
Distributed Massive Model Rendering

Revanth N R
∗

Center for Visual Information Technology
International Institute of Information Technology

Hyderabad, India - 500032
revanth.nr@research.iiit.ac.in

P. J. Narayanan
Center for Visual Information Technology

International Institute of Information Technology
Hyderabad, India - 500032

pjn@iiit.ac.in

ABSTRACT
Graphics models are getting increasingly bulkier with de-
tailed geometry, textures, normal maps, etc. There is a lot
of interest to model and navigate through detailed models of
large monuments. Many monuments of interest have both
rich detail and large spatial extent. Rendering them for navi-
gation on a single workstation is practically impossible, even
given the power of today’s CPUs and GPUs. Many models
may not fit the GPU memory, the CPU memory, or even
the secondary storage of the CPU. Distributed rendering
using a cluster of workstations is the only way to navigate
through such models. In this paper, we present a design of
a distributed rendering system intended for massive mod-
els. Our design has a server that holds the skeleton of the
whole model, namely, its scenegraph with actual geometry
replaced by bounding boxes at all levels. The server divides
the screen space among a number of clients and sends them
a list of objects they need to render using a frustum culling
step. The clients use 2 GPUs with one devoted to visibility
culling and the other to rendering. Frustum culling at the
server, visibility culling on one GPU, and rendering on the
second GPU form the stages of our distributed rendering
pipeline. We describe the design and implementation of our
system and demonstrate the results of rendering relatively
large models using different clusters of clients in this paper.

Keywords
ICVGIP2012, Distributed rendering, Massive model render-
ing, Load balanced rendering, Parallel rendering

1. INTRODUCTION
Modern virtual reality applications have created geomet-

ric models of large and complex 3D environments. Re-
cent initiatives on digitizing monuments of popular interest
across the world are generating massive 3D models, preserv-
ing their minute details. These Virtual reality applications

∗Corresponding author

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICVGIP ’12, December 16-19, 2012, Mumbai, India
Copyright 2012 ACM 978-1-4503-1660-6/12/12 ...$15.00.

would like to use a user-steered interactive walkthrough of
these models to engage lay users.

Conventional rendering architectures and techniques can-
not cater to such massive environments. There is a serious
limit on what can be stored and rendered even on the latest
GPUs. When the geometry size crosses this limit, the GPU
needs a secondary memory for the details. GPU manufac-
turers have devised methods to simultaneously use multiple
GPUs connected through special channels, where each GPU
processes a part of the geometry data. This increases the
overall GPU memory of the system compared to single GPU
driven system, but cannot scale to the massive models avail-
able today.

One way to overcome this limit is to use memory on CPU
as the secondary memory to the GPU. The RAM on CPU
is expandable and can hold much larger models than the
GPU. Slow transfer to the GPU is inevitable under this ar-
rangement, however. Situations can arise where even the
CPU memory cannot hold the models due to their bulk.
A second level of caching on the CPU hard disk can help
to solve this problem, at further reductions in speed. The
storage device on the system can provide buffering for the
CPU memory with higher latency. These storage devices
can provide buffering up to a few TBs of data. It is pos-
sible for the models to exceed this limit also. Distributed
storage and rendering provide the only solution to this prob-
lem. This situation is already prevalent in the rendering of
computer generated movies. They, however, do not have
interactive performance requirements and break down the
rendering problem into a series of computation tasks per-
formed on a large render farm. This option is not available
when interactive or near-interactive rendering is required to
navigate through the space of a monument.

In this paper, we present a distributed rendering solution
to this problem. We suggest using a client-server framework
using a cluster of multi-GPU systems to render massive ge-
ometric models in a distributed manner. We assume that
the model can reside in the secondary storage of each ren-
dering client for this work. The clients share the rendering
load by handling a rectangular portion of the screen inde-
pendently. The server interacts with the user and partitions
each rendering task among the clients based on the esti-
mated rendering load. The server also estimates and sends
the list of objects to be rendered by each client using a frus-
tum culling step using bounding boxes of geometric objects.
The clients ensure these objects are available and renders
its portion of the scene. To reduce the rendering load, each
client performs visibility culling using one of its GPUs, while

the other GPU is used to render the previous frame. The
sub-images are sent to the server, which assembles it into
a common frame buffer. The rendering can be scaled by
increasing the number of clients.

We present the design and implementation details of a dis-
tributed rendering system for massive models in this paper
and also show quantitative results using a geometric envi-
ronment constructed using multiple instances of the Power
Plant model. Our studies show that the system can be scaled
to handle truly massive models while achieving reasonable
frame rates.

2. PRIOR WORK
Determining the visibility of a geometry from a given

viewpoint is fundamental problem in computer graphics.
Culling away the the geometry that is ultimately not visible
avoids the load of rendering them. Many occlusion culling al-
gorithms[7][13] have been designed for specific environments.
Hardware occlusion queries[10] as supported by most of the
GPUs allow us to identify the visible objects in a scene. This
is done by rendering the geometry to the depth buffer and
using the occlusion query to identify the number of pixels
the geometry is rendered to. By having a threshold on the
number of rendered pixels, we can mark a geometry as vis-
ible or invisible. The bottleneck of using occlusion queries
is the CPU has to wait for the result of the queries before
rendering the geometry. We will see in the later sections on
how this can be overcome by using two parallel rendering
pipelines. However, there are a few cases where occlusion
queries can cause an overhead as each query adds an extra
draw call.

The Gigawalk project[12][6] presents a parallel occlusion
culling method using 2 GPUs each running a different graph-
ics rasterization pipeline and one or more CPU processors.
This system runs three processes in parallel. Occluder Ren-
dering (OR) process uses all visible geometry from previ-
ous frame as the occluder set renders that set into a depth
buffer. This runs the first graphics pipeline. Scene Traversal,
Culling and LOD selecting (STC) process computes the hi-
erarchical z-buffer using the depth buffer computed by OR.
It traverses the scene graph, computes the visible geome-
try and selects appropriate LODs. The visible geometry is
used by RVG for the current frame and OR for the next
frame. This runs on one or more processors. Rendering Vis-
ible scene Geometry (RVG) process renders the visible scene
geometry computed by STC. This uses the second graphics
pipeline.

A number of parallel rendering approaches [11] [4] have
been introduced before that are based on multiple rendering
pipelines. These parallel rendering concepts can be classi-
fied mainly as object-parallel, frame-parallel or screen-space-
parallel. Specific examples include rendering every Nth frame
or distributing primitives to different pipelines based on screen
space. Some of these systems and APIs like Chromium[8],
Garuda[9], NetJuggler[2], CGLX[3] and Equalizer[5] provide
scalable rendering on shared memory systems.

The Garuda system[9] provides a scalable, geometry man-
aged display wall. This is a cluster-based tiled display wall
which uses an Adaptive Culling algorithm to determine the
objects visible to each display-tile. A multicast-based pro-
tocol is used to transmit the geometry exploiting the spatial
redundancy present especially on large tiled displays. A ge-
ometry push philosophy from the server helps keep the tiles

Load Geometry

HDD

Frustum Cull

Render to
Framebuffer

Swap Buffer

HDD

Load Skeleton

Server
Frustum

Cull

Client 1

GPU-1
Occlusion

Cull

GPU-2
Render to

buffer

Client 2

GPU-1
Occlusion

Cull

GPU-2
Render to

buffer

Client 3

GPU-1
Occlusion

Cull

GPU-2
Render to

buffer

Client 4

GPU-1
Occlusion

Cull

GPU-2
Render to

buffer

Server
Assemble

frame

HDD HDD

Load geometry
on demand

Load geometry
on demand

Display on screen

Figure 1: Regular graphics pipeline (left) and
DMMR’s parallel rendering pipeline (right)

in sync with one another.
Works like Gigawalk address rendering a large model in-

teractively on a single system while CGLX, Garuda and
Equalizer systems present methods to render large models
on multiheaded displays for high resolution. We look be-
yond it focussing on massive models that are spatially large
and detailed, with a lot of occlusion and can’t fit into any
single system.

3. DISTRIBUTED MASSIVE MODEL REN-
DERING

We present a distributed rendering technique to handle
massive models. These models consist of spatially large and
complex 3D environments for monuments. We distribute the
rendering process among a cluster of computers where each
system is pushed to its limits for rendering its sub-scene.
This process uses a load based distribution so as to distribute
the work evenly among the client nodes in the cluster. Since
we handle the rendering in a distributed fashion there could
be no upper limit on the size of the model as long as the
cluster is scaled appropriately.

3.1 Parallel Rendering Framework
The distributed system is setup as a cluster of multi-GPU

systems connected over network. This cluster consists of a
server and multiple clients. The server and the clients com-
municate using MPI. These three modules run in parallel to
each other.

• Server : The Server is a system with a CUDA en-
abled GPU. The Server runs the load balancing mod-
ule, where the frustum is divided into sub-frustums
and each client is assigned a sub-frustum. It also as-
sembles the rendered sub-frames from clients into the
final frame.

G1 G2 G3

G4

G5

G6 Split Scenegraph to
Skeleton and
Geometries

G

Intermediate node

Occlusion Query node

Geode / Geometry node

Cluster of Clients

Store a copy on each Client

Server

G4 G5 G6

G1 G2 G3
B

o
u

n
d

s
an

d
W

ei
g

h
ts

Figure 2: Preprocessing of Scenegraph

• Client : Each Client is a multi-GPU system with the
first GPU supporting Hardware Occlusion queries with
decent memory while the second GPU optimized for
rendering with higher memory. Each client runs two
different modules, visibility determination module and
sub-frame rendering module, with each module fol-
lowing its own pipeline. The visibility determination
module runs on the first GPU to determine the visible
objects in the sub-frustum. The sub-frame rendering
module runs on the second GPU which loads and ren-
ders the visible objects in the sub-frustum.

3.2 Scene Representation and Preprocessing
The entire digital model is represented as a scenegraph

using the OpenSceneGraph API[1]. This is an object-based
scene structure where the geometries are grouped as objects.
The scene represents a collection of these objects that are
spatially aligned. Some of these objects are marked as po-
tential occluders. The geometry nodes are represented as
Geodes in the OSG API.

The 3D model is preprocessed through a series of steps
to be prepared for the distributed rendering process (as il-
lustrated in Figure 2). The given model is converted to
scenegraph and all the leaf nodes (geometry nodes/geodes)
are indexed. For each geode the bounding sphere is com-
puted. A bounding box is also computed if it occupies lesser
volume compared to the bounding sphere. The weight of
the geode is also computed based on the complexity of the
geometry. Presently, we consider the triangle count of the
geometry as its weight. All the bounding spheres, bound-
ing boxes and the weights are saved in a bounds file. Each
geode is saved as an independent geometry file. The geodes
in the scenegraph are replaced with occlusion query nodes
which also store the index of the geode it replaced. This
geode stripped scenegraph is saved as a skeleton file. A list
of occluder node indices is saved to occluders file.

Each client has a copy of these bounds, occluders, skeleton

Frustum
Division 2 FD3 FD4

Render 1 Render 2 Render 3

Render 1 Render 2 Render 3

Assemble 1 Assemble 2 Assemble 3 Assemble 4

Client 1

GPU 2

GPU 1

Server

Client 2

GPU 2

GPU 1

Occlusion
Query 1

Retrieve
Results 1

Retrieve
Results 2

Occlusion
Query 3

Retrieve
Results 3

Occlusion
Query 2

Occlusion
Query 1

Retrieve
Results 1

Retrieve
Results 2

Occlusion
Query 3

Retrieve
Results 3

Occlusion
Query 2

Figure 3: Distributed rendering pipeline

and geometry files residing on their local storage. The server
stores a copy of bounds, occluders and skeleton files.

3.3 Distributed Rendering Pipelining
The regular graphics pipeline does the frustum culling fol-

lowed by rendering. However, we split this pipeline into four
parallel modules (Figure 1) where each module is assigned
to a different GPU.

1. Load balanced frustum division : The server handles
this module. Here the the scene is frustum culled and
the frustum is divided into sub-frustums based on the
objects in the frustum using a load balanced frustum
division algorithm.

2. Visibility determination : This module runs on the
first GPU of each client. Hardware Occlusion queries
are used to identify the visible objects in each client’s
sub-frustum.

3. Sub-frame rendering : This module runs on the second
GPU of each client. The visible objects identified by
the previous module are rendered to a frame buffer
with the corresponding sub-frustum parameters.

4. Assemble Frame : The sub-frames rendered in the pre-
vious module are transferred back to the server to be
assembled into a complete frame buffer.

All the clients operate asynchronously and the three mod-
ules execute in parallel as illustrated in Figure 3. While the
frustum culling of ith frame is run on the server, the occlu-
sion culling of i-1th frame is run on the first GPU of each
client and the rendering of i-2th frame is done on the second
GPU of each client, thereby executing the three modules in
parallel.

3.4 Load Balanced Frustum Division
The server handles the frustum culling and the sub-frustum

division of the scene (Figure 4). We load the skeleton scene-
graph and the bounding spheres to identify the objects in
the current frustum. Each object in the current frustum
is assigned a precomputed weight which represents the work
load for rendering the object with the net weight of the frus-
tum being the total weight of all the objects in the frustum.
This list of objects is then processed through a load bal-
anced frustum division algorithm which identifies the split

Main Server
with Interface

Rendering Clients

Figure 4: Division of frustum into sub-frustums

plane that best divides the objects in the frustum into two
sub-frustums such a way that:

- The difference in loads of the sub-frustums is low that
results in almost equal work; and

- The deviation of the load of each sub-frustum from half
of the total load is low that reduces object duplication.

This process is in turn applied on each of the sub-frustums
until we have a sub-frustum for each client. This splitting
operation is done along the horizontal and vertical planes
alternatively.

The final list of objects in each sub-frustum and the sub-
frustum parameters are communicated to the specific client
using MPI.

3.5 Visibility Determination Module
The rendering phase runs independently on each client in

parallel. Each Client works on two GPUs using two parallel
graphic pipelines (Figure 6). The first GPU uses a pipeline
for identifying the visibility of the objects in its sub-frustum.

This pipeline loads the skeleton and the bounding boxes
if available or the bounding spheres for each of the objects
in the list received from the server. It uses the visible ob-
jects from the previous frame’s sub-frustum as occluders.
The lower LOD geometry of the visible objects from pre-
vious frame’s sub-frustum that are present in the current
sub-frustum are loaded and rendered to the depth buffer
using the current sub-frustum parameters. The geometry
of any potential occluder in the current sub-frustum is also
loaded and rendered to the depth buffer. The rest of the ob-
jects in the current sub-frustum are tested for visibility using
hardware occlusion queries on their bounding box/sphere.

Algorithm 1 Load Balanced Frustum Division algorithm

1: P = array of leftmost and rightmost bounds of nodes
2: Lwi = total weight of nodes with Pi as leftmost bound
3: Rwi = total weight of nodes with Pi as rightmost bound
4: Li = array of nodes with Pi as leftmost bound
5: Ri = array of nodes with Pi as rightmost bound
6: nd = Number of sub-frustums required
7: Mini(f(i)) = i for which f(i) is minimum
8:
9: procedure divideFrustum(nodes, direction, nd)

10: if nd = 1 then return
11: end if
12: Generate P by projecting the bounding spheres on

horizontal or vertical axis based on direction
13: n = total number of points
14: sort (P,Lw,Rw,L,R) with P as key
15: totalweight =

∑n
i=0 Lwi

16: for i = 0 to n do
17: // exclusive scan on Lw of points from 0 to i

18: Lwi =
∑i−1

j=0 Lwj

19:
20: // exclusive scan on Rw of points from n to i

21: Rwi =
∑i+1

j=n−1 Rwj

22: end for
23: lower bound = i such that Lwi+1 > totalweight/2
24: upper bound = i such that Rwi−1 > totalweight/2
25: divide = Mini(OptimalWeight(Lwi, Rwi, totalweight/2))
26: where lower bound <= i <= upper bound
27: leftsubfrustum = d{Lni} ∀i ∈ [0, divide)
28: rightsubfrustum = d{Rni} ∀i ∈ (divide, n]
29: divideFrustum(leftsubfrustum, !direction, nd/2)
30: divideFrustum(rightsubfrustum, !direction, nd/2)
31: end procedure
32:
33: procedure OptimalWeight(l, r, h)
34: return |l − h|+ |r − h|+ |l − r|
35: end procedure

...

Main Server
with Interface

Submit sub-frustum image to Server

Assemble sub-frustum
images as entire Scene

Render Frustum Render Frustum Render Frustum

Load Geometry to
memory

Load Geometry to
memory

Load Geometry to
memory

List of
Objects

List of
Objects

List of
Objects

Figure 5: Overview of Rendering Cluster

Figure 6: Occlusion culling and Sub-frame rendering modules on the GPUs of a client

The objects that passed the visibility test are marked vis-
ible for the next n frames assuming consistency between
the consecutive frames. This helps in reducing the load of
occlusion queries with a safe assumption that a geometry
which passed the visibility threshold once will atleast be
partially visible for the next n frames, where n is a con-
figurable parameter. These marked objects will again be
tested for visibility in their nth frame if they still fall within
the sub-frustum.

The list of visible objects is prepared comprising of the
occluders in sub-frustum, nodes that passed the occlusion
queries and already marked nodes that fall within the sub-
frustum. This list is passed to the rendering module on the
second GPU.

3.6 Sub-frame Rendering Module
The rendering module uses the second GPU on the client.

This module receives the list of visible objects from the oc-
clusion culling module. It loads the skeleton with all the
occlusion query nodes disabled. The VBOs of the common
visible objects from previous sub-frame are reused. The ge-
ometry of the rest of the visible objects are loaded as VBOs
onto the GPU for efficient buffering and memory manage-
ment. Textures, lighting effects and other required settings
are applied at this level and the final sub-frame is rendered
offscreen with the specified sub-frustum and viewport con-
figuration to a frame-buffer. This frame-buffer is transferred
to the server as compressed data stream.

3.7 Assemble Frame Module
The server acquires the compressed sub-frame-buffers from

all the clients. These sub-frame-buffers are decompressed
and assembled according to their offsets to form the com-
plete rendered image of the scene.

3.8 Cache Management
We implemented a multi level cache management system.

Each client maintains a buffer on the GPU in the form of
VBOs. The next level of cache is maintained by the CPU
on the ramdisk. The third level of caching remains on the
HDD. Whenever a geometry not present on the GPU is to
be loaded, the process tries to retrieve it from the ramdisk
failing which it looks up for the geometry on the HDD. The
geometry found on the HDD is loaded on the ramdisk and
then sent to the GPU. The caching follows a LRU algorithm
where the least recently used geometry is unloaded from the
cache when it is full.

4. EXPERIMENTAL RESULTS
We performed experiments on two different clusters for

various models. The clusters were setup using 5 different
systems. System 1 has a Core 2 Duo processor, 2GB RAM
with a GeForce GTX 480 GPU as GPU-1 and a Quadro
FX 3700M as a GPU-2. System 2 has an i7 Quad Core
processor, 6GB RAM and two Tesla C2070 GPUs. System
3 has an i7 Quad Core processor, 4GB RAM with a GeForce
GTX 580 as GPU-1 and Tesla C2050 as GPU-2. System 4
has an Core 2 Duo processor, 2GB RAM with a GeForce
GTX 280 as GPU-1 and a GeForce 8600 GTS as GPU-2.
System 5 has a Core 2 Duo processor, 4GB RAM with a
GeForce 8600GTS as GPU-1 and a Tesla S1070 as GPU-
2. First cluster is a 2-client setup with System 1 as server
using GTX 480 GPU and Systems 2 and 3 as clients. Second
cluster is a 4-client setup with System 5 as server using Tesla
S1070 GPU and Systems 1, 2, 3 and 4 as clients. The CPU
cache on the clients is set dynamically to half the total size
of objects in the model being rendered for the 2-client setup
and to a quarter of the total size of objects for the 4-client
setup. The clusters are setup on a Gigabit network with the

Figure 7: Tiling of a frame on 4-client cluster with
power plants

Figure 8: Frame Time in ms (averaged per 10
frames) for 4, 6 and 8 power plants models

communications between the systems through MPICH2.
The rendering system is tested with two different sets

of models. First set comprises of models made of differ-
ent number of replicated Coal Power Plant models. Each
power plant model is made up of approximately 12M trian-
gles across 20,000 geometry nodes with 8 levels of hierarchy.
A fixed path walkthrough (demonstrated in the video) of
the model to make all instances of the power plant visible
was used to measure the results. The second set comprises
of models made of different number of replicated Fatehpur
Sikri models. Each Fatehpur Sikri model is made up of ap-
proximately 4.8M triangles across 1113 geometry nodes. A
fixed path walkthrough of the model (demonstrated in the
video) is used for the tests.

The average runtimes are measured for different modules
and the network transfer for both the models. The tables
show average times over 300 frames and the graphs show
average fps of 10 consecutive frames.

The three blocks in the tables, viz., Server, GPU 1 and
GPU 2 represent the respective modules running on them.
These 3 modules operate in parallel while synchronizing
at the network communications. On the server, ’Receive
and assemble sub-frames’ module runs on separate thread
in parallel to the ’Frustum division’ module. It represents
the effective frame rate of the whole system which includes
the time spent waiting for the framebuffers from clients,
transfer over network, decompression and assembling of the
framebuffer. For both GPU 1 and GPU 2, the runtimes
on all clients are provided which operate in parallel asyn-

Figure 9: Tiling of a frame on 4-client cluster with
Fatehpur Sikri models

Figure 10: Frame Time in ms (averaged per 10
frames) for 10, 20 and 30 Fatehpur Sikri models

chronously. On GPU1 ’Enable occlusion queries’ module
includes the time to load the occluder geometry and the
bounding boxes of the objects in the sub-frustum, unload
any geometry/bounding boxes of the objects from the pre-
vious sub-frustum that went out-of-bound and the time to
issue occlusion queries. ’Retrieve occlusion queries’ repre-
sents the time to retrieve the occlusion query results and
prepare the list of visible objects. On GPU 2, ’Load geome-
try to render’ is the time taken to load new geometry onto
the memory before rendering to the frame buffer. ’Send to
server’ includes the sub-image compression time and net-
work transfer time to the server.

The effective frame time (Figures 8,10) averaged for ev-
ery 10 consecutive frames, the runtime of the load balanced
frustum division algorithm (Figures 12,13) and the time for
preparing the occlusion queries (Figure 11) are shown for
different models. The frustum division algorithm resizes
the sub-frustum of each client every frame to balance the
load of the objects in the frustum. When a large number
of objects move in to the frustum in a new frame, the sub-
frustum holding the newly entered objects loads more geom-
etry than the previous frames and hence the corresponding
frame takes more time to process. This behavior can be no-
ticed in the graphs(Figure 8) at around 200th frame where
the time taken increases momentarily. The clients which are
assigned the sub-frustums with new objects take more time
to prepare the occlusion queries for the new objects which
can be noticed in Figure 11. We could notice from Figures
8 and 10 that difference in the frame time is very little in
general even as the complexity of the model scales up.

Table 1: Timings for multiple power plant(12M triangles) models on a cluster of 2 clients

Tests
Four Plants
(80k nodes)

Six Plants
(120k nodes)

Eight Plants

(160k nodes)

FPS and Frame time (average over 200 frames) 7fps / 136 ms 7fps / 147 ms 4-12fps / 150 ms

Server
Frustum Division 15.890 ms 11.705 ms 11.437 ms
Send to GPU 1 over network 36.828 ms 35.287 ms 35.642 ms
Receive & Assemble sub-frames 136.122 ms 147.131 ms 150.386 ms

GPU 1
(client1/client2)

Enable Occlusion Queries 8.87 / 9.99 ms 8.32 / 10.27 ms 7.96 / 9.70 ms
Retrieve Query results 1.77 / 1.61 ms 1.68 / 1.74 ms 1.64 / 1.70 ms
Send to GPU 2 16.06 / 26.26 ms 16.65 / 16.80 ms 16.02 / 17.35 ms

GPU 2
(client1/client2)

Load Geometry to render 0.44 / 0.29 ms 0.37 / 0.36 ms 0.34 / 0.32 ms
Send to Server over network 16.48 / 11.96 ms 14.14 / 15.09 ms 16.12 / 12.75 ms

Table 2: Timings (in ms) for multiple power plant (12M triangles) models on a cluster of 4 clients

Tests
Four Plants

(80,000 nodes)
Six Plants

(120,000 nodes)

Eight Plants

(160,000 nodes)

FPS and Frame time 6-16fps / 78 ms 5-14fps / 86 ms 3-23fps / 101 ms

Server
Frustum Division 18.89 ms 20.08 ms 21.05 ms
Send to GPU 1 over network 67.866 ms 79.1 ms 90.413 ms
Receive & Assemble sub-frames 78.365 ms 85.774 ms 101.782 ms

GPU 1
(4 clients)

Prepare Occlusion Queries 4.7/33.8/4.9/29.6 6.4/48.1/10.8/45.3 97.8/60.7/80.7/69.2
Retrieve Query results 1.3/2/1.3/2.1 1.4/2.1/1.4/2 1.7/2.8/2/2.7
Send to GPU 2 5.8/7.9/5.4/7.7 6.3/10.7/6.9/8.7 14.3/15.2/16.1/14.4

GPU 2
(4 clients)

Load Geometry to render 3.1/4.4/0.8/0.7 4.6/4.7/14.2/10.9 30.2/8.3/28.8/12
Send to Server over network 18.1/4.4/15.2/3.6 17/4.8/17.6/6.5 29.2/9.8/25.6/30.1

Table 3: Timings (in ms) for multiple Fatehpur Sikri models on a cluster of 4 clients

Tests

16 Fatehpur

(77M triangles)

25 Fatehpur

(120M triangles)

36 Fatehpur

(172M triangles)

FPS and Frame time 9-26fps / 64 ms 9-25fps / 79 ms 7-20fps / 93 ms

Server
Frustum Division 9.07 ms 16.18 ms 16.48 ms
Send to GPU 1 over network 45.89 ms 44.52 ms 52.28 ms
Receive & Assemble sub-frames 64.603 ms 79.321 ms 93.4 ms

GPU 1
(4 clients)

Prepare Occlusion Queries 1.7/4.1/7.5/3.7 7/8.2/4.8/9.1 3.7/12.8/10.1/13.5
Retrieve Query results 0.2/0.4/0.2/0.4 0.4/0.8/0.4/0.7 0.5/1/0.6/0.9
Send to GPU 2 8,2/17.8/9.7/19.8 7.8/6.7/11.5/13.7 9.9/10.7/9.7/14.9

GPU 2
(4 clients)

Load Geometry to render 1.5/0.7/10.7/0.5 11.4/0.8/5.1/0.5 6.6/0.9/11.8/0.6
Send to Server over network 35.4/9.1/37.4/11.4 34.6/11.3/32.7/10.4 35.4/8.3/37.5/14

Figure 11: Time to prepare Occlusion Queries on Clients 1,2 (left) and Clients 3,4 (right) (averaged per 10
frames) for 4, 6 and 8 power plants models

Figure 12: Load balanced frustum division (aver-
aged per 10 frames) for 4, 6 and 8 power plants
models

Figure 13: Load balanced frustum division (aver-
aged per 10 frames) for 16, 25 and 36 Fatehpur Sikri
models

The Power plant model is made of large number of objects
while the Fatehpur Sikri model is made of lesser number of
complex objects spread spatially. As described before this
system is designed for massive models that complex as well
as spatially large with much occlusion like the Fatehpur Sikri
monuments. This can be seen by comparing the frame times
of the Power Plant and the Fatehpur Sikri replicated mod-
els where the Fatehpur Sikri walkthrough performed much
faster than the Power Plant walkthrough.

A single system with an i7 Quad core processor, 4GB
RAM and a GeForce GTX 580 GPU was able to render only
up to the 3 power plants model. When compared against
this, our distributed rendering system performed about 6
times faster for the 3 power plants model on an average of
300 frames of the walkthrough.

5. CONCLUSIONS
In this paper, we presented a distributed rendering frame-

work for a cluster of processors to handle truly massive
models. Our method uses a client-server framework with
the server partitioning the rendering load among the clients.
This is a difficult problem when the assets required for ren-
dering are truly bulky. We showed the results from rendering
massive models using small clusters of processors. Our expe-
rience demonstrates that scalable rendering of massive mod-
els can be achieved using our approach when more clusters
are available. However, our system can be used for render-
ing huge monuments at interactive rates for walkthroughs
by the users.

6. ACKNOWLEDGMENTS
We thank the IDH project of DST, India for their partial

financial support for this research work.

7. REFERENCES
[1] Openscenegraph : http://www.openscenegraph.org.

[2] J. Allard, V. Gouranton, L. Lecointre, E. Melin, and
B. Raffin. Net juggler and softgenlock: Running vr
juggler with active stereo and multiple displays on a
commodity component cluster. In Proceedings of IEEE
Virtual Reality Conference 2002, pages 273–274, 2002.

[3] K.-U. Doerr and F. Kuester. Cglx: A scalable,
high-performance visualization framework for
networked display environments. IEEE Transactions
on Visualization and Computer Graphics,
17(3):320–332, May 2011.

[4] S. Eilemann, A. Bilgili, M. Abdellah, J. Hernando,
M. Makhinya, R. Pajarola, and F. Schürmann.
Parallel rendering on hybrid multi-gpu clusters. In
Eurographics Symposium on Parallel Graphics and
Visualization, pages 109–117, March 2012.

[5] S. Eilemann, M. Makhinya, and R. Pajarola.
Equalizer: A scalable parallel rendering framework.
IEEE Transactions on Visualization and Computer
Graphics, 15(3):436–452, May 2009.

[6] C. Erikson, D. Manocha, and W. V. Baxter, III. Hlods
for faster display of large static and dynamic
environments. In Proceedings of the 2001 symposium
on Interactive 3D graphics, I3D ’01, pages 111–120,
New York, NY, USA, 2001. ACM.

[7] N. K. Govindaraju, A. Sud, S.-E. Yoon, and
D. Manocha. Interactive visibility culling in complex
environments using occlusion-switches. In Proceedings
of the 2003 symposium on Interactive 3D graphics, I3D
’03, pages 103–112, New York, NY, USA, 2003. ACM.

[8] G. Humphreys, M. Houston, R. Ng, R. Frank,
S. Ahern, P. D. Kirchner, and J. T. Klosowski.
Chromium: a stream-processing framework for
interactive rendering on clusters. In Proceedings of the
29th annual conference on Computer graphics and
interactive techniques, SIGGRAPH ’02, pages
693–702, New York, NY, USA, 2002. ACM.

[9] Nirnimesh, P. Harish, and P. J. Narayanan. Garuda:
A scalable, geometry managed display wall using
commodity pc’s. TVCG, 13(5):864–877, 2007.

[10] M. Pharr and R. Fernando. GPU Gems 2:
Programming Techniques for High-Performance
Graphics and General-Purpose Computation.
Addison-Wesley Publishing Company, Reading,
Massachusetts, 2005.

[11] R. Samanta, T. Funkhouser, and K. Li. Parallel
rendering with k-way replication. In Proceedings of the
IEEE 2001 symposium on parallel and large-data
visualization and graphics, PVG ’01, pages 75–84,
Piscataway, NJ, USA, 2001. IEEE Press.

[12] A. Sud, N. K. Govindaraju, and D. Manocha.
Gigawalk: Interactive walkthrough of complex
environments. Eurographics Workshop on Rendering
(EGWR), 2002.

[13] S.-E. Yoon, B. Salomon, R. Gayle, and D. Manocha.
Quick-vdr: Out-of-core view-dependent rendering of
gigantic models. TVCG, 11(4):369–382, July 2005.

