentation and false alarm re-
spectively.

4. THE SEGMENTATION POST-

PROCESSOR
In this section, we describe the basic ideas related to error

localization and correction. It may be noted that we do not
propose any new algorithm for page segmentation. Rather,
we redefine the popular segmentation schemes by introduc-
ing an automatic error detection and correction module.

4.1 Overview
We are interested in two modules: (i) A module which can

detect errors automatically, without a ground truth. This
module is designed as a classifier which is trained from a set
of examples. To be precise, our implementation classifies the
regions as erroneous or not, and also label with the type of
error (eg. over-segmentation). (ii) The second module looks
at the erroneous regions more carefully and refine the seg-
mentation to minimize the errors. We call these two stages
as automatic error localization and correction. In Section 5,
we show that our detection module can detect close to 85%

of the errors present in many of the Indian scripts. After
that more than 60% of these errors are removed by the sec-
ond module. Before we describe the details of how these two
modules are designed, we give a simple intuitive explanation.

We observe that (1) most of the characters in a page are
of same size, font and style, (2) line spacing within the doc-
uments are mostly same, (3) page is formatted uniformly
within a book, (4) two nearby lines in a document is mostly
of same height. Based on these simple intuitions, we com-
pute a set of features (which we explain soon) and use train-
ing data to learn segmentation errors. This helps us to auto-
matically localize text line segmentation errors. To make the
localization robust, we use SVM classifier. Moreover, SVM

classifier is also useful as it gives confidence score of classi-
fication, which we use to design a powerful post-processor.
Once the error are localized, we apply a set of transforma-
tions to the incorrect segmented lines such that the probabil-
ity of its becoming correct increases. The block diagram in
Figure 3 presents the concept of the proposed segmentation
post-processor.

In this section, first we explain the strategy for automatic
localization of text line segmentation errors and then elab-
orate algorithm for the segmentation correction.

4.2 Automatic Error Localization
We localize the text line segmentation errors in a super-

vised learning framework. For this we assume the availabil-
ity of the ground truth for few pages and compute a set of
features for every segmented line.

The set of features which we compute for each line Li

in order to classify it as correct, over-segmented, under-
segmented, false alarm or missing component are as follows:

F1:Difference in line heights and line gap.
We define this feature as follows:

F1 = max{|LHi−1 − LHi| − LGi−1,i,
|LHi − LHi+1| − LGi,i+1},

where LHi is the height of line i and LGi−1,i is the gap
between lines i− 1 and i. The intuition behind this feature
is two closest line should be of similar height.

F2: Difference in line height and maximum height of con-
nected component.

We use difference of line height and maximum height of
connected component in a line as a feature. This helps us
to locate under segmentation where line height is far greater
than size of maximum connected component.

F3: Maximum area of CCs closest to line.
To define this feature for a line Li we find out the CCs

which are not part of any line and is the closest to line Li

compared to its above or below lines i.e., lines Li−1 and
Li+1. We compute the area of all such CCs and take maxi-
mum area as a feature F3 for line Li

F4: Maximum area of connected component in a line.
In every line we compute the maximum area of connected

component and use it as a feature. Very high and low value
of this feature correspond to false alarm.

F5: Minimum of upper and lower line gaps.
We define feature F5 for the line Li as:



Figure 3: The block diagram explains the functionality of the segmentation post-processor.

F5 = min{LGi−1,i, LGi,i+1}.

This feature helps us to locate over-segmentation where one
of the gap LGi−1,i or LGi−1,i is very low.

We compute these features for every segmented line of
the training pages and a given test page. We, then learn
the associated segmentation errors for every segmented line
in training pages. However, for a given test page, we do
not use the ground truth and localize the errors using SVM

classifier. In other words, we formulate the problem of auto-
matic error localization as a multi-class classification frame-
work where each line is classified (tagged) as correct, over-
segmented, under-segmented, false alarm or missing com-
ponent. More formally, For a segmented page with lines
{L1, L2, ..., Ln} we classify each line as (1) Correct (co) (2)
Over-segmented (os) (3) Under-segmented (us) (4) False alar-

m (fa) and (5) Missing component (mc)
Further, to make the post-processor robust to small errors

in classification (i.e. automatic localization), we also com-
pute confidence of each classification. In other words, the
automatic localization module returns a tuple {Li, Ei, Ci}
for every segmented line Li. Here Ei = {co, os, us, fa, mc}
denotes the segmentation error type and Ci denotes the con-
fidence of line Li classified as error Ei.

4.3 Error Correction
The error correction module takes the output of auto-

matic error localization as Input. The error correction can
be viewed as a transformation of features of the segmented
lines such that the probability of correctness of these seg-
mented lines increases. The transformation of features is
driven by following set of rules. If automatic localization
classifies line as correct, no action is required. If it classifies
line as false alarm with very high classification confidence,
the line is deleted. If automatic localization tags line as
overs-segmented and the line next to it is also tagged as
over-segmented, then these two lines are merged. If auto-
matic localization tags line as missing component with very
high classification confidence, then the CCs closet to the line
(either on upper or lower part of segmented line) is included
in the line. Finally, if automatic localization tags line as
under-segmentation with very high classification confidence,
we iteratively change the thresholds and re-run the segmen-

tation algorithm so that it produces more than one line.
Compute the line level features for new lines and classify
using automatic localization module until the re-produced
lines are classified as correct with very high confidence. The
algorithm 1 summarizes these transformations.

In summary, for a output of a segmentation algorithm, we
automatically localize the text line segmentation errors. We
then, use the output of automatic error localization for error
correction. The error correction module uses the error infor-
mation and confidence of classification to correct the errors.
This finally yields an improved text line segmentation.

Algorithm 1 Error correction

Input: {(Li, Ei, Ci) : i ∈ {1, 2, ..., n}}
Output: {Lj : j ∈ {1, 2, ..., m}}
for i = 1 to n do

if Ei = co and Ci is high then
Lj ← Li

else
if Ei = fa then

Lj ← φ
end if

else
if Ei = os and Li+1 = os then

Lj ← merge(Li, Li+1)
end if

else
if Ei = mc and Ci is high then

Lj ← extend(Li)
end if

else
if Ei = us then

split Li into lines Lxi
till Exi

= co, ∀i
Lj ← {Lxi

}
end if

end if
end for

5. EXPERIMENTS AND RESULTS
We use a dataset [7] of 8 books with more than 41K text-

lines. The script of these books belongs to Indian languages.
These books were identified based on experiments in [12]



Figure 4: Few samples of multi-column documents which we considered for this work.

(a) Part of Input Image

(b) Incorrect line segmentation

(c) Automatic error localization

(d) Automatic error correction

Figure 5: Example results: (a) Part of two sample document images (b) Line segmentation output of pro-
jection profile based segmentation algorithm. We observe that due to failure in adapting the parameters,
segmentation algorithms often fail in few specific regions of documents (c) Output of our automatic error
localization module. Green, Blue and Red colours shows correct, under-segmentation and over-segmentation
respectively. (d) Output of our error correction module. We observe that ”learning by example” based our
scheme corrects the errors successfully (best viewed in colour).



and are challenging to segment. We also have line level
annotation in form of XML for this dataset, produced using
a semi-automatic tool. Few sample images of our dataset
are shown in Figure 4.

5.1 Text block segmentation
For text graphics separation and block identification we

rely on open source software iLayout.

iLayout: page layout Engine.
ilayout is build on top of Leptonica [11]. Some of the tasks

which we do using this engine are:

• Multi-column segmentation

• Text and graphics separation.

• Column ordering.

The iLayout gives the list of text blocks as output. Once text
blocks are identified we use projection profile based segmen-
tation to extract lines. We apply our segmentation post-
processor to improve the line segmentation.

Block segmentation performance.
To measure the block segmentation performance of the

proposed method we use standard intersection divide by
union score with ground truth. Mathematically, let A and
B be the set of block bounding boxes representing block
segmentation output and ground truth rectangles respec-
tively, then goodness score for each block a ∈ A is defined
as, S(a) = max{(a∩ b)/(a∪ b) : ∀b ∈ B}. Thus for a ideally
segmented block S(a) = 1 and for a false alarm S(a) = 0.
In other words, value of S(a) close to 1 shows better block
segmentation. We observe that around 90% of the blocks
have high goodness score i.e. S(a) greater than 0.9. Fig-
ure 6 shows the qualitative example of text-graphic sepa-
rations and text block identification. These examples are
taken from a large corpus of Indian language document im-
age dataset. As can be seen iLayout not only correctly sep-
arates the text/graphics but also identifies the text blocks
accurately. (Note that many of the existing implementa-
tions fail to identify block accurately for this dataset). A
failure example at iLayout based text-block segmentation
level is shown in Figure 7. The failure occurs mainly due to
splitting or merging of two consecutive paragraph. However,
such failure does not affect the overall OCR accuracy.

5.2 Text line Segmentation
We first run a projection profile based segmentation algo-

rithm on all text blocks and evaluated its performance. we
observe that on average around 11% of the segmented lines
are not correct. The goal of this work is to automatically
localize and correct these errors. Since these errors deteri-
orates the overall accuracy of an OCR system, correcting
these errors can be considered one of the major steps to-
wards improving OCR accuracy.

We, then automatically localize text line segmentation er-
rors. For this we use a training set of around 10K text-lines
(independent of test pages). We compute the features de-
scribed in Section 4.2 and train 1 vs rest SVM classifier
with RBF kernel on it. (Recall that we formulate the auto-
matic localization of segmentation errors as multi-class clas-
sification problem, having five classes namely correct, over-
segmentation, under-segmentation, false alarm and missing

correct overseg underseg m.c. f.a. ρl

99.11 69.65 88.00 68.22 70.12 85.22

Table 2: Percentage of segmentation errors we au-
tomatically detect (Proposed Scheme). Note that
entry under correct column (99.11%) shows that we
tag correct lines as correct with a very high accu-
racy of 99.11%. Here ρl denotes the overall error
localization performance.

component). We obtain the text line segmentation error
localization accuracy of 85.22%. In other words, around
85.22% of the text-line segmentation errors are localized
without using ground truth. Note that identical to [12]
when we measure overall error localization accuracyρl we
also consider percentage of correct lines classified as correct.
In other words, Let C be a confusion matrix showing confu-
sion among correct, over-segmentation, under-segmentation,
missing component and false alarm. Further, suppose rows
{0, 1, 2, 3, 4} of C correspond to correct, over-segmentation,
under-segmentation, missing component and false alarm re-
spectively. Then we define overall error localization accuracy
at line level as follows:

ρl =

4
X

i=1

Cii × 100

4
X

i=1

4
X

j=0

Cij

Error localization performance is summarized in Table 2.
Once errors are localized, we correct them using our cor-

rection module. We show improvement in accuracy in Ta-
ble 1. We observe that the proposed segmentation post-
processor significantly reduces the segmentation errors present
in the segmented lines. These error reduction results around
5% improvement in the overall text-line segmentation.

In these experiments, we have shown improvement in text-
line segmentation for a projection profile based segmentation
algorithm. However, the method used in designing the seg-
mentation post processor is not specific to any segmentation
algorithm. Thus the proposed segmentation post processor
can be applied to any text-line segmentation algorithm or
the proposed segmentation post-processor is algorithm inde-
pendent. Further, rather than relaying on heuristic parame-
ters, proposed method works based on a supervised learning
framework, where segmentation errors are learnt from the
examples. This also makes the proposed post-processor dy-
namic to variety of pages. Few example results of the pro-
posed method are shown in Figure 5. The proposed method
automatically localizes the segmentation errors and corrects
them.

6. CONCLUSIONS
A simple but powerful method for correcting text line seg-

mentation errors is proposed. The method uses training ex-
amples to localize and correct errors, and thus is dynamic
and applicable to a wide variety of documents. We have
shown significant improvement in text line segmentation on
a large dataset of Indian language scanned document im-
ages.



Language Over Segmentation Under Segmentation Missing Component False Alarm
Before After Before After Before After Before After

Telugu 5.82 2.12 0.75 0.51 4.9 2.1 0.9 0.4
Tamil 2.80 1.52 4.12 2.26 1.6 0.8 1.2 0.78

Malayalam 0.46 0.38 0.5 0.4 0.95 0.42 0.65 0.31
Kannada 3.15 2.09 3.61 2.58 2.48 1.10 1.9 0.98

Table 1: Segmentation error reduction (in %) when our segmentation post-processor is applied. Before and
after column show errors before and after applying our post processor. It can be seen that the proposed
error localization reduces around 5% of the line segmentation errors

Figure 6: Text-Graphics separation and Text-Block identification by i-layout. First and second row shows
input and output image respectively. Graphics are removed and text-blocks are identified in red (best viewed
in colour).
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