IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 18, NO. 1,

JANUARY 2012

Raytracing Dynamic Scenes on the GPU
Using Grids
Sashidhar Guntury and P.J. Narayanan

Abstract—Raytracing dynamic scenes at interactive rates have received a lot of attention recently. We present a few strategies for
high performance raytracing on a commodity GPU. The construction of grids needs sorting, which is fast on today’s GPUs. The grid is
thus the acceleration structure of choice for dynamic scenes as per-frame rebuilding is required. We advocate the use of appropriate
data structures for each stage of raytracing, resulting in multiple structure building per frame. A perspective grid built for the camera
achieves perfect coherence for primary rays. A perspective grid built with respect to each light source provides the best performance
for shadow rays. Spherical grids handle lights positioned inside the model space and handle spotlights. Uniform grids are best for
reflection and refraction rays with little coherence. We propose an Enforced Coherence method to bring coherence to them by
rearranging the ray to voxel mapping using sorting. This gives the best performance on GPUs with only user-managed caches. We
also propose a simple, Independent Voxel Walk method, which performs best by taking advantage of the L1 and L2 caches on recent
GPUs. We achieve over 10 fps of total rendering on the Conference model with one light source and one reflection bounce, while
rebuilding the data structure for each stage. Ideas presented here are likely to give high performance on the future GPUs as well as
other manycore architectures.

Index Terms—Raytracing, grids, ray coherence, load balancing, GPU.

<+

1 INTRODUCTION

RAYTRACING has been a method of choice for producing
photorealistic images. Interactive and real-time raytra-
cing using the Graphics Processor Unit (GPU) has received
a lot of attention recently with the increase in their
computation power. Raytracing has two major parts: the
construction of a suitable acceleration data structure and
computing the ray-geometry intersections. The data struc-
ture building is a preprocessing task for static scenes and
only the intersections need to be performed at interactive
rates. Efficient and hierarchical structures like Bounding
Volume Hierarchies (BVH) and its variants, Kd-trees, and
variations of grids have been used as acceleration struc-
tures. The structure needs to be rebuilt every frame when
retracing dynamic scenes involving deformable geometry.
The structure building and tracing need to be performed in
real time then. The acceleration structure and the tracing
method should be selected to minimize the total time.
High performance needs GPU-friendly structures and
algorithms as a result. The GPU has a large number of cores
and favors massively multithreaded algorithms with reg-
ular operations and memory access patterns. The manycore
CPU architectures are likely to share these characteristics in
the future. Regular structures like grids can be built and
operated efficiently on such architectures compared to

o The authors are with the Center for Visual Information Technology
(CVIT), International Institute of Information Technology, Gachibowli,
Hyderabad 500 032, Andhra Pradesh, India.

E-mail: sashidhar@research.iiit.ac.in, pjn@iiit.ac.in.

Manuscript received 22 Aug. 2010; revised 12 Jan. 2011; accepted 28 Jan.
2011; published online 2 Mar. 2011.

Recommended for acceptance by |. Ahrens and K. Debattista.

For information on obtaining reprints of this article, please send E-mail to:
tucg@computer.org, and reference IEEECS Log Number
TVCGSI-2010-08-0190.

Digital Object Identifier no. 10.1109/TVCG.2011.46.

1077-2626/12/$31.00 © 2012 IEEE

irregular structures like BVH and Kd-tree. We explore the
use of grids as the acceleration structure for interactive
raytracing in this paper. Grids have been explored for
raytracing on the CPU [1], [2] but their advantages are more
pronounced on a GPU-like architecture. Grids use a sorting-
like step for construction and can be implemented
efficiently on the GPU. This makes them particularly well
suited for dynamic scenes. The quick building time makes
them more attractive though they lack hierarchy to
eliminate large portions of the scene quickly.

In this paper, we explore fast raytracing of dynamic
scenes with primary, shadow, and secondary rays on a
modern GPU using grids. We minimize the total time to
build the structure and trace the rays. We advocate the use
of appropriate acceleration structures for each stage, as
different rays from different stages behave differently. Fast
grid construction achieves high overall performance even if
the data structure is built multiple times per frame.

We use a perspective grid in camera space for the primary
rays and a perspective grid in light space for shadow rays,
building on our earlier work [3], [4]. Camera-space perspec-
tive grid provides perfect coherence to primary rays.
Frustum culling and back-face culling (BFC) reduce the
geometry to be processed as the grid is built per frame. The
user-managed shared memory of the GPU is used effectively
for the tracing step [3]. We build a grid of smaller voxels to
limit the number of triangles in each but trace multiple voxels
together to better exploit the the large SIMD width on GPUs
[4]. A spherical perspective grid with respect to each light
source enables tracing shadow rays like primary rays.
Coherence is increased using a load-balancing step.

We use a uniform grid for reflection and refraction rays,
as they have no natural coherence. Grid construction using
sorting is fast on the GPUs, allowing repeated construction
for each frame and each stage. We describe two ways to

Published by the IEEE Computer Society

Fig. 1. The triangle storage layout. This kind of layout is achieved by
keeping the X value in the MSB and Z extent in the LSB.

trace the reflection rays. The Enforced Coherence (EC)
method brings all rays passing through a cell together using
sorting. This enables simultaneous checking of intersections
of all rays with triangles of a grid cell. The intersection step
exploits the coherence by using the shared memory. This
provides high performance on today’s GPUs even if the
sorting is an additional step. The Independent Voxel Walk
(IVW) method traces each ray independently using a GPU
thread loading the triangles in its way. The moderate caches
on the current GPUs provide good performance for this
simple method. The EC method works best on older
generation GPUs with no caches, while the IVW method
is slow on them. Both methods perform similarly on recent
GPUs with a richer memory architecture. Future GPUs and
manycore architectures are likely to favor the IVW method
as the cores are more independent.

We raytrace the Conference model with a single light
source and one bounce of reflection rays on an Nvidia
GTX480 at 8 fps using the EC method and at 14 fps using the
IVW method. Two perspective grids and one uniform grid
are constructed in each frame. Our approach will provide
good results on other GPUs of today and will be beneficial to
the future GPUs and other manycore architectures as they
are likely to share many of these characteristics.

2 BACKGROUND AND PREVIOUS WORK

Raytracing has been widely studied recently. A survey of
the current techniques for raytracing can be found in [1].
Here, we describe some of the recent work which is directly
related to our own.

Considerable effort has gone into speeding up the
process of building data structures, especially on GPUs.
Zhou et al. [5] constructed Kd-trees and Lauterbach et al. [6]
constructed BVHs on the GPU. Methods proposed by
Dammertz and Keller [7] and Ernst and Greiner [8]
recommend splitting triangles to get a better quality data
structure. Stich et al. [9] and Popov et al. [10] proposed
variations to BVHs to improve their quality. The construc-
tion of Spatial BVH (SBVH) proposed in [9] is considerably
higher as an efficient building method is mapped onto GPU
is still an issue. Such a data structure is really good for static
scenes but not for scenes with dynamically changing
geometry. Kd-trees and BVHs are still expensive to build
on GPU, especially if they need to be built every frame.
Patidar and Narayanan used a perspective grid to raycast
dynamic scenes using a fast building of the grid in each
frame [3]. Their triangle storage layout is shown in Fig. 1
which we use in our grid implementation as well. Their

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 18, NO. 1,

JANUARY 2012

approach was sensitive to triangles distributions spanning
arbitrary number of voxels. Kalojanov and Slusallek [11]
solved this problem on uniform grids and also used an
appropriate grid resolution to improve the quality. Our
method uses perspective grids and uniform grids, incorpor-
ating ideas to make them insensitive to triangle distribution.
Resolution of grids was analyzed by Ize et al. from an
algorithmic point of view to predict the number of voxels
given a model’s characteristics [12].

Unlike on a BVH and a Kd-tree, rays on grids cannot be
handled as packets easily. Wald et al. [13] presented an
algorithm to traverse the grid in a slice-wise coherent
manner. Due to the use of a frustum like grid, Hunt and
Mark [14] and Patidar and Narayanan [3] treat primary rays
as coherent packets of rays. These packets of rays work
together bringing optimal amount of data and reusing it.
Hunt and Mark [14] suggested the idea of rebuilding the
data structure from the light point of view on the CPU.
Coherence is an even more critical factor for good
performance on the GPU. We extend their ideas to the
GPU but go much further by building a spherical grid to
increase efficiency as well as to support spotlights and
lights within the scene, building on our earlier work [4]. We
also balance the workload among the many cores available
as shadow rays tend to be concentrated.

There has been some work on enforcing coherence
among secondary rays. Pharr et al. [15] and Navratil et al.
[16] proposed reordering techniques on multicore CPUs.
The ray reordering technique proposed by Pharr et al. [15]
queues rays and schedules the processing of this queue in a
way to minimize cache misses and I/O operations.
Recently, Moon et al. [17] suggested the use of Hit Point
Heuristic and Z-curve filling-based ray reordering to
achieve cache oblivious coherence on multicore architec-
tures. They concentrate on simplifying the model and using
these simplified models for global illumination methods
such as path tracing and photon mapping. There has been
some work on secondary rays on the GPUs. Budge et al. [18]
analyzed the bottlenecks during path tracing a complex
scene and proposed a software system that splits up tasks
and schedules them appropriately among CPU and GPU
cores. Garanzha and Loop [19] demonstrated a method to
treat shadow rays from point and area light sources. Their
reordering scheme requires them to build virtual frustums
and reorder rays according to these frustums. The reorder-
ing technique which we propose doesn’t use queues. We
don’t need to construct a virtual or a scheduling grid to
reorder the rays since our basic structure itself is a grid. Our
method uses primary hit points from ray casting for
reordering the rays. Aila and Karras [20] proposed possible
extensions to hardware which can speed up secondary rays.
Their treatment is from a hardware point of view studying
the cache performance. We concentrate on speeding up the
tracing of reflection rays.

2.1 GPU Computing Model

We implement our raytracing techniques using the CUDA
[21] programming model on Nvidia GPUs. CUDA uses
kernels, which are programs that run in parallel on all
threads. A huge number of threads—up to tens of
thousands—is launched for efficiency. The threads are

GUNTURY AND NARAYANAN: RAYTRACING DYNAMIC SCENES ON THE GPU USING GRIDS 7

grouped into thread blocks or CUDA blocks. Threads
within a single CUDA block can be synchronized with
negligible overhead. They also have access to a small, fast,
on-chip shared memory. Global memory is accessible to all
threads, but is considerably slower. The new generation of
Nvidia GPUs (Fermi) has L1 and L2 caches. The amount
allocated to each of the L1 and shared memory can be
configured for each kernel. The L2 cache is accessible to all
threads of the kernel. The threads are batched into warps of
32 threads, and are scheduled sequentially on available
processor resources. Thus, the SIMD width of GPU
computing model is the size of the warp. Memory access
patterns of threads of a warp also affect performance
deeply. Memory performance is best if data used by all
threads of a block are loaded onto the shared memory.
Additionally, if nearby threads access global memory
locations that are close, performance will receive a boost
as the data in those locations will be cached in L1 and L2
cache. The GPUs from other manufacturers have similar
architectures at the lowest level. Thus, our approach will
scale well to those, given the use of a standard program-
ming model like OpenCL.

3 GRID DATA STRUCTURE

Constructing a grid data structure involves dividing the
world into voxels and binning scene geometry in those
voxels. On the GPU, grids have been constructed as both
uniform grids [11] and perspective grids [3]. Unlike BVH or
Kd-tree, grids do not possess hierarchy and therefore do not
have the tree property which is extremely useful in
eliminating triangles before the actual intersection checking.
Also, the notion of packets in BVH and Kd-tree is
straightforward while this notion is not so straightforward
in uniform grids.

However, by building a perspective grid, one gets perfect
coherence for primary rays. We can treat primary rays as
packets. Similar to the technique used in our earlier work
[3], we process the rays of each tile together on GPU using a
CUDA block or a work group, with each pixel assigned to a
thread or a work item. The triangle data are brought into the
shared memory before intersection calculations. Since all
threads need to process all triangles in the voxel, the
overhead of bringing the triangles is amortized over the
intersections. The threads alternate between loading a
portion of the triangles into shared memory and computing
intersections for them, with a synchronization between
these two roles. A thread that has found an intersection at
one voxel need not check for intersection in a later voxel, as
the voxels are processed in a front-to-back order. We use an
optimized routine for checking triangle intersection [22].

The perspective grid data structure that we build for
primary rays is ray specialized [14] for primary rays and
cannot efficiently handle other rays. The cost of building a
grid is low as it reduces to a sorting of triangle-voxel pairs
[11]. This is one of primary reasons why rebuilding the
data structure multiple times is attractive. We also employ
View Frustum Culling (VFC) and Back-Face Culling for
eliminating triangles which are not going to be tested by
camera rays. This removes a large part of the geometry in
the scene and results in lower grid construction times. This

0 2200

Fig. 2. Heat map showing the number of triangles checked before
declaring intersection. Left image corresponds to direct mapping while
there is marked reduction in indirect mapping (right). Number of triangles
checked before declaring intersections increases from blue to pink and
is highest in yellow regions.

advantage is not available for the uniform grid for general
secondary rays.

The size of the image-space tiles and voxels in the grid can
impact the performance. A tile is a coherent, rectangular
cross section of rays. Larger tiles may exploit greater
coherence than smaller ones. However, smaller tiles and
voxels result in fewer overall ray-triangle intersection
calculations due to a finer sorting. The SIMD width of the
architecture also affects the performance, as the computing
resources may be wasted if the number of threads used is
below the SIMD width. We use an indirect mapping of threads
to strike a balance between these conflicting demands.

We sort the triangles to smaller tiles, but raytrace using
larger number of threads, by mapping threads differently.
In practice, we sort the triangles to kN x kN tiles in image
space. For raytracing, we divide the image into NV x N tiles
such that a kx k group of sorting tiles fits into each
raytracing tile. The work groups used while tracing have
more threads. The available shared memory is partitioned
equally among the sorting tiles during raytracing. Triangles
from each sorting tile are brought to the respective area of
the shared memory and are intersected with the rays
corresponding to the sorting tiles. The configuration of 2 x 2
sorting tile within each tracing tile provides the best results
on current GPU hardware.

The most computationally intensive part of the entire
raytracing routine is the triangle intersection part and that is
where indirect mapping helps. Indirect mapping reduces
the overall triangles to be checked. For the Happy Buddha
benchmark, we got 10-30 percent speedup using indirect
mapping as the maximum number of triangles checked
dropped by more than half. Fig. 2 shows this using a heat
map for the work done.

4 SPHERICAL LIGHT GRID FOR SHADOWS

Primary rays generate an intersection point for each pixel
from which another set of rays are spawned. For secondary
rays, methods to efficiently trace shadows were described by

Fig. 3. Spherical space used for shadows.

Wald et al. [13]. Their technique involves a slice-wise
coherent traversal. Though their method works well on
CPU, it's not well suited on wide SIMD architecture like
GPU. Furthermore, near the silhouettes of the object, shadow
rays are not always coherent which would introduce
divergence in the ray packet. The resulting packet would
have to include a large number of triangles and thus lots of
wasteful intersection checks. Shadow rays share many
aspects of primary rays. In the case of point-based lights,
shadow rays converge to a point. In many ways, it’s like a
role reversal from the point of view of lights and therefore
shadow rays can be treated similar to primary rays.

One way to exploit the aforementioned coherence is by
listing the voxels for each shadow ray and then merging
them. This has been found to be expensive on the CPU [13]
and merging is prone to perform poorly on the GPU too.
Since building the grid data structure is cheap, building it
again from the point of view of the light source is feasible
on GPU. The process of tracing the shadow ray is then
similar to that of tracing the primary rays.

4.1 Building Light Grids and Ray Mapping

We build a perspective grid with the light source taking the
role of the camera. The camera has an intrinsic direction
and a field of view. This is not natural for light sources.
Point light sources emit light in all directions. We use a
spherical mapping to map light’s world into a perspective
grid. A light frustum is constructed in the a-0 space where o
and 6 are the azimuthal and elevation angles (latitude-
longitude scheme). Fig. 3 shows the spherical space with
respect to the forward, right, and up directions. A rectangle
in the a-0 space defines the light frustum and plays the role
of the image for primary rays. We define “tiles” on this
rectangle to build voxels of the grid using constant depth
planes. The angle « is measured from the forward direction
in the forward-right plane and the angle ¢ is measured from
the forward direction in the forward-up plane. Lower and

(mt,mt/2)

(—m,—1/2) (m,—m/2)

Fig. 4. Bounding rectangle of the geometry in spherical space defines
the light frustum of interest.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 18, NO. 1,

JANUARY 2012

Fig. 5. Clamping the region to simulate spotlights.

upper limits on the distance from the light source play the
role of near and far planes. This method however suffers
from the demerit of pole singularity. All triangles lying in
the right-forward plane (6 is 7), will be duplicated along all
the tiles near the pole. This loss in performance can be
mitigated by choosing a “good” forward direction. Choos-
ing the line joining the light position to the centroid of the
model helps us limit the number of triangles along the pole.

Spherical mapping of this kind treats all directions
equally. We would ideally want to handle only the
geometry which is visible to the camera. For this, we limit
the angular extents of the light’s frustum to the bounding
box of projection of the camera’s view frustum. Fig. 4
demonstrates this reduction of triangles participating in the
grid building and ray-triangle checking. Furthermore, it
also devotes the grid tiles to a smaller area thus dividing the
area more finely. This technique also points a way to
implement proper spotlights with light falloff. The spot can
be marked as a bounding rectangle in the spherical space
shown in Fig. 4. Fig. 5 demonstrates the spotlight achieved
using this technique. A cubemap style of ray mapping to
limit light space rays was used earlier [14]. They handle
each frustum separately, resulting in a lot of extra work for
the traversals. Furthermore, clamping a cubemap is very
tedious when it has to identify the grid which a ray has to
check. In contrast, spherical mapping provides a more
unified framework to compute shadows.

4.2 Ray Reordering

The shadow rays emanate from the intersection points of
primary rays and travel toward the light source. Rays in the
primary space that are distant may follow similar paths to the
light source, as shown in Fig. 6. The primary intersection
points are recorded against each ray at the end of the primary
step. We map the starting points of the shadow rays to
spherical space of the light source and store the tile number

Fig. 6. Points of primary ray intersection are mapped to the light frustum.

GUNTURY AND NARAYANAN: RAYTRACING DYNAMIC SCENES ON THE GPU USING GRIDS 9

P>

break
into
chunks

>

compact
list

> P

sorting get
boundaries

Fig. 7. Reordering illustrated. Different colors correspond to different
voxels. Sorting results in all colors coming together. Get Boundaries
gets the locations where enumeration of a new voxel starts. Based on
threshold value (3 here), rays are divided into chunks and compacted in
a tight array.

for each. Thus, a pair of primary ray and light tile number is
created for each shadow ray. This list is sorted with the tile
number as the key to bring shadow rays that belong to the
light tile together. This brings similar coherence to secondary
rays as the primary ones, with the information about each
shadow ray that passes through the tile available. Shadow
ray generation and reordering are performed on GPU in
parallel using scan primitives [23] from the CUDPP library.

4.3 Load Balancing

For tracing primary rays, blocks of threads are assigned to
tiles directly or indirectly. This is efficient as the number of
rays in each tile is constant. For shadow rays, however, the
number per tile can vary widely. The above thread
mapping strategy can be inefficient due to the imbalance
in workloads. We try to keep the number of rays handled by
each thread block below a maximum value. This needs
assigning multiple thread blocks to excessively populated
light tiles. We do this by splitting tiles with more than a
maximum number of shadow rays into multiple logical
tiles. Sparsely populated tiles, however, cannot be merged
as they work on different triangle data.

Suppose a light tile has R > r rays mapping to it, where r
is the number that a thread block can handle efficiently. We
assign [R/r] blocks in the CUDA program to this tile. Other
tiles are mapped to one thread block each, after eliminating
empty ones. The total number of thread blocks needed is
Chotal = Z/\le [R;/r], where R; is the number of rays in tile j.

Ray Reordering and Load Balancing are illustrated in Fig. 7.
The array of (primary ray, light tile number) pairs for each
primary intersections is sorted with tile number as the key.
A kernel marks the boundaries of different tiles and marks
their positions. We call these boundaries hard boundaries.
A segmented scan on it gives us the number of values
having the same key. This allows one to break this (possibly
huge) packet into multiple sizeable chunks. This is done by
marking the boundaries on the existing array which had the
hard boundaries. We call these new boundaries as soft
boundaries. Every hard boundary (different key) is also a
soft boundary (mapped to a different CUDA block.) To
keep track of the first ray in each block, we do a stream
compaction step and shrink the number of voxels (in the
spherical grid space) to Cy. In Fig. 7, r = 3 is used. Thus,

we have a list of locations to the values each of which
belongs to a different CUDA block. The difference between
two adjacent terms in the array gives us the number of rays
belonging to that CUDA block. This completes our load-
balancing step and we can invoke as many CUDA blocks as
the number of elements in the compacted array.

Algorithm 1. Reordering Load Balancing Shadow Rays
totalrays «— image size

for ray < totalrays in parallel do
sphericalMap(tileIDArr([ray], rayIDArr[ray])
pseudoArr[ray] — 0
scratchArr[ray] — 1
oArr[ray] < 0

end for

sort(tileIDArr, rayIDArr)
getBoundaries(tileIDArr, pseudoArr)
segScan(pseudoArr, scratchArr)
getChunks(scratchArr, validArr)
numbBlocks «— compact(validArr, oArr)

5 REFLECTION RAYS

Reflection rays exhibit very little coherence for general scene
geometry. That is, the reflection rays go off in all directions
and need to check against different voxels of the grid. Since
there is no preferred point or direction unlike primary and
shadow rays, perspective grids are not especially useful for
reflection rays. There is no natural direction to create a
perspective space for such rays. However, the construction of
a grid structure is inexpensive and should be used for
reflection rays also. The perspective grids built for primary
and shadow passes cannot be used directly as they use BFC
and VFC to eliminate unnecessary geometry for efficiency.
Since there is no general direction of reflection rays, we
cannot eliminate triangles. We, therefore, construct a uni-
form grid in object space to handle reflection rays, on the
lines described by Kalojanov and Slusallek in [11]. Rays can
traverse a uniform grid as outlined by Amanatides and Woo
in [24], by walking from one voxel to another using a voxel
walk procedure. We describe two methods to trace reflection
rays using a uniform grid on the GPU.

Independent voxel walk. Each ray can walk along the
voxels it encounters by computing the next voxel, starting
with the starting point. Each ray checks intersection by
loading the triangles of the voxel it encounters. This
continues until the first intersection is found, when the ray
terminates. In this method, traversal and intersection
checking are tightly knit. This method is a simple one and
assumes no coherence between rays. The lack of coherence
can incur heavy penalty on the older GPUs with large SIMD
width and no caching to exploit access locality that may be
present across threads over a period of time. The newer
architecture (Fermi) has a moderate L1 cache for a group of
processors and a larger L2 cache for all processors. The L1
cache can be shared by threads of a CUDA block and the L2
cache can be used by all threads. The independent voxel walk
method can benefit from these caches if multiple rays are
checking intersection for the same voxel simultaneously or
close together in time. Pseudocode for the independent voxel

10 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 18, NO. 1,

walk method is presented in Algorithm 2. As the future
GPUs and manycore architectures are likely to have even
more flexible caching mechanisms, this type of an approach
will continue to benefit from the architectural improvements.

Algorithm 2. Independent Voxel Walk
totalrays «— image size

for ray < totalrays in parallel do
while ray has not found intersection do
voxel « determineVoxel(ray)
for all triangles in voxel in serial do
checkIntersection()
if found intersection then
break
end if
end for
end while
end for

Enforced coherence method. Tracing primary rays is
totally coherent because we can identify groups of rays
passing through each voxel easily. The triangles of the voxel
are brought to shared memory and the intersection
calculations can be performed from the shared memory.
We can enforce coherence by processing all rays that pass
through a voxel together.

Enforced coherence method involves reordering the rays
to force coherence. To do this, we first determine the voxels
which each ray passes through to get a list of (ray, voxel)
pairs. We sort this list using the voxelID as the key to bring
all rays that traverse each voxel together. We can now use a
procedure similar to primary raytracing by allocating a
CUDA block to each voxel. Load is balanced by allocating
multiple CUDA blocks, each processing a packet of rays, to
voxels that have large numbers of rays passing through
them, similar to the handling of shadow rays. The start-to-
finish ordering of each ray is, however, lost in this process
and rays cannot terminate on finding the first intersection.
Thus, if a ray passes through multiple voxels, it has to be
processed as part of each packet.

The first step in intersection checking is loading the
triangle data to shared memory. This is done by the threads
in the CUDA block, each of which brings data of one
triangle from global memory. For voxels which have more
triangles than the number of threads, triangles are brought
in batches. Each batch is completely used before loading the
next batch of triangles. As already mentioned, the ordering
of rays is lost, due to which one cannot terminate the
process of checking the rays by finding the first intersection.
Therefore, one has to find all the intersections and then get
the closest one among them.

Reordering is computationally intensive (sorting, com-
paction, etc.) and memory intensive. The number of (rayID,
voxelID) pairs for a typical conference room scene is about
10 million, as each ray passes through 10 voxels on an
average. This number only indirectly depends on the
geometry of the scene through the reflection ray origins
and directions. The overheads incurred in reordering and
minimum finding can be offset by the coherence we obtain
using this method. The pseudocode of the enforced
coherence method is presented in Algorithm 3.

JANUARY 2012

Algorithm 3. Enforced Coherence Method
totalrays «— image size

for ray < totalrays in parallel do
countArr[ray] « 0
countArr[ray| < DetermineVoxels(ray)
end for

totalvoxels « 0
for ray < totalrays in parallel do

totalvoxels « totalvoxels + countArr|ray]
end for

allocate memory(tileIDArr, rayIDArr)

for ray < totalrays in parallel do
DumpVoxels(rayIDArr[ray|, tileIDArr[ray])
end for

for i < totalvoxels in parallel do
pseudoArr[i| < 0
scratchArr[i] « 1
OArr[i] < 0

end for

sort(tileIDArr, rayIDATrr)
getBoundaries(tileIDArr, pseudoArr)
segScan(pseudoArr, scratchArr)
getChunks(scratchArr, validArr)
numBlocks « compact(validArr, oArr)

for all blocks in numBlocks do
while all rays in block do
load triangles to shared memory
check for intersection
end while
end for

for rays < totalrays in parallel do
get minimum of all intersections
end for

6 RESULTS AND ANALYSIS

We implemented the techniques described in the earlier
sections on an NVIDIA 280 GTX and NVIDIA 480 GTX card
using an Intel Core2Duo Q6600 processor running a 32-bit
Linux system. The system rendered each scene at a
resolution of 1,024 x 1,024. Our analysis is divided into
two sections—primary, shadow rays; and reflection rays.
Our method during each frame computes a matrix inverse
for each triangle and stores it for faster intersection checking
[22]. The cost for computing these matrices is quite low as
the task can be easily parallelized and GPU architecture is
optimized for vector and matrix operations.

6.1 Primary and Shadow Rays

We tested primary and shadow rays on a number of scenes
and models, shown in Fig. 8. We build the grid data

GUNTURY AND NARAYANAN: RAYTRACING DYNAMIC SCENES ON THE GPU USING GRIDS

11

Fig. 8. Some of the test scenes: Fairy Forest (174 k), Sibenik Cathedral (82 k), Conference Room (284 k), and Buddha (1.09 M).

TABLE 1
Time in Milliseconds for Primary and Shadow Rays for Different Stages for Our Method
and an Implementation of Kalojanov and Slusallek [11]

Fairy (174K) Sibenik (82K) Conference (284K) | Happy (1.09M)

Our [Kal09 | Our | Kal09 | Our Kal 09 Our Kal 09

Primary DS Build 3.92 16.65 311 9.22 411 13.47 9.04 12.04

Primary Ray Traversal | 5.88 72.26 3.18 54.27 2.98 4425 6.70 40.10
Stages Shadow DS Build 419 0.0 3.58 0.0 5.15 0.0 9.08 0.0
Data Rearrangement 3.78 0.0 3.69 0.0 3.72 0.0 3.69 0.0

Shadow Ray Traversal | 6.09 122.73 5.69 4373 452 46.64 8.43 81.18

Total 23.86 | 211.68 | 19.25 | 107.22 | 20.48 104.36 3694 | 133.32
FPS 419 472 51.94 9.32 48.83 9.58 27.07 7.50

They use a uniform grid structure for primary and shadow rays. Times are on a GTX480 GPU.

structure every frame. Table 1 gives a detailed breakup of
various stages for a frame. Unlike primary rays, shadow rays
are not equally distributed among all tiles making shadow
ray traversal (including shadow DS build and rearrange-
ment) more expensive than primary ray traversal. Data
rearrangement consists of mapping the shadow rays to the
spherical map, clamping the spherical map, sorting shadow
rays, binning them, and performing a stream compaction.
These steps work on the rays in the image space and are
independent of the scene to be rendered. The time taken is
more or less the same for all scenes. We compare the
performance of perspective grids for primary and shadow
rays for one light source with the method by Kalojanov and
Slusallek that uses uniform grids [11]. Table 1 shows that
perspective grids are three to five times faster.

Fig. 11 compares our grid building with state-of-the-art
BVH building procedure proposed by Pantaleoni and
Leubke [26] for building HLBVH and HLBVH + SAH. Grid
building is fast due to its simplicity. A typical HLBVH with

60
5
=
£ 40} |
]
ki
E_1
20

4 6

distance from light (in model units)

—e— 64 Rays —=— 128 Rays —e— 256 Rays ‘

Fig. 9. Time taken to compute shadows as a function of light distance
from Fairy in the model. Light moves away in the direction of the line
joining the light to the center of the fairy model. Times were taken for
chunks of three different sizes—64, 128, and 256. Values are as
measured on GTX 280.

SAH build is about 10 times more expensive. In the
construction of a grid, the only costly operation is sorting
of the triangles to the voxels. Perspective grids admit BFC
and VEFC to reduce the number of triangle-voxel pairs to sort.

Spatial BVH is a better quality BVH than others, providing
more efficient traversal for intersections [9]. It takes advan-
tage of splitting triangles to improve the quality of the BVH
[7], [8]. It makes these splitting decisions during the tree
construction (on a per node basis) after evaluating a cost
function. This makes SBVH a really good data structure for
traversal of static scenes. For dynamic scenes, the overhead of
building the data structure or refitting it might outweigh the
performance improvements. Its build time on GPU would be
greater than the time required for the construction of
HLBVH + SAH whose timings are shown in Fig. 11. A simple
implementation of SBVH on CPU takes 72 seconds to
construct an SBVH for Happy Buddha Model which has
about 1.09 M Triangles. Fig. 10 compares the tracing
performance of our method with one using the SBVH with
a speculative while-while scheme [25]. Fig. 10 compares the

M Primary Rays @ Shadow Rays Reflection Rays

Conference Grid ‘
Conference SBVH
Fairy Grid

Fairy SBVH

Happy Grid

Happy SBVH

T[flﬂ

o
N
(=]

40
Time (in ms)

60 80 100

Fig. 10. Comparison of traversal times between our method (Grid) and
SBVH traversal (SBVH) [25] for various passes in a frame, viz. Primary,
Shadow and Reflection rays. For shadow and secondary, time taken to
rebuild the data structure and rearranging the data is also included.
Numbers are as noted on NVIDIA GTX 480.

12 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 18, NO. 1,

150
150 | 1
o~ 111
£ 100
& 72
& 13
ks 50 |4 ap
3= D 2 o 30 27
3.0 7 49
0 L] [D —
Happy Dragon Armadillo

‘DDHLBVHDDHLBVH + SAHID0Our Method

Fig. 11. Comparison of HLBVH construction [26] with grid construction of
our method. Numbers are as noted on NVIDIA GTX 280. Happy is
1.09 M tris, Dragon is 871 K tris, and Armadillo is 345 K tris.

tracing times using perspective grids and SBVH on a GTX480.
Our method is very good for primary raytracing, butloses out
on shadow rays and reflection rays. The additional traversal
time of grids in the case of shadows will be more than offset by
the savings in build times as seen earlier.

Our method constructs a frustum grid from the point of
view of light to trace the shadow rays. This method is
sensitive to the distance of light from the model as a lot of
rays can be bunched in a tile leading to unequal distribution
of work among CUDA threads. Load balancing alleviates
this problem. Fig. 9 shows the performance of our shadow
tracer as light moves away from the centroid of the fairy
model. Binning 64 rays to one CUDA block provides
consistent performance.

Our perspective grid-based method processes rays that
go through a voxel in a CUDA block. The corresponding
threads check intersection with the same set of triangles.
They are brought to the shared memory and managed
explicitly. On a cache-less architecture like GTX280, the
shared memory speeds up the computation considerably.
The performance on the GTX480 with L1 and L2 caches is
different. The shared-memory-based method is only about
5 percent faster than an independent voxel walk method in
which ray-triangle intersections are processed indepen-
dently from the global memory.

6.2 Reflection Rays

We compare the performance of the VW and EC methods on
different GPUs. For this analysis, we used a 128 x 128 x 128

JANUARY 2012

voxel resolution for all scenes. We used the radixsort from
CUDPP [27] to sort the ray-voxel pairs. We focus on three
representative models for this analysis.

Conference model. This model has a room with a table, a
few chairs, and walls. This model has triangles reasonably
uniformly distributed in the scene space and has large
horizontal or vertical triangles. As a result, the reflection
rays behave well and may have a high degree of coherence.

Fairy in the forest model. This model is mostly sparse
with dense geometry at a few locations in space. The
normals vary considerably which makes the reflection rays
quite incoherent.

Buddha model. This is a scanned model with all the
geometry bunched in a tight space. The model is finely
tessellated because of which the normals vary considerably
in nearby areas. Since the number of triangles is high,
intersection checking might dominate the tracing time. For
this study, we render the model by itself, with reflections
only from itself.

Table 2 summarizes the results on the three models from
the viewpoints given in Fig. 13. The enforced coherence
method is slower than the independent voxel walk method
on the GTX480, as the latter can exploit the caches well. In
contrast, the EC method is much faster on the GTX280 on
Fairy and Happy Buddha models. They perform similarly
on the Conference model, perhaps due to the moderate
coherence of the reflection rays on this model. The
reordering time of the EC method is avoided by the IVW
method. Table 2 also shows the number of ray-voxel pairs
created during the enumeration step. The number is large
on models with a lot of empty space and affects the
performance of the EC method, as it needs more data
movement for sorting.

We analyze the performance of reflection rays on these
models. Fig. 12 shows the percentage of rays that find their
intersections as IVW iteration proceeds. An iteration for a
ray is the processing of a single voxel, beginning with the
starting voxel. The Buddha model starts slow but behaves
the best overall with 80 percent of the rays terminating in
fewer than 80 iterations. This is because all reflections are
self-reflections which need only a few iterations. Other rays
terminate when they cross the bounding box of the model.
The Conference model starts well, but the progress is slower
after 60 iterations. The Fairy model starts and progresses
slowly, needing over 450 iterations for completion. The
timing performance (Table 2) mirrors this directly with
Buddha model attaining the best reflection performance.

Time in Milliseconds for Reflection R-I;?/E I|_rl1E Ezach of the Broadly Classified Stages
Model GPU DS (Ray,voxel) | CUDA EC IVW speedup
Build Pairs Blocks | Reorder [Trace [Total Trace | IVW / EC
Goreene | 0 ITE] nasm | e | o [e [
D] www | ek [R [T w1
oy B0 B0 sw | wox | B [[mm el on

The fourth column gives the number of ray-voxel pairs created during the enumeration of rays and the fifth column gives the number of blocks
assigned after compaction step. The last column gives the relative performance of the EC and IVW methods.

GUNTURY AND NARAYANAN: RAYTRACING DYNAMIC SCENES ON THE GPU USING GRIDS 13

o 100
)
A
wn
>
<
~
kS 50
]
&0
8
o
S
3}
A 0
0 100 200 300 400 500
Iteration

—— Conference — Fairy — Happy

Fig. 12. Percentage of rays declaring intersection at each step of
iteration. Fairy grows very slowly, taking 454 iterations to check
reflections. In contrast, conference takes 306 iterations. Happy Buddha
takes just 294 iterations before declaring the status of the reflected rays.

We study how the reflection rays are distributed among
the voxels. The top left of Fig. 14 shows the ray concentra-
tion by voxels for the first iteration (or set of voxels
explored) of the IVW method for the three models. Most
voxels of the Buddha model have fewer than 50 rays
passing through them, while the other models have a few
hundred voxels with over 400 rays in them. Rays are
processed in parallel by different CUDA threads. If there
are more rays in the voxel, the corresponding threads check
the same set of triangles for intersection and reuse the same
data. This is a situation that can make good use of the L2
cache shared by all threads of the GPU (as the threads
processing these rays may come from different streaming
multiprocessors). Buddha performs the worst in exploiting
the L2 cache, but its overall performance is best due to early
termination seen before. Top right of Fig. 14 zooms into the
tail of the ray distribution plot. The Conference model
outscores the Fairy model with a larger number of dense
voxels. The relatively bad performance on Fairy can be
explained partly by this.

The bottom left of Fig. 14 shows the divergence present
within each primary tile or packet of rays processing the
reflection rays. During IVW, the reflection rays are still
processed as packets corresponding to the tiles of the
primary rays. If the number of voxels in a packet or a tile is
low, the IVW method will have more rays of the CUDA

block accessing the same triangles. This will efficiently use
the L1 cache. Most tiles have low divergence in both
Conference and Fairy models not on the Buddha model.
The early part of the plot (bottom right of Fig. 14) shows
that the Conference model exhibits lower divergence than
the Fairy model and performs better, as is confirmed by the
tracing times we obtained.

Ray distribution and tile divergence are thus good
predictors of reflection performance. If the triangle normals
are mostly parallel (as with the Conference model), the
reflection rays will be largely coherent, if a coherent packet
of rays hits it. This will reduce the tile divergence and
improves the performance with the use of L1 cache. If the
triangle distribution is sparse and the triangles have widely
varying normals (as with the Fairy model), the reflection
rays emanate at few places and travel in all directions. This
reduces the number of rays per voxel and diminishes the
overall performance.

Figs. 15 and 16 show results for some other scenes like
Fairy, Sibenik, and Conference with a simulation in midair.
Fig. 16 places the Dragon-Bunny collision in the Conference
Room model. These frames take 115 to 200 ms per frame to
render, depending on the distribution of the fractured
dragon triangles.

Fig. 10 already presented a comparison of the tracing
times of our method and an SBVH-based method on a
GTX480 for reflection rays. Grids offer no advantages to
largely incoherent reflection rays whereas SBVH treats
reflection rays in a nearly same fashion as other rays. Thus,
reflection rays are much slower in our method, but if we
take into account the time needed for SBVH construction,
we gain significantly. However, if rendering a scene
requires several reflection or refraction passes, a BVH-
based method can catch up with ours even if the
acceleration structure is built every frame. Referring to
Fig. 10, we can see that SBVH gains 25 ms per reflection
pass over our method for Happy Buddha model. If SBVH
build time on GPU is 40 times faster than that of CPU, it will
take about 80 passes for SBVH to catch up. Similarly, it will
take 35 passes if the implementation is 100 times faster.

7 CONCLUSIONS

In this paper, we presented methods to raytrace dynamic
scenes on the GPU in near real time. This requires building
the acceleration structure each frame. We showed the better
performance of our method over structures like BVH that

Fig. 13. The models and viewpoints used for evaluation of the performance of reflection rays. The models are Conference Room (284 k), Happy
Buddha (1.09 M), and Fairy Forest (174 k). The Buddha model has the reflection parts colored white.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 18, NO. 1,

14
. —— Conference
1071 —— Fairy
wn
< 103 L —— Happy |
o B E
= 102 g
ES
10! | i
100 & \ s
0 200 400 600 800
of rays in a voxel
4 Y
10 —— Conference
) —— Fairy
10° i
38 E — Happy
< 10%p -
S)
H
10" i
100 ; ;
0 20 40 60

of voxels in a tile

JANUARY 2012

—— Conference
40 |- —— Fairy ||
2]
ko]
X
o
S
= 20
Es
0 i
400 500 600 700
of rays in a voxel
6,000 :
—— Conference
—— Fairy
2 4,000
kS
+ 2,000
0 i
0 5 10 15

voxels in a tile

Fig. 14. Study of triangle and voxel distributions affecting reflection performance. Top left plot shows the concentration of rays in each voxel. Top
right examines the tail of the plot. Longer tail with larger number of voxels is better for performance. Bottom left shows voxel divergence in each tile.
Bottom right examines the front. Higher number of tiles with less divergence is good for performance. The plots in the top are both binned, i.e., rays

which lie in the interval 500 to 550 are all counted in 500.

are constructed only once for the scene, but are expensive to
construct. With fast construction of grids, we can rebuild
the data structure depending on the characteristics of the
tracing pass. Perspective grids with respect to the camera
provide perfect coherence and high performance for
primary rays. For shadow rays, building a perspective grid
with respect to each light source and following a similar
tracing strategy provides good performance.

Uniform grids are best suited for reflection and refrac-
tion rays with little coherence. We tried two methods suited
for the two recent GPU architectures. In one, we enforce
coherence by sorting rays that pass through each grid voxel.
These rays can then check for intersection with geometry in
the voxel using the shared memory effectively. The other

processes each ray independently using a thread, avoiding
the sorting to enforce coherence. Enforcing coherence wins
on older cache-less GPUs. The performance can improve as
sorting gets faster [28]. The moderate amounts of L1 and L2
caches available on the latest GPUs tip the balance in favor
of the second method.

The performance of our grid-based approach deterio-
rates as the number of bounces increases. The savings made
in per-frame structure building can be offset by slow
reflection ray performance if multiple passes are involved,
compared to good BVH structures. Also, if a parallel SBVH
construction is available, handling multiple bounces will be
cheaper using BVH. Grids will continue to be faster for
raytracing dynamic scenes with limited bounces.

Fig. 15. In Fairy and Sibenik, only the floor is reflective. In the case of Bunny floating in Conference Room, the wooden table and the wooden frame

of the red chairs is a highly polished reflective surface.

GUNTURY AND NARAYANAN: RAYTRACING DYNAMIC SCENES ON THE GPU USING GRIDS 15

Fig. 16. Dragon, Bunny collision in a conference room.

We present the following conclusions based on our work
on raytracing dynamic models. These are derived from our
experience with Nvidia GPUs, but are likely to hold for
most manycore architectures currently being planned.

e One acceleration structure may not work best for all
passes. Building appropriate structure for each pass
can save the overall time since data structure
building is usually fast on these architectures. This
is a significant departure from CPU raytracing,
where data structure building is expensive. Perspec-
tive grids work best for primary and shadow rays,
but uniform grids may be best for others.

e Grids are the easiest structures to build as fast
sorting is available on most platforms. The accelera-
tion structure needs to be rebuilt in each frame when
dealing with dynamic or deformable scenes. An
oncoming paper carries this idea further and builds
a two-level grid structure, riding on fast sorting
times [29]. Adaptive hierarchies like kd-trees and
BVH trees are expensive to build which more than
offsets any gains on traversal they may have.

e Smaller grid cells are preferred since fewer triangles
will be in each cell. However, processing very small
packets of rays may be inefficient if the SIMD width
is high. The indirect mapping approach strikes a
balance between these by processing multiple small
cells together.

e Coherence is critical to high raytracing performance,
especially when SIMD width is large. Processing
coherent rays together can achieve high perfor-
mance. Coherence can be enforced using perspective

grids when possible or using sorting. Coherence
may be discovered automatically through the use of
caches, if they are present.

e As GPUs and manycore processors have richer
memory hierarchies, enforcing coherence may not
be advantageous as the inherent coherence will be
exploited by the cache hierarchy. Simple algorithms
like independent voxel walking win over attempts to
enforce coherence as we reported in this paper. The
margin of improvement between approaches that
are deeply aware of the architecture and approaches
that aren’t should come down. This will be a critical
factor in the wide adaptation of raytracing techni-
ques in games, engineering applications, etc.

e A hierarchical structure like the BVH will eventually
outperform simple grids if several bounces are
needed, even when the BVH is constructed every
frame. The crossover point depends on the archi-
tectural features and, to some extent, the scene type.
Our current calculation indicates that our method
will be ahead until the number of reflection passes
per frame is 50 or more.

ACKNOWLEDGMENTS

The authors thank Marko Dabrovic for the Sibenik Cathedral
Model, University of Utah for the Fairy Forest scene,
Stanford 3D Scanning Repository for the Buddha model,
UNC Dynamic Benchmarks for the Cloth model, and Anat
Grynberg and Greg Ward for the Conference Room Model.
They thank Timo Aila and Tero Karras for sharing their BVH

16

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 18, NO. 1,

traversal code with them and also Nvidia for generous

equipment donations and partial financial support through

faculty award.

REFERENCES

(1]

(2]

B3]

4

(5]

[6]

(7]

(8]

]

[10]

(1]

[12]

(13]

(14]

[15]

[10]

(7]

(18]

[19]

(20]

(21]

[22]

1. Wald, W.R. Mark, J. GntherBoulos, S. Boulos, T. Ize, W. Hunt,

S.G. Parker, and P. Shirley, “State of the Art in Ray Tracing

Animated Scenes,” Computer Graphics Forum, vol. 28, no. 6,

pp- 1691-1722, 2009.

A. Reshetov, A. Soupikov, and]. Hurley, “Multi-Level Ray

Tracing Algorithm,” ACM Trans. Graphics, vol. 24, no. 3,

pp- 1176-1185, 2005.

S. Patidar and P.J. Narayanan, “Ray Casting Deformable Models

on the GPU,” Proc. Indian Conf. Computer Vision, Graphics and Image

Processing, pp. 481-488, 2008.

S. Guntury and P.J. Narayanan, “Ray Tracing Dynamic Scenes

with Shadows on GPU,” Proc. Eurographics Symp. Parallel Graphics

and Visualization, pp. 27-34, 2010.

K. Zhou, Q. Hou, R. Wang, and B. Guo, “Real-Time KD-Tree

Construction on Graphics Hardware,” ACM Trans. Graphics,

vol. 27, no. 5, 2008.

C. Lauterbach, M. Garland, S. Sengupta, D. Luebke, and D.

Manocha, “Fast BVH Construction on GPUs,” Computer Graphics

Forum, vol. 28, no. 2, pp. 375-384, 2009.

H. Dammertz and A. Keller, “The Edge Volume Heuristic - Robust

Triangle Subdivision for Improved BVH Performance,” Proc. IEEE

Symp. Interactive Ray Tracing, pp. 155 -158, 2008.

M. Ernst and G. Greiner, “Early Split Clipping for Bounding

Volume Hierarchies,” Proc. IEEE Symp. Interactive Ray Tracing,

pp- 73-78, 2007.

M. Stich, H. Friedrich, and A. Dietrich, “Spatial Splits in Bounding

Volume Hierarchies,” Proc. Conf. High Performance Graphics, pp. 7-

13, 2009.

S. Popov, L. Georgiev, R. Dimov, and P. Slusallek, “Object

Partitioning Considered Harmful: Space Subdivision for BVHs,”

Proc. Conf. High Performance Graphics, pp. 15-22, 2009.

J. Kalojanov and P. Slusallek, “A Parallel Algorithm for

Construction of Uniform Grids,” Proc. Conf. High Performance

Graphics, pp. 23-28, 2009.

T. Ize, P. Shirley, and S. Parker, “Grid Creation Strategies for

Efficient Ray Tracing,” Proc. IEEE Symp. Interactive Ray Tracing,

pp. 27-32, 2007.

I. Wald, T. Ize, A. Kensler, A. Knoll, and S.G. Parker, “Ray Tracing

Animated Scenes Using Coherent Grid Traversal,” ACM Trans.

Graphics, vol. 25, no. 3, pp. 485-493, 2006.

W. Hunt and W. Mark, “Ray Specialized Acceleration Structures

for Ray Tracing,” Proc. IEEE Symp. Interactive Ray Tracing, pp. 3-10,
008

M. Pharr, C. Kolb, R. Gershbein, and P. Hanrahan, “Rendering
Complex Scenes with Memory-Coherent Ray Tracing,” Proc. ACM
SIGGRAPH, pp. 101-108, 1997.

P.A. Navratil, D.S. Fussell, C. Lin, and W.R. Mark, “Dynamic
Ray Scheduling to Improve Ray Coherence and Bandwidth
Utilization,” Proc. IEEE Symp. Interactive Ray Tracing, pp. 95-
104, 2007.

B. Moon, Y. Byun, T.-J. Kim, P. Claudio, H.-S. Kim, Y.-J. Ban, SW.
Nam, and S.-E. Yoon, “Cache-Oblivious Ray Reordering,” ACM
Trans. Graphics, vol. 29, no. 3, pp. 1-10, 2010.

B.C. Budge, T. Bernardin, J.A. Stuart, S. Sengupta, K.I. Joy, and
J.D. Owens, “Out-of-Core Data Management for Path Tracing on
Hybrid Resources,” Computer Graphics Forum, vol. 28, no. 2,
pp- 385-396, 2009.

K. Garanzha and C. Loop, “Fast Ray Sorting and Breadth-First
Packet Traversal for GPU Ray Tracing,” Computer Graphics Forum,
vol. 29, no. 2, pp. 289-298, 2010.

T. Aila and T. Karras, “Architecture Considerations for Tracing
Incoherent Rays,” Proc. Conf. High Performance Graphics, pp. 113-
122, 2010.

J. Nickolls, I. Buck, M. Garland, and K. Skadron, “Scalable
Parallel Programming with CUDA,” ACM Queue, vol. 6, pp. 40-
53, 2008.

J. Schmittler, S. Woop, D. Wagner, W.]J. Paul, and P. Slusallek,
“Realtime Ray Tracing of Dynamic Scenes on an FPGA Chip,”
Proc. ACM SIGGRAPH/EUROGRAPHICS Conf. Graphics Hardware,
pp- 95-106, 2004.

(23]

(24]

[25]

[26]

(27]

(28]

(29]

JANUARY 2012

S. Sengupta, M. Harris, Y. Zhang, and J.D. Owens, “Scan Primitives
for GPU Computing,” Proc. ACM SIGGRAPH/EUROGRAPHICS
Symp. Graphics Hardware, pp. 97-106, 2007.

J. Amanatides and A. Woo, “A Fast Traversal Algorithm for Ray
Tracing,” Proc. Eurographics, pp. 3-10, 1987.

T. Aila and S. Laine, “Understanding the Efficiency of Ray
Traversal on GPUs,” Proc. Conf. High Performance Graphics, pp. 145-
149, 2009.

J. Pantaleoni and D. Luebke, “HLBVH: Hierarchical LBVH
Construction for Real-Time Ray Tracing,” Proc. Conf. High
Performance Graphics, pp. 87-95, 2010.

N. Satish, M. Harris, and M. Garland, “Designing Efficient Sorting
Algorithms for Manycore GPUs,” Proc. IEEE Int’'l Symp. Parallel
and Distributed Processing (IPDPS), pp. 1-10, 2009.

D.G. Merrill and A.S. Grimshaw, “Revisiting Sorting for GPGPU
Stream Architectures,” Proc. Int’l Conf. Parallel Architectures and
Compilation Techniques (PACT), pp. 545-546, 2010.

J. Kalojanov, B. Markus, and P. Slusallek, “Two-Level Grids for
Ray Tracing on GPUs,” Proc. Eurographics, 2011.

Sashidhar Guntury received the bachelor’s
degree in computer science and engineering
from IIIT Hyderabad in 2009. He is working
toward the master’s degree at IlIT Hyderabad. In
IIT Hyderabad, he is a part of the Center for
Visual Information Technology (CVIT), where he
works on Raytracing on GPU. He is interested in
GPU programming and using it to speedup
algorithms in Raytracing.

P.J. Narayanan received the bachelor’'s degree
from IIT Kharagpur and the PhD degree from the
University of Maryland. He is a professor and the
dean of research at the IlIT Hyderabad. He was
a research faculty member at the Robotics
Institute of Carnegie Mellon University from
1992 to 1996 and a scientist at the Centre for
Artificial Intelligence and Robotics, Bengaluru, till
2000. His research interests include computer
vision, computer graphics, and GPU computing.

‘/1_

He was made a CUDA Fellow in 2008. He was the general chair of
ICVGIP ’00 and the program cochair of ACCV '06 and ICVGIP ’10. He
currently cochairs the ACM India Council.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (IEEE Settings with Allen Press Trim size)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [567.000 774.000]
>> setpagedevice

