
Video Retrieval by Mimicking Poses

Nataraj Jammalamadaka
IIIT-Hyderabad, India

nataraj.j@research.iiit.ac.in

Andrew Zisserman
University of Oxford, UK
az@robots.ox.ac.uk

Marcin Eichner
ETH Zurich, Switzerland

marcin.eichner@vision.ee.ethz.ch

Vittorio Ferrari
University of Edinburgh, UK

ferrari@vision.ee.ethz.ch

C. V. Jawahar
IIIT-Hyderabad, India
jawahar@iiit.ac.in

ABSTRACT
We describe a method for real time video retrieval where
the task is to match the 2D human pose of a query. A user
can form a query by (i) interactively controlling a stickman
on a web based GUI, (ii) uploading an image of the desired
pose, or (iii) using the Kinect and acting out the query him-
self. The method is scalable and is applied to a dataset of
18 films totaling more than three million frames. The real
time performance is achieved by searching for approximate
nearest neighbors to the query using a random forest of K-D
trees. Apart from the query modalities, we introduce two
other areas of novelty. First, we show that pose retrieval can
proceed using a low dimensional representation. Second, we
show that the precision of the results can be improved sub-
stantially by combining the outputs of independent human
pose estimation algorithms. The performance of the system
is assessed quantitatively over a range of pose queries.

Categories and Subject Descriptors
H.3.1 [Information Storage and Retrieval]: Content
analysis and indexing; H.3.3 [Information Storage and
Retrieval]: Information Search and Retrieval;
H.5.1 [Information Interfaces and Presentation]: Mul-
timedia Information Systems; I.4.9 [Image Processing and
Computer Vision]: Applications

General Terms
Algorithms, Experimentation, Performance

Keywords
Human pose search, Video processing

1. INTRODUCTION
The goal of this paper is the real time retrieval of hu-

man poses from a large collection of videos. The last decade
has seen considerable progress in 2D human pose (layout)

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICMR ’12, June 5-8, Hong Kong, China
Copyright c©2012 ACM 978-1-4503-1329-2/12/06 ...$10.00.

estimation on images taken in uncontrolled and challenging
environments. There are now several algorithms available [1,
4, 16, 22] that can detect humans and estimate their poses in
typical movie frames, where humans can appear at any loca-
tion, at any scale and wear clothing of varying sizes, colors
and texture; the illumination can vary and the backgrounds
can be cluttered.

There are numerous reasons why detecting humans and
obtaining their pose is useful. A fundamental one is that
often the pose, or a pose sequence, characterizes a person’s
attitude or action. More generally, applications range from
video understanding and search through to surveillance and
games. In this paper we enable for this first time the real
time retrieval of poses in a scalable manner. Being able
to retrieve video material by pose provides another access
mechanism to video content, complementing previous work
on searching for shots containing a particular object or lo-
cation [20], person [2, 12, 19], or action [3, 11].

The real time system we propose is applicable on top of
most 2D pose estimation algorithms. The only condition is
that their output can be mapped into the simple pose rep-
resentation we use, which enables rapid Euclidean distance
based nearest-neighbor matching. We demonstrate our sys-
tem here on the output of two existing pose estimation al-
gorithms, Eichner & Ferrari [4] and Yang & Ramanan [22].
The functionality of the system is illustrated in figure 1,
which shows the three query modalities that we have devel-
oped and the type and quality of the output.

While an early system for pose search was first proposed
by [10], in this paper we extend the idea and methods sub-
stantially. First, we introduce a low dimensional pose repre-
sentation and approximate nearest neighbor matching, mak-
ing our system much more efficient both in terms of compu-
tational cost and memory consumption. This enables real-
time search in a large scale database (over 3 million frames).
Second, our system has a better retrieval engine: by com-
bining independent pose estimation algorithms, we can re-
ject frames where the pose estimate is likely to be incorrect.
This leads to higher precision in the top returns (but not
higher recall). Third, our approach allows for new query
modes: query-by-stickman (with an interactive GUI), and
query-by-Kinect, in addition to the query-by-image of [10].

The following section overviews the design and functional-
ity of the system and the rest of the paper then gives details
of the various stages and their experimental performance.

(i)

(ii)

(iii) Query by
image

Query by
stickman

Query by
Kinect

Ranked ListQuery Modalities

Kinect

(i)

(ii)

(iii) Query by
image

Query by
stickman

Query by
Kinect

Ranked ListQuery Modalities

Kinect

Figure 1: Pose retrieval overview. An illustration of the three query modalities: interactive stickman GUI,
pose from Kinect, and pose estimated from an image. The output ranked list is obtained instantaneously as
the query is varied. This can be tailored in various ways, for example to select only poses in different shots
or within a particular movie. The results of the query pose are shown here at the video level.

2. SYSTEM OVERVIEW
We overview here the query modes and output of the re-

trieval system. The system is able to search over fifty thou-
sand poses from 3 million frames of 18 movies in 5 ms, run-
ning on a single 2.33 GHz machine. To enable such real time
performance all the processing steps, query and presentation
of retrieved results need careful consideration. In particular
much of the processing is carried out off-line with only the
pose matching carried out at run time.

The following subsections describe the querying and out-
put of the system and the principal processing blocks.

2.1 Query modes
For a user to query the system, we have developed three

querying modes (figure 1). (i) The first is a so-called stick-
man. The interface is intuitive where the user can move the
joints of a iconic stick figure freely and the pose retrieval sys-
tem responds to these movements in real-time by retrieving
the matching frames from the database. Imagine that the
user is moving the stickman from the famous ‘Titanic’ pose
(arms stretched side ways and parallel to the ground) to a
‘Hands up’ pose, passing through a series of intermediate
poses. Then the pose retrieval system follows this sequence
of poses, and continuously updates the results. This mode is
very useful as a web-based application and can be deployed
anywhere with a basic computer and an Internet connection.
(ii) In the second mode, the user himself can move by wav-
ing his/her arms around and making different poses. The
pose retrieval system tracks his movements using the Kinect
sensor and displays the retrieved results in real-time. This
mode is suitable for entertainment applications. (iii) Finally
in the third mode, the user can upload an image of a person
and then request the pose retrieval system to display similar
poses in the database. For mobile application, this mode is
very useful.

2.2 Output presentation
Ranked thumbnails of poses from the database are dis-

played according to their similarity to the query pose. Hov-
ering over the thumbnail shows the full frame, and clicking
on the thumbnail plays the video starting from that shot.

The user can choose the level at which to perform retrieval
among (i) frame level, (ii) shot level, or (iii) video level re-
trieval. For example, shot level means that only a single
result from each shot is displayed, whereas for frame level a
number of results could be from the same shot. Thus shot
and video level give more diverse results in terms of actors,
scenes etc. The user can also choose whether to search the
whole database or a particular movie. Retrieving from the
whole database and at shot level are the default choices.

2.3 Off-line processing stages

Video processing.
Frames are grouped into shots, and an upper body detec-

tor is run on all the frames to detect people. The upper
body detections are then grouped through the temporal se-
quence into a track. Finally two human pose estimation
algorithms [4, 22] are run on each upper body detection in
all the tracks, to estimate a stickman pose (section 3).

Data cleanup.
Unfortunately the precision of these pose estimation algo-

rithms is not high and this significantly affects the perceived
quality of the pose retrieval system. To improve precision,
we propose a filtering stage based on the agreement of the
two independent pose estimates from the algorithms (sec-
tion 4). Poses which survive this filtering step are then con-
sidered for retrieval.

Pose representation and matching.
We have developed a low dimensional 12D vector pose

representation suitable for matching two poses (section 5).
The pose representation is crucial to the performance of the
retrieval system as it simultaneously affects both the accu-
racy and speed of the system. The 12D vectors are recorded
in a forest of randomized K-D trees for fast approximate
nearest neighbor retrieval (section 6).

2.4 On-line processing stages

Pose retrieval.
Each query mode provides a 12D vector specifying the

query pose. Nearest neighbor pose matches in the database
are then obtained using the approximate nearest neighbor
algorithm. This returns K approximate nearest neighbors,
which are then sorted according to their Euclidean distance
from the query vector. Depending on the chosen level of
retrieval, information about the frames, shots and videos
respectively are returned.

Client-server architecture.
For the retrieval system we use a standard client-server

architecture (section 7). While the client interfaces with the
user, the server performs the back-end operations of fast
search and ranking, stores the randomized K-D tree struc-
ture, and serves the thumbnails, frames and videos.

3. DATA AND VIDEO PROCESSING
The videos are processed off-line over a series of three

stages: (i) shot detection using a standard color histogram
method [13]; (ii) upper-body detection to localize the people
in each video frame and track them within the shot; (iii)
human pose estimation (HPE) algorithms to determine the
human pose within the upper-body detection area.

Data.
In the current system we have 18 videos, 17 are Holly-

wood movies and one is a season of the TV serial ‘Buffy the
Vampire Slayer’. In all, there are about 3 million frames.
The statistics are given in table 1.

3.1 Upper body detection and tracking
An upper body detector (UBD) is run on every frame of

the video. An UBD algorithm detects and gives a bound-
ing box around the people in the image. These are often a
prerequisite for human pose estimation algorithms [1, 4, 17].

Here, we use the publicly available detector of [5]. It com-
bines an upper-body detector based on the model of Felzen-
szwalb et al. [9] and the OpenCV face detector [21]. Both
detectors run in a sliding window fashion followed by non-
maximum suppression, and output a detection window
(x, y, w, h). To avoid detecting the same person twice, each
face detection is then regressed into the coordinate frame of
the upper-body detector and suppressed if it overlaps sub-
stantially with any upper-body detection. As shown in [6]
this combination yields a higher detection rate at the same
false-positive rate, compared to using either detector alone.

In order to reduce the false positives, the detections in a
shot are grouped into tracks and short tracks are discarded.
These tracks are obtained using the temporal association
strategy described in [10]. Visually, the tracks form a con-

Video Name]Frames]Shots]Tracks]HPEs
Apollo13 192792 1795 9581 80567
About a Boy 138524 1411 8463 83413
*Buffy 318138 4232 24599 206047
Forrest Gump 204378 1101 7921 90216
*Four-wedding 185650 1177 12983 120029
Gandhi 263746 2117 13396 140045
Graduate 151027 498 938 78670
Groundhog Day 142411 838 1416 101342
*Living-in-Ob 129605 801 17719 94835
*Lost-in-Tran 146211 1046 21210 79256
Love Actually 193794 1990 11625 148566
*My-Cus-Vin 35299 303 241 19993
Notting Hill 171311 1586 8509 122643
Pretty Woman 172175 1165 24586 116540
Rainman 187345 1447 25463 105553
*Seeking-susan 148844 772 19538 61032
*Wanda 155116 981 19293 81294
Witness 161584 1234 769 55449
Total 3,097,950 24,494 228,250 1,785,490

Table 1: Dataset statistics. We consider 18 movies

for the retrieval system. For each video, the number

of images, shots, tracks and human pose estimates are

reported. Movies with * are abbreviations for ‘Buffy the

Vampire Slayer’ , ‘Four weddings and a Funeral’, ‘Living

in oblivion’, ‘Lost in Translation’, ‘My Cousin Vinny’,

‘Desperately Seeking Susan’ and ‘A fish called Wanda’.

tinuous stream of a person’s bounding box in the shot.

3.2 Human pose estimation
We use here the algorithms of Eichner and Ferrari [4] and

Yang and Ramanan [22]. Both of these have publicly avail-
able implementations. The algorithm [4] is run on each up-
per body detection in a track. The upper body detection
is used to determine the scale of the person. The algo-
rithm [22] is run over the whole frame to obtain multiple
pose estimates. As many of the pose-estimates are false-
positives, we use the upper body detections to filter them
out. In detail, all detections returned by [22] which overlap
less than 50% with any UBD detection are discarded. Over-
lap is measured using the standard “intersection over union”
criterion [7].

Both methods are based on the pictorial structures frame-
work [8], which models the body parts as variables in an
energy minimization problem. Parts are parameterized by
their image position. The energy function scores a configu-
ration of parts, and contains unary and pairwise potentials.
The unary potentials evaluate the local image evidence for a
part in a particular position. The pairwise potentials carry
priors on the relative position of parts. The model struc-
ture is a tree, which enables fast and exact inference. The
algorithm infers the configuration of parts with the lowest
energy.

Eichner and Ferrari [4] automatically estimate body part
appearance models (color histograms) specific to the partic-
ular person and image being analyzed, before running the
pictorial structure inference. This improve the accuracy of
the unary potentials, which in turn results in better pose es-
timation. Their model also adopts the person-generic edge
templates as part of unary potentials, as well as the pair-

Figure 2: Pose estimates by HPE algorithms. The
six upper body parts estimated by the algorithms
are color coded as pink for head, red for torso, green
for upper arms and yellow for the lower arms.

wise potential Ψ of [15]. The model has six parts, directly
corresponding to physical limbs: head, torso, and upper and
lower arms illustrated in the figure 2.

In Yang and Ramanan [22] instead, model parts are the
mid and end points of the upper body limbs. Unary and
pairwise potentials are learnt using an effective discrimi-
native model based on latent SVMs [9]. This algorithm
searches over multiple scales, locations and, implicitly, over
rotations.

4. IMPROVING THE PRECISION OF POSE
ESTIMATES

For the pose retrieval, we are interested only in correct
pose estimates. That is, the pose estimates where all the
parts are correctly estimated. A bad pose estimate (where
one or more parts is wrongly estimated) can severely lower
the perceived performance of the retrieval system if it ap-
pears high up in the ranked list. Here we use the assessment
criterion of [4] and define a part as correctly estimated if
its segment end-points lie within 50% of the length of the
ground-truth annotation.

Unfortunately, for both the HPE algorithms the percent-
age of fully correct pose estimates, 9.1% and 14.4% (table 2),
is very low. Note that we are applying a very severe test
for a correct pose – that all parts are correct. In contrast,
the quantitative measure used to assess performance in [4,
22] counts the average number of correctly estimated parts
(PCP). For example, a pose with 5 out of 6 parts correctly
estimated has a PCP score of 5/6 = 0.83, but scores zero
under our criterion.

Intersection of pose estimates.
In order to improve the percentage of correct pose esti-

mates, we consider the agreement between the two pose es-
timation algorithms. The intuition behind this is that, for a
given upper body detection, while the wrong pose estimates
of both algorithms can be very different, the correct pose
estimates of both the algorithms would be the same. Since
the algorithms are based on different features and inference
algorithms, they are rather complementary in their failure
modes. Hence we expect that our agreement criterion should
reliably identify the correct pose estimates.

We consider that two poses agree if the PCP between
them is perfect (i.e. 1.0). Suppose the algorithms of Eichner
and Ferrari [4] and Yang and Ramanan [22] generate pose
estimates A1 and A2 respectively, then A1 and A2 are in
agreement if the PCP between them is perfect (PCP=1.0),

Method Precision Recall
Eichner and Ferrari [4] 9.1 12.1
Yang and Ramanan [22] 14.4 19.1
Intersection with PCP=1.00 41.1 3.5
Intersection with PCP ≥ 0.83 16.7 5.1
Intersection with PCP ≥ 0.67 7.8 5.5

Table 2: Improving precision using the intersection test.

The table shows the precision and recall of HPE for 5000

random samples from the movie dataset. Using the inter-

section test, the recall values are low, but the precision

is considerably improved.

and if so the pair (A1, A2) is added to the intersection set.

Experimental evaluation.
To evaluate the ‘Intersection of pose estimates’ method,

we compare the precision and recall of Eichner and Fer-
rari [4], Yang and Ramanan [22] and their intersection with
respect to ground-truth. The aim of this evaluation is to as-
certain if the intersection operation improves the precision.
For the ground-truth, frames are sampled randomly from
the movies dataset, of which 5000 frames with all body parts
visible are manually annotated with a stickman. For each
of these ground-truth frames, the upper body detector and
the two pose estimation algorithms are run. Then the inter-
section operation described above is performed to obtain an
intersection set S. We deem an element e = (A1, A2) in the
set S to be positive if both A1 and A2 are in full agreement
(PCP=1.0) with the ground-truth stickman.

Table 2 shows that the intersection operation improves
the precision significantly over those of the precisions of [4,
22]. Here precision is the total number of positives in S
divided by the cardinality of S and recall is the total num-
ber of positives in S divided by the total number of ground
truth stickmen. The precision improves from 14.4% to 41.1%
while maintaining a tolerable recall. We also tried the varia-
tions of the intersection operation with agreement criterion
of at least five parts (PCP ≥ 0.83), and at least four parts
(PCP ≥ 0.67). As table 2 suggests, while reducing the PCP
threshold marginally improves the recall, it worsens the pre-
cision significantly. Hence, in the implemented system we
use PCP=1.0. Using this method, 54k poses are selected as
the intersection set.

5. POSE REPRESENTATION AND MATCH-
ING

We explain here the pose representation and matching
components of the system.

5.1 Pose representation
From the human pose estimation algorithm, we obtain

pose estimates consisting of line segments corresponding to
the upper body parts namely head, torso, right and left
arms. These depend on the size of the person and their
location. To compare two pose estimates we require a rep-
resentation that is invariant to scale and location in the im-
age. Previous representations used for retrieval purposes
were high dimensional, for example the three descriptors
proposed by [10] have 15360, 1449 and 1920 dimensions.
These descriptors are very high dimensional because they
represent either full probability distributions over possible

Pose A Pose B

30
90

120

90

1

2

1

2

1

2

1

2

1

2

1

22

1

2

11

2

1

2

2

1

1

2

Figure 3: Pose Representation: The two poses A
and B differ in two parts, the upper and lower left
arms. The pose representation based on the angles
clearly distinguishes pose A from pose B. The end-
points of each stickmen are consistently numbered.

part positions and orientations, or soft-segmentations of the
parts.

In contrast, we use a simple and effective representation
based on a single absolute orientation of each part. The
orientation of parts are independent of the location and the
size of the human and are not affected by variations in the
relative length and positions of parts.

When comparing two poses, we would like to form a dis-
tance measure based on the sum of differences of angles of
corresponding parts. To achieve this we encode the angle
θ of each part as the 2D vector (cos θ, sin θ). For six parts
this results in a 12 dimensional feature vector. Then the Eu-
clidean distance between two such representations gives the
cosine of the angular difference. This is elaborated in more
detail below. Figure 3 illustrates the pose representation.

5.2 Pose matching
Consider any part i of the poses A and B. Let the angles

(0◦ ≤ θ ≤ 360◦) be θiA and θiB respectively. We measure the
dissimilarity between the poses of the parts of A and B as the
negative cosine of |θiA − θiB |. The negation ensures that the
dissimilarity monotonically increases with ∆θ = |θiA − θiB |.

In this work, we are interested in large scale nearest neigh-
bor search. Most standard algorithms for this task are based
on the Euclidean distance and require a feature vector for
each sample. By encoding the angles as the vectors vA =
(cos(θiA), sin(θiA)) and vb = (cos(θiB), sin(θiB)), −cos(θiA −
θiB) is obtained as the squared distance between the vectors
i.e. (va − vb)

2 = 2(1− cos(θiA − θiB)).

6. POSE RETRIEVAL
After the database has been preprocessed off-line with the

stages detailed above, it is ready to be searched by the user.
The user enters a query (section 2.1) which is converted to
the same 12-D representation as the poses in the database
(section 5.1).

Experiment A: Recall, for (m ∗ 100) NN
multiple m 1 5 10 20
Recall 10.0 76.0 88.7 95.2

Experiment B: Recall using N trees
Num trees 1 2 5 10
Recall 94.1 95.2 90.1 85.4

Experiment C: Recall vs database size
DataBase size 100K 250K 500K
Recall 97.1 96.2 95.2

Experiment D: Search speed ratio
DataBase size 50K 500K 5.0 M
Search speed ratio 1 11 123

Table 3: Approximate nearest neighbor search vs Ex-

haustive search. The recall of the top 100 ground truth

matches is averaged over 1000 queries.

For searching the query in the database we use the approx-
imate nearest neighbor (ANN) method proposed by Silpa-
Anan et al. [18]. The method has one of the best recall rates
among algorithms that index high dimensional data with sig-
nificant search speed gain over exhaustive search [14]. The
method organizes the database as a collection of random-
ized K-D trees. To construct a K-D tree, the data is split at
the median value of a pre-assigned dimension d and the two
halves are passed down to the left and right subtrees. This
procedure is recursively followed to further split the data.
In [18] the splitting dimension is randomly chosen among
the T dimensions with the largest variances. The technique
constructs a set of randomized trees by running the random
selection multiple times.

Given the randomized trees, the K nearest neighbors of
a query are obtained as follows. The query point is sent
to all of the trees. Each tree then returns a different set
of approximate nearest neighbors (due to the randomness
in the construction of each tree). First the query is passed
down through all the trees to obtain the initial set of near-
est neighbors. Then the search is systematically expanded
into other nodes by backtracking from the leaf nodes and
exploring the nearby alternative paths. This operation is
efficiently performed by maintaining a list of nodes from all
the trees in a priority queue. The node which is closest to
the query is explored first. This procedure is repeated until
K nearest neighbors are obtained. The nearest neighbors re-
turned by the algorithm (with duplicates removed) are then
sorted based on the Euclidean distance to the query.

Implementation details.
We discuss the important parameters of the number of

trees used and the number of nearest neighbors returned
from each below in the evaluation. To construct a forest
of two K-D trees over a database of 54, 000 pose estimates
requires 350 MB of memory and a retrieval time of 5ms for
2000 poses.

Experimental evaluation.
Here we evaluate how well the ANN algorithm performs

compared to exhaustive search. To this end 1000 random
pose estimates are sampled from the whole movie database
as queries. Each query is searched in the database using both
exhaustive and approximate nearest neighbor search. In the
exhaustive search, the query pose is compared using the Eu-

clidean distance to all the elements in the database and the
best 100 pose estimates are retained. Next, the search is
repeated with the ANN algorithm. These ANN algorithms
suffer from low recall. To address this, the standard practice
is to retrieve more points and retain the desired number of
nearest neighbors closest to the query. In this experiment,
the desired number of nearest neighbors is 100 and multiples
of 100, 100 ∗m where m > 1, are retrieved using ANN. The
performance is measured using recall at 100, i.e. the propor-
tion of the ground-truth nearest neighbors that are in the
top 100 neighbors returned by the ANN algorithm.

Experiment A: In the first experiment, the recall of the
ANN is observed while varying the multiple m. The multiple
m is varied with values {1, 5, 10, 20}, but the number of trees
is fixed to 2. As shown in table 3 (‘Experiment A’), the recall
at 100 rapidly improves with m.

Experiment B: In the second experiment the number of
trees, N , is varied, but K is fixed at 2000. Thus on average,
K/N neighbors are requested from each tree. As shown in
table 3 (‘Experiment B’), the performance is best for two
trees.

Experiment C: In the third experiment the size of the
database is varied, for K = 2000 and N = 2. As shown in
table 3 the recall is largely unaffected by the database size.

Experiment D: In the fourth experiment the size of the
database is varied, for K = 2000 and N = 2. As shown
in table 3 (‘Experiment D’), the speed gain over exhaus-
tive search is orders of magnitude better and significantly
improves with the size of the database.

In conclusion, following these empirical results, in our sys-
tem we construct a forest of two trees, retrieve K = 2000
approximate nearest neighbors and take the top 100 from
amongst these.

7. CLIENT-SERVER ARCHITECTURE
The system is implemented using a standard client-server

architecture. The client interfaces with the user and the
server performs the back-end operations. The functionalities
of these components are described in detail for the stickman
query mode, and summarized for the other two query modes.

7.1 Client
The client provides an interface for the user to interact

with the system. It is responsible for taking the query from
the user, sending it to the server and displaying the retrieved
results returned by the server. Figure 4 shows the pose re-
trieval web demo that we have built. The upper-left corner
shows the tabbed interface for three query modes query-by-
stickman, query-by-Kinect and query-by-image respectively.
In the query-by-stickman mode, the user can choose any
pose by moving the arms of the interactive stickman in the
image. As the user moves the stickman, the client continu-
ously sends coordinates of stickman as queries to the server.
The server responds in real time with the database poses
that best match the query. This provides a gratifying and
interactive pose search experience. In the query-by-Kinect
mode as the user moves, the skeleton of the user output by
the Kinect sensor is uploaded to the server. We observe that
the Kinect’s pose estimation is stable when the user is in
full view of the Kinect. To further improve the stability, the
skeleton is uploaded to the server only when the Euclidean
distance between successive poses is greater than 5 pixels.
In the query-by-image mode, the query image is uploaded

to the server. The server then detects human poses in the
image and relays back the best human pose to the client.
The user is also given the option select the database and
level (frame/shot/video) to retrieve at. The thumbnail of
the matching result, the position of the shot and the movie
to which it belongs are displayed. If the user clicks on any
thumbnail, the corresponding video shot is played.

The client is implemented as a web application using the
AJAX framework with javascript as the language. The client
independently handles the user interaction, communication
with the server and the results display. The input given
by the user is passed onto the server as an XML request.
Then the incoming XML data, a ranked list, from the server
is processed. The corresponding thumbnails are requested
from the server and displayed. To view the video clip of any
retrieved result, the user is given an option to click on the
corresponding thumbnail.

7.2 Server
The server processes a request from the user and returns

the top ranked results that best match with the query. Af-
ter receiving a query from the client, the server: (i) con-
structs the 12D pose representation, and (ii) retrieves the
best matching results from the database and returns rele-
vant information. Upon further request, it (iii) returns the
video clip of the requested shot.

If the input is a stickman, the 12D representation is simply
computed by measuring the orientation of the body parts.
If the input is an image, the server applies the human pose
estimation algorithms and then derives the 12D descriptor
just as if it were a database video frame. If the input is a
Kinect skeleton, the locations of the neck, head, base of the
spine, two wrists, two elbows and two shoulders are used to
construct the stickman (see the Kinect example in figure 1)
The stick corresponding to the torso, for example, is con-
structed by forming a line segment with the end points as
location of the neck and the base of the spine.

The server then retrieves 100 best approximate nearest
neighbors. For each element in the ranked list the thumbnail
path, the video name, the position of the shot to which it
belongs to are sent back as result. If the user has selected
shot or video level retrieval, then the nearest neighbors are
grouped (on shot or video), and the single pose estimate
most similar to the query in each group is returned.

8. EXPERIMENTAL EVALUATION
The pose retrieval system is quantitatively evaluated by

posing 10 queries to the system and measuring the precision
of the retrieved results on the first page of the web applica-
tion, i.e. the top 12 returns. The queries are chosen to cover
a diverse set of poses that people often make. Table 4 shows
the queries posed to the system and the corresponding pre-
cisions, and figure 5 shows the first five retrieved results for
the three top performing queries.

The precision for the best query is 91.7%, but the two
worst queries have a precision of zero. The four queries with
the highest precision are poses for which there are many
examples in the database. Note how these include diverse
poses, with arms next to the torso, overlapping with the
torso, and stretched out from the torso. This illustrates
the versatility of the system. The major impediment to the
performance of the system at the moment is the failures of
the pose estimation algorithms.

Retrieval mode

Ranked list

Video Player

Interactive stick-man

Database

Figure 4: Screen-shot of the pose retrieval system. The elements of the web page such as the three query
modes, options for selecting the database and the level of retrieval and video player, amongst other things,
are indicated by text annotations and pointers in light red color. The interactive stickman can be moved around
and the results are instantly updated as a ranked list. Clicking on a thumbnail plays a video of that shot.

9. CONCLUSION
We have designed a general, scalable, real time pose re-

trieval system for accessing frames, shots and videos. Even
with the current state of pose estimation algorithms, with
50k examples there are many interesting poses that can be
discovered and retrieved. We expect the performance of the
system simply to improve over time as the performance of
pose estimation algorithms improves.

Although we have demonstrated the idea for videos, a
similar system could equally well be developed for large scale
image datasets.

Acknowledgments
We are grateful for financial support from the UKIERI, and
ERC grant VisRec no. 228180.

10. REFERENCES
[1] M. Andriluka, S. Roth, and B. Schiele. Pictorial

structures revisited: People detection and articulated
pose estimation. CVPR, 2009.

[2] O. Arandjelovic and A. Zisserman. Automatic face
recognition for film character retrieval in

feature-length films. In CVPR, 2005.

[3] M. Blank, L. Gorelick, E. Shechtman, M. Irani, and
R. Basri. Actions as space-time shapes. In ICCV, 2005.

[4] M. Eichner and V. Ferrari. Better appearance models
for pictorial structures. In BMVC, 2009.

[5] M. Eichner and V. Ferrari. Calvin upper-body
detector v1.03. http://www.vision.ee.ethz.ch/
~calvin/calvin_upperbody_detector/, 2010.

[6] M. Eichner, M. Marin, A. Zisserman, and V. Ferrari.
Articulated human pose estimation and search in
(almost) unconstrained still images. ETH Technical
report, 2010.

[7] M. Everingham, L. Van Gool, C. K. I. Williams,
J. Winn, and A. Zisserman. The pascal visual object
classes (voc) challenge. IJCV, 2010.

[8] P. Felzenszwalb and D. Huttenlocher. Pictorial
structures for object recognition. IJCV, 2005.

[9] P. Felzenszwalb, D. McAllester, and D. Ramanan. A
discriminatively trained, multiscale, deformable part
model. In CVPR, 2008.

[10] V. Ferrari, M. Marin, and A. Zisserman. Pose search:
retrieving people using their pose. CVPR, 2009.

91.7 83.3 41.7 41.7 25 16.7 8.3 8.3 0 0

Table 4: Pose retrieval evaluation: The poses displayed in the first row are used to evaluate the performance of the

system. The numbers in the second row, are the precision of the top 12 results for that pose.

Query Pose Top five retrievals

Figure 5: Pose retrieval examples

[11] I. Laptev, M. Marsza lek, C. Schmid, and
B. Rozenfeld. Learning realistic human actions from
movies. In CVPR, 2008.

[12] P. Li, H. Ai, Y. Li, and C. Huang. Video parsing based
on head tracking and face recognition. In CIVR, 2007.

[13] R. Lienhart. Reliable transition detection in videos: A
survey and practitioner’s guide. International Journal
of Image and Graphics, 2001.

[14] M. Muja and D. G. Lowe. Fast approximate nearest
neighbors with automatic algorithm configuration. In
International Conference on Computer Vision Theory
and Application VISSAPP’09), pages 331–340.
INSTICC Press, 2009.

[15] D. Ramanan. Learning to parse images of articulated
bodies. NIPS, 2006.

[16] B. Sapp, C. Jordan, and B. Taskar. Adaptive pose
priors for pictorial structures. In CVPR, 2010.

[17] B. Sapp, A. Toshev, and B. Taskar. Cascaded models
for articulated pose estimation. ECCV, 2010.

[18] C. Silpa-Anan and R. Hartley. Optimised kd-trees for
fast image descriptor matching. In CVPR, 2008.

[19] J. Sivic, M. Everingham, and A. Zisserman. Person
spotting: Video shot retrieval for face sets. In CIVR,
2005.

[20] J. Sivic and A. Zisserman. Video Google: A text
retrieval approach to object matching in videos. In
ICCV, 2003.

[21] P. Viola and M. Jones. Robust real-time face
detection. IJCV, 2004.

[22] Y. Yang and D. Ramanan. Articulated pose estimation
with flexible mixtures-of-parts. In CVPR, 2011.

