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Abstract

3D textures are often described by parametric functions
for each pixel, that models the variation in its appearance
with respect to varying lighting direction. However, para-
metric models such as Polynomial Texture Maps (PTMs)
tend to smoothen the changes in appearance. We propose
a technique to effectively model natural material surfaces
and their interactions with changing light conditions. We
show that the direct and global components of the image
have different nature, and when modeled separately, leads
to a more accurate and compact model of the 3D surface
texture. For a given lighting position, both components are
computed separately and combined to render a new image.
This method models sharp shadows and specularities, while
preserving the structural relief and surface color. Thus ren-
dered image have enhanced photorealism as compared to
images rendered by existing single pixel models such as
PTMs.

1. Introduction
Texture refers to a surface characteristic and appearance

of an object given by its geometry, density and surface re-
flectance, and the stochastic variation of these parameters.
It is an important cue in trying to achieve photorealistic ren-
dering of 3D models by adding surface details or color to an
object or a scene.

Mapping 2D textures or images is the most common
method used, which is efficient for most 3D models and
scenes, especially where the lighting conditions remain con-
stant. They look best when the object is viewed in similar
lighting conditions as when the texture is captured. In prac-
tice, the real world surfaces are characterized by phenomena
such as inter-reflection, self-shadowing, subsurface scatter-
ing, specularity, etc. These properties interact with different
lighting directions and therefore the same surface appears
different under different lighting condition Fig.1. 2D tex-
ture fails to capture these complex reflectance properties of
a surface and therefore a rendered surface looks highly un-

(a) (b) (c) (d)

Figure 1. Images of a rough granite surface obtained under varying
light conditions. Note the change in surface appearance in each of
(a), (b), (c) and (d)

realistic in case the lighting conditions are changed. In or-
der to produce a realistic rendering it is necessary to capture
and model the interaction of the material surface with differ-
ent lighting conditions. [6] investigates the problem of rep-
resentation, recognition, synthesis of natural materials and
their rendering under arbitrary viewing/lighting conditions.

3D textures are a way to model this relation between sur-
face reflectance properties and illumination/viewing condi-
tions. The use of 3D texture modeling results in enhanced
realism of the scene. Reflectance texture maps are one of
the techniques that can be used to compactly represent the
3D textures. These maps are generated using image re-
lighting techniques [1, 8, 3] in which multiple images are
captured under different lighting conditions.

Image based modeling techniques [2, 11, 12] have
emerged as an effective approach for realistic rendering of
3D objects, where multi-view geometry is utilized in di-
rectly synthesizing an unseen view of an object from nearby
views without explicit surface reconstruction. The tradi-
tional object models capture the shape information in the
meshes, while the reflectance and the surface properties are
relegated in the textures. 3D models such as PTM capture
the surface properties more faithfully, including the effect
of small scale height variation on the surface.

Polynomial Texture Maps [8] belong to the class of UTFs
(Uni-directional Texture Function). It is a pixel based tech-
nique that concisely models the surface reflectance proper-
ties using a polynomial model for the reflectance, depen-
dent on two angular parameters of the lighting direction (lu
and lv). It uses a biquadratic polynomial function with 6
coefficients per pixel for modeling the reflectance. PTMs
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Figure 2. Component Based Modeling (CBM)

reconstruct the color of the surface under varying light-
ing conditions and models real world phenomenon such
as self-shadowing, inter-reflection and sub-surface scatter-
ing. They thus introduce enhanced photorealism in tex-
ture mapping. Polynomial Texture Mapping is applied in
a wide range of archaeological contexts [5]. It also offers
advantages over traditional raking light photography for ex-
amining and documenting the surface texture and shape of
paintings [10]. Recently, PTMs have been used in cultural
heritage domain for documenting and virtually inspecting
several sets of small objects, such as cuneiform tablets and
coins.

But PTM technique causes overall smoothening of light
which dampens the effect of specularity and softens sharp
shadows. The effect of point light source is reduced and the
appearance is always similar to a diffused light source. The
current state-of-the art in the field of PTM involves robust
method for interpolation of shadow and specularity, Drew et
al[4]. But they do not model natural material surfaces and
their interactions with changing light conditions. Moreover
the number of per pixel parameters are too high for real-time
rendering. [7] shows that surface normals extracted from
the PTM image data structure are of lower quality because
of the smoothing caused by the use of biquadratic function,
which compromises the directional accuracy of the normals.

In this paper we improve upon the PTM model to over-
come the above limitations and generate a complete 3D
Texture model that can be evaluated at individual pixels.
We propose an approach to image-based lighting interpo-
lation that is based on estimates of geometry and shading
from a set of input images. We decompose images captured
at different lighting conditions into intrinsic image compo-
nents; i.e, the direct and global image components. Each of
these components is then further separated to obtain differ-
ent physical phenomena such as shadows, specularity and
luminance. The final image is obtained by combining the
individual models together. The method is shown to indeed
generate better results for non-observed lighting directions.

The main contributions are (1) Direct and Global modeling
characterized by shadows, specularity and luminance, (2)
separate modeling and hence better capturing of shadows
and specularities and (3) per pixel function model to achieve
real-time rendering of enhanced 3D textures on GPU.

2. Component Based Modeling (CBM)
The appearance of the texture in a given lighting con-

dition is characterized by shadows, specularity and overall
luminance. The luminance is affected by subsurface scatter-
ing and inter-reflection properties of the surface. PTM does
not separately take these properties into account and mod-
els them together using a biquadratic function. However,
the nature of variation of the reflected light is significantly
different for these phenomena.

In our method, we analyze each of these phenomena sep-
arately and capture the results using appropriate models.
We first separate the images into two components: One is
the direct part, which captures the light that is directly re-
flected by the surface point from the source and other is
the global part which is due to the illumination of the point
from all other points of the scene. Separation of a scene into
global and direct part can be done by illuminating the scene
with a high frequency binary pattern [9]. Fig. 3 shows the
direct and global component of sponge texture.

The shadows and specularities appear very strongly in
the direct part, as these are phenomena that involve light
that reaches the surface point directly from the light source.
The fine details and structure of the material are also very
prominently visible in the direct part. The global compo-
nent contains the lighting of a surface point from other parts
in a scene, and hence captures the overall illumination as
well as color variations of a surface with lighting direction.

Both direct and global components are separately ana-
lyzed to derive the corresponding models and parameters.
Given a new lighting direction, we use the two models sepa-
rately to generate the corresponding components, and com-
bine them to get the final image. Fig. 2 shows the overall

42



(a) (b) (c)

Figure 3. Components of a sponge image: a) Original image, b)
Direct c) Global component.

component based modeling technique.

2.1. Modeling Direct Component

As noted before, the direct component is affected by the
phenomena of self-shadowing and specularity, in addition
to the lambertian reflectance of the surface point. Shad-
ows are the points that receive no direct light from the
source. However, their luminance value is not completely
zero. This is because they get some light from the neigh-
boring pixels because of inter-reflections.

When the image is decomposed into direct and global
component, the luminance value of shadow region (due to
inter-reflections) appear in global part and thus direct part
is left with dark prominent shadow regions whose value is
near to zero (Fig. 3(b)). These dark shadow regions can
easily be separated out using thresholding which is compu-
tationally more efficient.

2.1.1 Shadow Modeling by Interpolation

Consider a pair of images of a surface captured from the
same view point, but by moving the light source through a
short distance. Each pixel belong to one of the three cate-
gories:a) Pixels that are not in shadow in either image. b)
Pixels that are in shadow in both images. c) Pixels that are
in shadow in only one of the images.

For the first two categories, the pixels that are in shadow
continue to remain in shadow and that illuminated remain
illuminated. The luminance values of the first two types of
pixels can be directly calculated by linear interpolation or
higher order interpolation between the values of the corre-
sponding pixels in the given two images. In practice, linear
interpolation works well, as the variations are often very
limited for the first two types. The value of the interpolated
pixel(k), L, at lighting position p0 is given by:

L(k, p0) =
ω2L1(k, p1) + ω1L2(k, p2)

ω1 + ω2
, (1)

where ωi = |D(p0, pi)|; D(pa, pb) gives distance between
lighting directions at pa and pb.

In case of a pixel that transitions from shadow to light
(or the reverse), the transition is quick, though not instan-
taneous. We model this behavior using a sigmoid function.

(a) lu = .61, lv = .35 (b) Interpolated (c) lu = -.61, lv = -.35

Figure 4. Shadow interpolation in two directions: a,c) images with
horizontally varying lighting directions, b) interpolated direct im-
age between the two

(a) (b) (c)

Figure 5. a) Direct component of an image computed using bilin-
ear interpolation, b) after multiplying (a) by the shadow mask, and
c) after adding specularity.

As the light source moves from the position of the first im-
age (p1) to the second (p2), there is a point px around which
the pixel quickly emerges out of the shadow and then re-
mains illuminated for the rest of the light motion. The tran-
sition would be abrupt except for the diffraction of light
around the edge causing the shadow. Given the illumina-
tions of shadow (Ls) and non shadow (Lns) pixels, and po-
sition px at which the transition occurs, the illumination at
position p0 can be approximated by a sigmoid of the form:

L(k, p0) = Ls(k, p1) +
Lns(k, p2)− Ls(k, p1)

1 + χe−d
, (2)

where d = p0 − px. The slope of the sigmoid function con-
trols the transient behavior of pixels from shadow to non-
shadow region, controlled by the parameter χ.

The only unknown in carrying out the interpolation is
the position px at which the transition occurs. Consider a
pixel k that is in shadow at light position p1. Let χs be the
fraction of neighboring pixels of k that are in shadow in the
first image, and χns be the fraction of neighboring pixels of
k that are not in shadow in the second image. We compute
these fractions by taking masks of increasing sizes until the
0 < χx < 1. If χns and χs are almost equal, then the
transition, px occurs around midway between positions p1
and p2. If χns >> χs, then px is close to p1, and χs >>
χns indicates that px is far from p1 and close to p2. We
define px as:

px =
χnsp1 + χsp2
χns + χs

(3)

The advantage of interpolation is that the physical struc-
ture of the material is taken into account while interpolating,
leading to realistic estimations of shadows. This is implic-
itly used while considering the neighborhood information
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(a) (b) (c) (d)

Figure 6. a) Binarized image of cloth shadow, b) Image by classifi-
cation, c) Image by interpolation, d) Distance image of pixels from
classifier boundary. Blue pixels are closest to the hyperplane and
include pixels at the edge of a shadow or in the region of diffused
shadow. Black color pixels are the farthest from the hyperplane
and represent regions of dense shadow.

of a pixel. However approach is both memory and compute
intensive as one need to store input images for interpolation,
and the computation of each pixel of the shadow mask in-
volves searching an increasing neighborhood of pixels. An
alternate method is to decide whether a given pixels falls
in shadow or not, independently as a function of just the
lighting position. Fig.4 shows the input images and the in-
terpolated image at two different lighting positions.

2.1.2 Shadow Modeling by Classification

In our experiments, we note that most pixels fall under
shadow from the effect of at most two neighboring struc-
tures. Hence, a biquadratic classifier boundary is adequate
to decide whether for a given lighting direction, the pixel
will be in shadow or not.

Y a = b (4)
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where yi=[lu2 lv

2 lulv lu lv 1], a is the separating hyper-
plane, b is the margin vector and ‘n’ is the total number of
training images.

The direct component of input images are binarized us-
ing thresholding and used as training data. After the classi-
fication, each pixel in new image is labeled as shadow or
non-shadow. The resulting shadow regions estimated by
classifier are very close to original and more accurate than
the images that are directly interpolated from the input im-
ages Fig. 5(a)-(c).

We use the binary image, obtained after classification,
to make a mask where each non-shadow pixel is given a
value of 1 and shadow pixels are given values between 0 to 1
based on their distance from the hyperplane. The greater the
distance, the farther the pixel is in shadow and thus smaller
is the value (Fig. 6). Since the direct component is devoid

Algorithm 1 Shadow modeling by classification
Input: Binarized direct component training images

1: Take shadow pixels as negative samples and non-
shadow pixels as positive samples.

2: Learn the hyper plane (Ya=b) per pixel using pseudo
inverse technique.

3: Classify pixels for a given lighting direction

Img(i, j) =

{
1 if Y a > 0
0 otherwise

Output: shadow mask image

of color variation, the change in chrominance value is min-
imal. Thus using a bilinear function

L(lu, lv) = αlu + βlv + γ, (6)

an interpolated image is generated (Fig. 5(a)). This image
is then multiplied with shadow mask.

Using the above function for interpolation leads to the
smoothening of shadows. Therefore we multiply this im-
age with a mask described above to get the shadowed new
image (Fig. 5(b)). The value of non-shadow pixels are not
affected but the values of the shadow pixels are attenuated
by the multiplication with the shadow mask. The classifi-
cation technique thus enables us to render each pixel inde-
pendently, increasing the speed of rendering and making it
suitable for processing on the GPUs. The pseudo code for
shadow modeling by classification is given in Algorithm 1.

2.1.3 Modeling the Specularity

Specularity is the visible appearance of specular reflections.
It determines the brightness and location of specular high-
lights, given a lighting direction. In case of PTMs, the abil-
ity to model the specularity is sacrificed due to fixed view-
ing direction. PTMs use a biquadratic interpolation model
due to which the intermittent highlights, inherently present
in many texture surfaces, are completely washed out.

We model the specular highlights separately from the
base reflection and shadowing in the direct component. The
value of pixels showing these highlights fall off very sharply
as lighting direction is changed. One could use any sharp
falling function such as a gaussian with very small variance
or an exponential to model it. We model specular highlights,
S, as:

S = η.exp−
[
(lu − µx)

2 + (lv − µy)
2

δ

]
, (7)

where µx and µy are the lighting direction coordinates at
which specularity is maximum, lu and lv are the current
lighting directions. η and δ are the parameters that control
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(a) (b) (c) (d)

Figure 7. (a) Original Global Image (b) Global Image modeled by
Gaussian function (c) Global Image modeled by Biquadratic (d)
Global Image modeled by Parabola.

the magnitude and fall-off of this function. The highlights
also can have a tint based on the nature of reflection. In
this case, one can multiply the above function with a single
chrominance value to achieve realistic estimation.

We note that the modeling of highlights is tricky as one
can observe highlights only if one of the original images
contain it. Hence the highlights estimated are often inac-
curate, although realistic (Fig. 10(d),(e)). Fig. 5(c) shows
the final image after multiplying the bilinearly interpolated
image with shadow mask and adding specularity.

2.2. Modeling Global Component

The global component of the image is characterized by
subsurface scattering, secondary illumination, diffuse inter-
reflections, volumetric scattering and translucency. These
are not sharply varying phenomena and therefore the vari-
ation of luminance can be modeled using an appropriate
function. However, the inherent interaction between differ-
ent parts of the surface in global illumination means that the
chrominance of a point can change with a change in lighting
direction.

As we separate the modeling of global component, the
color values of the image rendered are closer in value to
the original image and better than the images generated by
PTM. From our experiments on various surfaces, the global
component of illumination tends to be maximal when the
illumination is perpendicular to the surface, and drops off
in a symmetric fashion. We experiment with the following
functions for modeling the global component: (a) Gaussian
(b) Biquadratic polynomial, and (c) Paraboloid.

In (a), we model the luminance as a gaussian function of
lighting direction:

L(lu, lv) = K exp−(al2u+bl2v+clulv+dlu+elv+f) (8)

The above system of equations can be solved using SVD
and the coefficients a, b, c, d, e, and k, can be estimated per
pixel. Biquadratic polynomial, also used in modeling PTMs
[8], can be a good choice here because of the absence of
sharply varying features.

L(lu, lv) = al2u + bl2v + clulv + dlu + elv + f (9)

The paraboloid may not be as accurate as above func-
tions and can lead to some smoothening but they are com-

(a) (b)

(c) (d)

Figure 8. Comparison of luminance at a pixel as modeled by differ-
ent functions: a) Original function plot at that pixel b) By Gaussian
c) By Biquadratic d) By Parabola.

putationally efficient with 5 coefficients per pixel.

L(lu, lv) = al2u + bl2v + clu + dlv + e (10)

Fig. 7(a)-(d) shows the global component as modeled by
each of the above functions. We see that the gaussian model
provides the most accurate estimation of global component
although all three models are similar in performance to vi-
sual inspection. One could hence use the paraboloid for
purposes of efficiency and storage.

Fig. 8(a)-(d) shows the luminance of this pixel as a func-
tion of lighting direction when modeled using the different
functions mentioned above. Gaussian provides the most ac-
curate estimation especially at the peak values. The mean
squared error over a sampled set of points from different
surfaces is shown for comparison in table 1. Statistic ally
and visually, the Gaussian model best fits the observations.

Table 1. Root Mean Square Error Comparison
Dataset Gaussian Biquadratic Parabolic
Sponge 2.70 3.64 3.26
Cloth 3.60 6.01 4.41
Granite 2.81 3.99 3.25
Sand 2.66 4.09 3.97

3. Data Acquisition
We collect multiple images of a static object with a static

camera under varying lighting conditions. The camera is
mounted vertically above a table that holds the surface.
Since the camera is fixed, we avoid the need for any cam-
era caliberation. The scene is illuminated using a high fre-
quency checkerboard pattern with the help of the projector.
The projector (light source) is moved to different lighting
positions for the purpose of obtaining images with differ-
ent lighting directions. The distance of the projector from
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the scene remains fixed, and only its height and position is
changed. This enables us to capture multiple images with
varying light source direction from a hemispherical set of
world coordinates. We capture images from 30 different
lighting directions and for each lighting direction, using
component separation technique described in [9], we sep-
arate the image into its global and direct components. We
capture 5-6 additional images which are used as benchmark
images for comparing results.

4. Experimental Results and Analysis

The component based modeling proposed in this paper
has been applied on various natural material textures. We
present qualitative and quantitative assessment on texture
images as obtained from our method and that obtained from
the PTM over different natural material surfaces. In Fig.
10(a)-(l) 1, we compare ground truth images with images
obtained from our technique and with PTMs. The texture
of sand when modeled using CBM technique, preserves
prominent shadow regions where as these regions are sig-
nificantly washed out in PTM images(Fig. 10(a)-(c)) The
sponge texture (Fig. 10(d)-(f)) shows a very noticeable dif-
ference between the two techniques.

In the PTM images, there are no sharp shadows, the spec-
ularities are washed out and surface relief is smoothened
to some extent whereas in CBM, structural details are pre-
served making it look more photorealistic. PTM smoothens
sharp shadows, while they are preserved in the CBM ren-
dered images.

For quantitative comparison, we capture additional im-
ages from known lighting directions during the capture
phase. Generic measures such as PSNR only gives the av-
erage differences, and are not visually significant. We com-
pute the absolute differences between each pixel values and
analyze the distribution of these values. The differences
between the original image and the image rendered using
CBM and PTM are plotted as boxplot(Fig. 9).

It is clear from the figure that the average per pixel er-
ror and the number of outlier points are less in the image
rendered using CBM as compared to those rendered using
PTM. However, one should note that the PTM based models
miss the specularities completely, while CBM is possibly
rendering some of the specularities at incorrect positions.
This would result in a higher quantitative error for CBM,
while the visual appearance is improved.

In case of cloth texture (Fig. 9(a)-1,2), one can observe
that the number of outliers are quite high in case of PTM.
This is because fine details and the sharpness of edges in
shadow region are lost in PTM. The root mean square error
in case of CBM is 3.5 whereas in case of PTM its 6.2. If
outliers are included then rms becomes 4.9 for CBM and

1View images in soft copy for better clarity

(a) (b)

Figure 9. Error comparison between CBM and PTM over different
surface textures. Red bars indicate outliers. The red line in the box
is the mean and the blue lines are the 25th and 75th percentile.

shoots upto 10.1 for PTM.
For white granite (Fig. 9(a)-5,6), average error is nearly

same for both. PTM is able to render it well as the sur-
face has less shadow and structural variations. However, if
we consider sponge texture, the PTM performs quite badly
with average error of around 14 and 75th percentile at 17
whereas average error of CBM is around 8 with 75th per-
centile at 10(Fig. 9(b)). Sponge is a highly textured surface
with specularity and prominent shadows. PTM produces
bad results as it tends to smoothen out the surface relief. But
CBM accurately captures all structural details and thus ren-
dered image is closer to the original. Modeling the shadows
and specularity separately in CBM also allows us to make
rendered images with multiple light sources, more realistic.

But this improvement is achieved at the cost of more co-
efficients per pixel as compared to 6 coefficients in PTM.
CBM uses a total of 19 coefficients as compared to [4]
which requires the estimation of parameters- α (a scalar), β
(3-vector) and γ (n-vector). These parameters are estimated
per pixel, separately for shadow and specularity modeling.
Since ‘n’ is generally 40-50, therefore total coefficients are
very high as compared to ours.

5. Conclusion and Future Work
This paper presents the technique which results in en-

hanced photorealism, preserving sharp shadows and spec-
ular properties from smoothening out and making point
source effect more prominent. The separate model for lumi-
nance estimation provides us with color values which are in
close agreement with the color values of the original image.
Results obtained on re-rendering the input images show a
considerable improvement over original PTM technique.

In future, we will port the rendering algorithms on a
GPU to achieve real-time rendering with CBM textures. We
aim at extending our algorithm to support synthesis of re-
flectance function texture.
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