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ABSTRACT

A wide category of objects and scenes can be effectively
searched and classified using the modern descriptors and
classifiers. With the performance on many popular cate-
gories becoming satisfactory, we explore into the issues as-
sociated with much harder recognition problems.

We address the problem of searching specific images in In-
dian stone-carvings and sculptures in an unsupervised set-
up. For this, we introduce a new dataset of 524 images
containing sculptures and carvings of eight different Indian
deities and three other subjects popular in the Indian sce-
nario. We perform a thorough analysis to investigate var-
ious challenges associated with this task. A new image-
representation is proposed using a sequence of discriminative
patches mined in an unsupervised manner. For each image,
these patches are identified based on their ability to distin-
guish the given image from the image most dissimilar to
it. Then a rejection-based re-ranking scheme is formulated
based on both similarity as well as dissimilarity between two
images. This new scheme is experimentally compared with
two baselines using state-of-the-art descriptors on the pro-
posed dataset. Empirical evaluations demonstrate that our
proposed method of image-representation and rejection cas-
cade improves the retrieval performance on this hard prob-
lem as compared to the baseline descriptors.

1. INTRODUCTION

The traditional image descriptors based on bag-of-words
BOW [21] and spatial pyramids [15] have emerged as success-
ful baseline solutions for most of the modern recognition
and retrieval tasks, such as instance or category-based re-
trieval [3, 8, 21] and classification [5]. These descriptors are
built using illumination/scale/view-invariant features such
as SIFT [16] extracted at (local) interest points or on a dense
grid. However, these are mostly useful in searching spe-
cific/identical textured objects, but are usually not very
good for large category of varied objects. In such scenar-
ios, GIST [17]; which is a continuous global descriptor; is
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Figure 1: Example images from our dataset. Note
the variations in colour, texture, view-point, light-
ing, shape, size, appearance and posture.

found to perform better [7]. Recently, there has been focus
on developing new descriptors that try to address some of
the limitations of interest-point based features. E.g. in [1] a
new representation; called “bag of boundaries” (or BOB); was
proposed for retrieving smooth objects with fixed geometry
and minor variations in orientations.

Along with these developments, significant efforts have
been put into developing new models that complement the
modern descriptors, and are capable of modelling the shape
and relative position of the parts of objects [10]. These mod-
els are object-specific and have been found to perform well
for detecting categories such as car, person, etc. allowing lit-
tle variations in pose. However, as noted in [18], for objects
that have highly flexible and deformable parts (e.g. cats and
dogs), simple BoW models outperform the state-of-the-art
Deformable Part Model (DPM) [9].

In this paper, we address the problem of unsupervised re-
trieval of carving images similar to a given query image. In
such images, either there is a carved sculpture, or a carving
made on a background of the same material (mostly coloured
stone). Such carvings can easily be found in and around an-
cient caves and temples, and are an indispensable part of
Indian heritage. Previous works focussing on sculpture re-
trieval [1, 2] have tried to address the problem of instance-
based retrieval on a collection of symbolic shapes (e.g. “The
Thinker” ). Such shapes are quite often reproduced at dif-

http://en.wikipedia.org/wiki/The_Thinker



Figure 2: Different carvings of Ganesh illustrating
variations in posture, number of hands and gadgets.

ferent places; and the major challenges involved in retrieval
are size, view-point, and surface-properties (textured/non-
textured). In our case, retrieval becomes further challeng-
ing because the sculptures/carvings of even a single deity
can vary a lot. E.g., as shown in Figure 2, Ganesh can
have different postures, number of hands and additional gad-
gets. This poses an additional question that whether the
retrieval of Indian sculptures is instance-based or category-
based. Also, there is no useful context information available
which is the case with the well-known PASCAL dataset (it was
also observed in [1] that background information improves
retrieval performance). To address these challenges, we for-
mulate the retrieval task as an unsupervised rejection-based
scheme that incorporates both similarity as well as dissim-
ilarity between a pair of images. This scheme is inspired
from the concept of Neti-Neti (see Sec. 6).

In this paper, we introduce a new dataset of Indian stone
carvings. It contains images from eleven different categories,
including eight Indian deities (Buddha, Durga, Ganesh, Hanu-
man, Krishna, Nandi, Natraj and Saraswati) and three other
subjects popular in Indian carvings (Elephant, Horse and
Wheel). Figure 1 shows few example images from the dataset.
As is evident from these images, it is not straightforward to
perform retrieval over these because

(i) Each carving is unique irrespective of its category,
with significant variations in shape, size, appearance, ori-
entation and even material. In addition, the carvings can
have smooth as well as edgy surfaces, and even different
carvings can have similar edges. This makes it difficult to
distinguish them using interest point (BOW using SIFT) or
boundary (BOB) based descriptors.

(if) Though there exist one or more distinctive parts for
most of the categories, they themselves might be quite flex-
ible, articulated and even occluded/eroded due to which lo-
cating them using DPM [10] becomes non-trivial.

(iii) Since the carvings are mostly made on a piece of stone,
a significant region surrounding the object of interest has
similar colour and texture properties as that of the object
itself; hence super-pixel based foreground-background seg-
mentation (as used in [1, 4] for retrieval) is seldom accurate.

These challenges make it difficult to either directly apply
a part-based model or use existing descriptors for this task.
To this end, we propose a new representation for the carv-
ing images. To minimize the conflict with background, first
the given image is automatically segmented into foreground
(carving) and background. The foreground is represented
using a sequence of patches that try to capture the properties
of discriminative regions in a carving. Since these patches
both represent an image as well as capture characteristic lo-
cal discriminative regions specific to a carving, these can be
thought of as a combination of the part-based model and
interest-point based descriptors. We use this representation

in a re-ranking framework. For a given query image, first the
dataset images are ranked using a simple baseline descriptor
(such as SIFT or GIST), and then only the top few results are
re-ranked using the patch-based representation. To validate
the effectiveness of this new representation, we compare it
with two baselines on the proposed dataset. Experimen-
tal evaluations demonstrate that our proposed scheme (i.e.,
image-representation + re-ranking) improves the retrieval
performance as compared to the baselines, and hence is ca-
pable of addressing some of the challenges involved in this
task.

2. DATASET AND CHALLENGES

Our dataset contains 524 images from eleven different cat-
egories, with around 45 — 50 images per category. We de-
note the i*" category by C; for i = 1,...,11. In this section,
we analyze the inter-class and intra-class variabilities in our
dataset (similar analysis was done in [7] for the ImageNet
dataset). This will help in developing insights about the
dataset and will also justify the complexity of the problem
being addressed. For this, we use two different descriptors:
GIST and BOW histogram using SIFT. These two descriptors
are extensively used and have been shown to achieve promis-
ing results for classification and retrieval tasks [5, 8]. For
GIST, we use the default parameters (number of orientations
per scale = [8,8,8,8] and number of blocks = 4) resulting
in a feature vector of 512 dimensions. For Bow, we use the
SIFT descriptors computed densely on a regular image-grid
with spacing of 3 pixels and quantize them into a vocabulary
of 1000 visual words using the k-means algorithm. For com-
puting the GIST features, we use the code from [17]; and for
the SIFT features, we use the VLFeat library [22]. Both of
these descriptors are Lo normalized and Euclidean measure
is used for computing distance between two features.

(i) Visual Scale

This term measures the visual variability within the sam-
ples of a category. For each category C;, we compute its
visual scale as the average distance of its mean descriptor
from all the images in C;. Another way of analyzing the
visual scale of a category is by first determining a prototype
image for that category, and then finding how well it ap-
proximates all other images within that category (based on
average distance from all other images). For a given cate-
gory, its prototype image is the one whose average distance
from all other images in that category is minimum.

(ii) Semantic Separation

This term measures how well-separated the different cat-
egories are from each other. For this, we compute average
distance of the mean descriptor of a category C; to the mean
descriptors of all other categories.

Figure 3 demonstrates the above statistics for the eleven
categories of our dataset computed using the two descrip-
tors discussed above. Though it was shown in [7] for the
ImageNet dataset that modern descriptors are capable of
separating semantically meaningful classes, that conclusion
does not really apply to our dataset. Figure 3 shows that
unlike the ImageNet dataset, our dataset is highly heteroge-
neous and there is little visual similarity among the images
within a class. Interestingly, for all the categories (except
the first one in case of GIST), the average distance of the
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Figure 3: Different statistics for our dataset. The first bar (blue) shows the average distance of the mean
descriptor of a category from all the images in that category. The second bar (red) shows the average distance
of the prototype image of a category from all other images in that category. And, the third bar (green) shows
the average distance of the mean descriptor of a category from the mean descriptors of all other categories.
The statistics in the top figure are computed using the GIST descriptor, and those in the bottom figure are
computed using BOw with the SIFT descriptor. See Sec. 2 for details.

mean descriptor of a class from the mean descriptors of all
other classes (semantic separation) is nearly half or less than
half of its visual scale (intra-class variability). This means
that on an average, intra-class variabilities are far more than
inter-class variabilities. This analysis demonstrates inca-
pability of modern descriptors in separating the semantic
classes of our dataset, and also verifies problem complex-

ity. 2

3. IMAGE REPRESENTATION

We represent a carving using a sequence of local discrim-
inative patches. As it was shown previously in [1, 4] that
segmentation of the object of interest from the surround-
ing significantly improves the recognition accuracies, we first
segment the carving region from the background, and then
compute its representation.

3.1 Foreground Segmentation

In object classification problems such as classification on
the PASCAL dataset [9], context knowledge (water) can be
very helpful in identifying an object (ship vs. car). How-
ever, previous works have demonstrated the need for seg-
menting the object of interest for addressing harder prob-
lems of fine-grain or within-class classification (e.g. flower
classification [4]). In such scenarios, the context informa-
tion is either unavaiable, or not useful (all flowers have the
background of leaves). Our problem is also along the sim-
ilar lines, hence we perform foreground segmentation as a
pre-processing step. In our case, the objects of interest are
either carvings or sculptures that are mostly made of stone.
Though it might be straightforward to use a supervised seg-
mentation approach based on a classifier trained on possible
foreground /background regions [1, 4, 18], we propose an un-
supervised method for this. This is because there are large
variations possible in the surface properties of possible fore-
ground regions. This makes learning a good region-classifier

2We also experimented with other descriptors such as HOG
and LBP using BOW histogram, but they were found to per-
form worse than SIFT.

difficult, and hence makes supervised segmentation unsuit-
able for this task. For segmentation, we assume that the
object of interest is also visually most salient [14]; or, there
is some region contained in the object that is visually most
salient as compared to all other regions. Then, the segmen-
tation is performed as discussed below:

(i) Super-pixel Segmentation

We are interested in generating a coarse segmentation of
the carving in an image. This is because many a times, the
carvings are made on a stone wall which has similar colour
and texture properties; hence it might not be possible to
perfectly segment it out using some modern segmentation
algorithm. Given an image, we segment it into super-pixels
using the code from [11]. This is a greedy graph-based seg-
mentation method that uses the boundary information be-
tween a pair of regions. To perform segmentation, we set
o = 0.4, K =500 and minimum_region_size = 500 pixels.
This gives approximately 15 super-pixels per image on an
average. We use quite a large value for the “minimum re-
gion size” so that we get large super-pixels. This is partic-
ularly useful for our task because, as discussed above, we
want coarse foreground segmentation. It is admissible to
get some background region in the finally segmented fore-
ground, but we do not want to miss any region that should
actually come in foreground, thus emphasizing high recall.

(ii) Seed-selection and Grabcut

Visual-saliency plays an important role in determining the
region(s) of interest in an image/object [20]. The visual-
saliency of an object’s region also hints about how informa-
tive it is in that object’s identity. Hence it can be used as
a measure for determining the most informative region(s) in
an object. Inspired from this, we use a graph-based visual
saliency method [14] for selecting the most salient region
from the regions obtained after super-pixel segmentation. It
is a bottom-up model that gives a visual saliency score in the
range [0, 1] to each pixel, with higher score corresponding to
higher visual saliency. We use the super-pixel with largest
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(b) Super-pixel Segmen- | (c) Saliency Map

(d) Seed for Grabcut
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Figure 4: Pipeline for unsupervised object-of-interest segmentation. (a) Given an image, (b) first we segment
it into super-pixels and (c) find the most salient super-pixel. (d) This super-pixel is then used as seed for
initiating Grabcut to perform foreground segmentation in an iterative manner, which finally returns the

segmented foreground (e).

cumulative saliency score as foreground seed for initiating
Grabcut [19], and rest of the image pixels are considered as
background. Keeping the size of super-pixels large practi-
cally helps in expanding the initial seed, thus preventing the
Grabcut algorithm from returning the complete image as
background. We perform Grabcut using the code from [13].
The output of Grabcut is uniformly expanded by a small
fraction and again used as seed for updating the foreground
in an iterative manner. After each iteration, if more than
half of a super-pixel comes into foreground, then that super-
pixel is completely merged into the foreground. We perform
25 iterations per image for foreground segmentation.
Figure 4 illustrates our foreground segmentation steps. It
is important to note that our segmentation pipeline is com-
pletely unsupervised unlike previous approaches [1, 4, 18].
Figure 5 shows some results of image segmentation. It can
be seen that our segmentation approach performs reason-
ably well and is capable of segmenting the object of interest.

(iii) Addressing Segmentation Failures

Because of the challenges involved in segmentation, it
is not always possible to get a reasonably segmented fore-
ground. In our case, since a significant portion of image is
occupied by either the sculpture or the same material as that
of the sculpture, we assume that at least one-third of image
pixels should be classified as foreground in the segmenta-
tion output. In cases where this does not hold, we discard
the segmentation output and pick the foreground pixels just
based on the saliency score (pixels with saliency > 0.25).

3.2 Patch Descriptor

Due to large intra-class and small inter-class variabilities,
the traditional image descriptors such as BOW using SIFT
might not be suitable for image-representation. However,
it is possible to determine some patches in a carving that
are most discriminative with respect to that particular carv-
ing (similar idea was adopted in [12], though for a different
task). Following this, we propose a method for representing
an image using a fixed number of ordered patches. These
patches are identified such that they are most discriminative
following some criteria (that we will discuss below). Below
we discuss our method for image representation.

(i) Determining Different-Class Pairs

Let T = {I1,..., I} be the set of images. For an image I,
we identify its farthest neighbour J from 7 using a standard
descriptor (say GIST). Since these two samples are farthest
from each other, they are very likely to be from different
classes. We perform this for every image and form a set
Tnheg consisting of all such pairs of images.

(ii) Identifying Discriminative Patches

For each image I, we now have another image J that is
most discriminative to it. We represent both these images
using a collection of square patches around interest points
described using the Histogram of Oriented Gradients (HOG)
descriptor [6]. We prefer the HOG descriptor over other de-
scriptors because it can capture the local shape and appear-
ance characteristics of an object and is more beneficial in
our case. Also, using the HOG descriptor, we get a represen-
tation for each patch in the continuous space. Instead, if we
had used the SIFT descriptor, each patch would have been
represented using a histogram of discrete Bow that would
suffer from the quantization loss.

The patches are computed by resizing an image {0.5, 0.75,
1.0, 1.25} times the original size. Each patch is a block of
2 X 2 HOG cells and each cell contains 8 x 8 pixels. For each
cell, a HOG descriptor is computed using the method and
code from [10]. For each cell, this gives a 31 dimensional
feature vector, which are then concatenated to obtain a 124
dimensional HOG descriptor for each block (or patch). This
descriptor is Lo normalized for comparing two patches using
the Euclidean distance.

Let Pr = {p1,...,pn, } and Qs = {q1,...,qn, } be the set
of patches corresponding to image I and J respectively. Our
alm is to pick a sequence of m most discriminative patches
(m < min(ng,ny)) F* = {ft,..., f} from the set Pr. We
perform this in an iterative manner using a greedy approach.
In the beginning, we select the first patch fi from P; such
that its maximum distance from any patch in @ is more
than the maximum distance of any other patch in P; from
the pathces in Q) ;. Precisely,

fi = argmaxmax||p: — g%, (1)

where the index ¢ and j vary over patches in P; and Q.
respectively. Now, suppose we have picked k patches Ff =



Figure 5: Examples of unsupervised foreground-segmentation. The first row shows example images from the
dataset, and the second row shows corresponding segmented foregrounds.

{fL,..., f¥}. To pick the next patch ff"'l (k+1<m), we
use the same procedure as above, leaving out the previously
picked patches. After m such iterations, we will get a se-
quence of m patches F" corresponding to I. This sequece
will be such that the patches with lower indices will be more
discriminative than the patches with higher indices, because
of the way they are seleted. In practice, we pick m = 20
patches per image. It is important to note that in this step,
we are also rejecting a large number of patches which are
not very discriminative. This helps in reducing the size of
image representation, and at the same time provides a rep-
resentation in the continuous space.

Though our approach of identifying discriminative patches
is inspired from [12], we have formulated a completely dif-
ferent procedure for doing so in the retrieval task, with the
major difference being the complete unsupervised nature of
our approach. We do so because in image retrieval scenarios,
it is usually not desirable to harness category-level informa-
tion of the dataset images.

4. PARAMETRIZING PATCHES

Image retrieval is usually performed by ranking all the
dataset images given a query image using some measure
such as Euclidean distance. The distances are computed
in the feature space; hence rather than simply using the
unweighted features, it is desirable to learn a metric that
parametrizes the distance between two image features. In
this section, we discuss a metric learning approach that
learns two metrics using dissimilarity and similarity between
pairs of images.

4.1 Parametrizing Different-Class Patches

For each image I, we have a sequence of m most dis-
criminative patches F/™ = {f},..., f/}. Recall that each
of these patches is represented by a HOG descriptor. So,
we can represent I using a single feature vector x1 € RN
which is a concatenation of HOG descriptors of the patches
{ff,..., f"} in that sequence. This way, we get a single
feature vector representing an image. Now, from 7,4, we
have pairs of images such that the images in each pair are
very likely to be from different classes. Let (I,J) € Tyeq,
and x1 and xj be the feature representations of I and J re-
spectively. We form a vector dig € RY such that dis(k) =
(x1(k) —x3(k))?, (where (-) denotes an entry in a vector).
That is, each element of diy denotes the squared Euclidean
distance between the corresponding elements of x1 and xj.
From this, we define the parametrized distance between the

two images I and J as:
Dy(1,J) =w-du, (2)

where the vector w € RY parametrizes the distance between
two images that are likely to be from different classes. Our
next task is to learn the metric w. The traditional metric-
learning algorithms such as [23] usually require samples or
sample-pairs from same class as well as different class(es).
Since all we have are the samples (most likely to be) from dif-
ferent classes, it might not be straightforward to estimate w
using [23] or any other existing algorithm. Here, we formu-
late metric-learning as an optimization problem that suits
our requirements; i.e. learns w just using the samples from
Theg. Precisely, we are interested in minimizing the follow-
ing objective function:

m“i,n %”WHQ +C1 Z([,J)eTneg [ —w - dug]+
s.t. w((i) >0 Vi (3)

Here, C; > 0 handles the trade-off between the two terms,
[ ]+ is the standard hinge-loss such that [z]; = max(0, z),
and a > 0 is the margin constraint. In our case, if we do not
put any constraint on w, then the objective function will go
on minimizing by simply scaling it, without any learning. In
order to control this, we regularize w which will prevent it
from arbitrarily scaling. Also, we want every element of w
to be non-negative so that Eq. 2 obeys the non-negativity
property of a distance metric. Therefore, after each up-
date, it is projected back into RY. After solving the above
optimization, we obtain the metric w that computes dissim-
ilarity between two images. Note that our metric learning
approach is completely unsupervised unlike [23], i.e. we do
not use category information anywhere; instead, we use the
image pairs that are very likely to be from different classes.

4.2 Determining Same-Class Pairs

As we formed the set Tpeq, similarly we can form the set
Tpos as well. For an image I € 7, we identify its most similar
image J from 7. But here, unlike the previous case, we can
not very confidently claim whether both the images will be
from the same class because of large intra-class varibilities
(as discussed in Sec. 2). However, since we have learnt the
vector w, we can use this in rejecting bad pairs. For each
pair of most similar images, we find their parametrized dis-
tance (Eq. 2), and pick only the top 50% pairs with least
distance. This way, we extract the pairs which are more
likely to belong to the same-class. Using all such pairs, we
form the set 7,05 analogues to Tnegy.



4.3 Parametrizing Same-Class Patches

Similar to Sec. 4.1, we can define distance between any
pair of images (I,J) € Tpos. Precisely, D,(I,J) = v- dus,
where v is analogues to w except that it parametrizes sim-
ilarity between two images. In this case also, we can opti-
mize v in a manner similar to Eq. 3. However, the objective
function will change because now we have to minimize the
distance between images in a pair. We define the objective
function as below:

H{,in %HV - 1”2 +C2 Z(I,J)eTpos [v-dis — 8]+
s.t. v(i) >0 Vi (4)

Here, C2 > 0, [ ]+ denotes hinge-loss, and 3 > 0 is the mar-
gin constraint (8 < «). In the above optimization, in order
to prevent v from being a zero-vector, regulaization is per-
formed that penalizes its variations from uniform map. One
interesting thing to note here is that we have used differ-
ent margins in the two optimization problems (Eq. 3 and
Eq. 4). Intuitively, we want samples from the same class
to be closer as compared to those from different classes by
atleast a margin of a — 3. This way, we indirectly introduce
a (weak) large-margin constraint analogues to [23] in an un-
supervised setting.

One might say that the learnt weights w and v are not
very strong metrics individually, because of the procedure
and assumptions made during learning. However, they can
be combined to provide a better similarity measure which
we will discuss in the next section.

5. RETRIEVAL PROCEDURE

Here, first we would like to briefly summarize the previ-
ous steps. First, we segment the carving region of an image.
Next, on the segmented region, we compute patch descrip-
tors and then selectively identify a sequence of discriminative
pathces. And finally, we learn metrics w and v using pairs
of (most likely) different and same-class images respectively.

Given a query image @), our goal is to retrieve dataset im-
ages such that most similar images are ranked higher as com-
pared to rest of the images. For this purpose, first we rank
all the images with respect to @ using a baseline descriptor
(c1sT or BOW with SIFT) and obtain the lowest ranked im-
age (the image most dissimilar to it). Using the procedure
discussed in Sec. 3.2, we identify the sequence of m discrimi-
native patches in @ and concatenate them to form a feature
vector xq. After this, we determine the similarity of any
image I in the dataset with @) using the following measure:

(v-dig)™"
w-diq

()

Here, diq is the distance vector corresponding to the fea-
ture vectors x1 and xq of the two images (as discussed in
Sec. 4.1). In the above score, we compute both how similar
(numerator) and how dissimilar (denominator) are the given
two images. This provides a stronger measure of comparing
two images as compared to using a single metric, and is sim-
ilar in idea to the log-likelihood ratio used in [12] and ratio-
test in [16] for calculating relevance between two images.
Using the above score function we can rank the dataset im-
ages based on their score, with larger score corresponding to
higher relevance (i.e., ranking based on descending order of
the score). However, since this is computationally intensive

SrQ =

to calculate score for all the images, we use our method for
re-ranking only the top few results retrieved using a base-
line descriptor (such as SIFT or GIST). This is a sort of a
rejection-based refining scheme where at first step, few most
confident candidates are identified using a weak criteria, and
then some stronger but computationally intensive criteria is
used to refine previously obtained results.

6. NETINETI

“Neti-Neti” is a Sanskrit expression that means “not this,
not this” 3. Tt signifies the importance of rejection in iden-
tification. Humans are very good in quickly identifying an
entity using some distinct part(s); e.g., large stomach and
nose in a sculpture allow to reject the hypothesis of that
sculpture being of Natraj, Saraswati, etc., and makes Ganesh
the most likely answer. This can be thought of as rejection-
based identification, where a large hypothesis space is re-
jected based on the information about some distinct part.

In our case, there are large similarities across different
categories as discussed in Sec. 2. This makes it very diffi-
cult to perform identification just by learning “what does a
sculpture look like?”, and thus it becomes very important to
learn “what does a sculpture not look like?” as well. In other
words, similarity alone can not be a sufficient measure when
there is large intra-class variability, and it becomes neces-
sary to perform rejections based on dissimilarity. The prob-
lem becomes even more pronounced in the retrieval scenario,
where there is no prior knowledge about the class-label asso-
ciated with each image (i.e., the unsupervised setting), and
hence there is no direct way of learning the properties of
same/different-class sculptures.

In this work, we have tried to address the above prob-
lem by formulating a rejection-based retrieval scheme based
on the concept of Neti-Neti. We started by rejecting image
pixels that are not likely to belong to the carving. Then we
formed an image-representation that rejects a large number
of patches that are not very discriminative for some given
image. Assuming that the most dissimilar images are from
different classes, we learnt the metric w that measures dis-
similarity between two images. We then used this metric
for extracting pairs of images that are very likely from the
same class, and learnt the metric v that evaluates similarity
between two images. During retrieval, given a query image
Q, first we ranked all the images based on image-similarity
(nearest-neighbour-based retrieval), and then re-ranked only
the top few results based on both their similarity as well as
dissimilarity (Eq. 5) with Q. In this way, at each step we
have tried to emphasize on rejecting the possibililties that
might not be useful in the final decision.

7. EXPERIMENTS

7.1 Dataset and Experimental Details

Our dataset contains 524 images from 11 different cate-
gories, with 45 — 50 images per category downloaded from
the Internet. We randomly partition the images from each
category into around 80% training and 20% query (testing)
images. This gives 423 training and 101 query images. The
training data is used for metric learning in an unsupervised
manner, i.e. without using class information; so the learnt
weights w and v are least likely to overfit the dataset and

3http://en.wikipedia.org/wiki/Neti_neti



| Method | Descriptor | mAP | PQ10 |

SIFT 0.16 0.20

Bl GIST 0.19 0.27

SIFT 0.17 0.21

B2 GIST 0.26 0.41

SIFT 0.19 0.25

Bl + Our method | /o 0.24 | 0.39
SIFT 0.21 0.28

B2 + Our method QIST 0.30 | 0.48

Table 1: Retrieval performance using different
methods. See Sec. 7.2 for detalils.

learning is incremental. From now onwards, we will refer
the training images as dataset images (following the prac-
tice prevailing in the on-line search scenario).

All the experiments are performed using the split dis-
cussed above. To evaluate retrieval performance, we com-
pute the mean Average Precision (mAP) and precision-at-
10 (P@10) for each query. These are standard measures for
evaluating retrieval performance. The final performance is
computed by averaging the scores over all the queries.

7.2 Results

We use the SIFT and GIST descriptors as baseline measures
for evaluating retrieval performance. As a first baseline B1,
given a query image, we compute its descriptor (see the de-
tails discussed in Sec. 2), and rank all the dataset images
based on the Euclidean distance. As a second baseline B2,
we manully annotate a rectangular bounding-box around the
sculpture in all images (both query as well as dataset images)
and then repeat the same process as in B1.

To evalute the performance of our method, first we rank
the images as in B1 or B2, and then re-rank only the top 100
images using our approach (as discussed in Sec. 5). While
evaluating our method using B2 as first stage, we do not
perform segmentation as a pre-processing step because the
bounding-box itself contains the complete sculpture and per-
forming segmentation over it might help little.

Table 1 shows the mAP and PQ10 obtained using differ-
ent methods. As we have discussed quite a few times, the
problem we are addressing is actually a hard problem. This
becomes quite evident from the mAP scores achieved by
B1 and B2. Interestingly, GIST performs significantly bet-
ter than SIFT. This is because using SIFT with discrete BOwW
to encode information around specific points in an image
works best for matching the same instances of an object with
mild variations in lighting, view-point, size, etc. Whereas,
in our case, all of these are subject to high variations. Also,
even with B2, the improvement achieved using SIFT is just
1%. In contrary, the GIST descriptor, that encodes a set of
perceptual properties, probably better captures the gist of
a sculpture, and hence performs considerably better than
SIFT. With B2, the performance for GIST boosts signifi-
cantly, indicating that it actually provides a better image-
representation in our case. These results also validate the
observations in Figure 3, which shows that GIST captures the
intra-class similarities almost two times better than SIFT.

Our method (i.e., patch-based representation + re-ranking)
always improves the performance over the two baselines.
Also, performance of our method without using the bounding-

| Case | 1 [ 2 [ 3 |
Supervised ML | 97.42% | 0.85% | 0.09%
Unsupervised ML | 97.13% | 1.56% | 0.16%

Table 2: Retrieval performance (%mAP) on toy
data using supervised and unsupervised metric-
learning (ML) methods. See Sec. 7.3 for details.

box annotations (“B1 + Our Method”) is better (for SIFT) or
comparable (for GIST) as compared to using bounding-box
annotations (B2). Figure 6 shows some retrieval results ob-
tained by using the best method, i.e. combining our method
with B2 using the GIST descriptor.

7.3 Discussion

To analyze how the unsupervised metric learning approach
(presented in Sec. 4.1) compares with the supervised met-
ric learning algorithm LMNN [23], we have conducted a toy
experiment that imitates the web-based retrieval scenario
(few categories and several distractors). We randomly cre-
ate 100 samples each from 5 categories (2D Gaussians) with
train:test split as 80:20. We consider retrieval on (i) training
data, (ii) training data 4 10° distractors (random samples),
and (iii) training data 4 10° distractors. For the three cases,
we get the mAP scores as shown in Table 2. These results
support our argument of opting unsupervised retrieval set-
up over the supervised one.

Though we have formulated the problem in an unsuper-
vised set-up, it might be interesting to analyze the perfor-
mance in a supervised scenario. For this, we learn a Maha-
lanobis metric for the SIFT and GIST descriptors separately
using the LMNN [23] algorithm. Using this, we obtain mAP
of 0.22 and 0.34 respectively for the two descriptors. Though
the results obtained using B1 are much less than these, the
best results obtained (Table 1, row 5) are very close. This
supports the efficacy of our formulation in addressing the
challenges involved in the given task.

Also, it is worth noticing that similar to [1], the baseline
descriptors do not perform well in our case. However, [1] ob-
tained significant improvements by exploiting the geometry
information. Whereas, we do not have the advantage of ge-
ometry information and hence the improvements we achieve
using our scheme are not appealing, but quite acceptable
looking at the complexity of the task.

8. CONCLUSION

In this paper, we proposed a retrieval scheme using a new
image-representation and rejection-based re-ranking for the
task of unsupervised retrieval of sculpture images given a
query image. Using our approach, we were able to achieve
better performance than state-of-the art descriptors. Look-
ing at the complexity of the problem, there is a lot of scope
for investigating different aspects related to this task. Also,
we believe that our method can find applications in various
other recognition problems as well.
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Figure 6: Retrieval results obtained using B2 and GIST descriptor combined with our method (see Sec. 7.2 for
details). For each query (first column), the top 9 results are shown.
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