
Large Scale Visual Localization in Urban Environments

Supreeth Achar, C.V. Jawahar and K Madhava Krishna

Abstract— This paper introduces a vision based localization
method for large scale urban environments. The method is
based upon Bag-of-Words image retrieval techniques and han-
dles problems that arise in urban environments due to repetitive
scene structure and the presence of dynamic objects like
vehicles. The localization system was experimentally verified
it localization experiments along a 5km long path in an urban
environment.

I. INTRODUCTION

Localization is the process of determining the pose of
the robot in an environment from sensory information and
some sort of map or representation of the environment.
Localization has applications in mobile robotics, autonomous
vehicles and driver assistance systems. The use of visual
data for robot localization has been studied extensively. One
of the earlier successful implementations of a vision based
localization is [1] where a robot equipped with a camera
pointed directly upwards was able to use ceiling illumination
values to determine its location using Monte Carlo filtering
methods.

Many vision based localization systems make restrictive
assumptions about the environment. [2] which uses images
of building facades to localize in an urban environment.
The underlying assumption is that all images used contain
a dominant plane, this makes it difficult to automate the
process of building a visual database of an environment.

Royer et al. [3] describe a monocular vision localization
system which is presented as a preliminary vision based
alternative to satellite based GPS localization. Keyframes
are extracted from a video sequence of the robot’s route
/ environment is used to build a three dimensional re-
construction of the environment. Localization is performed
by extracting keypoints from the current camera view and
matching them to each keyframe image. The frame with the
largest number of matches is chosen and the exact position of
the robot is determined from image point to 3D world point
correspondences using Grunert’s pose estimation algorithm.
Although this method is effective and returns the metric
pose of the robot it requires a computationally expensive
reconstruction with complexity that is superlinear in the
length of the video sequence. Also the current view needs
to be matched against each of the keyframes which may not
be feasible for use in real-time in large environments.
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Qualitative localization methods have the advantage of not
needing any metric modeling of the environment as they
work directly upon the images themselves. Since qualitative
localization involves finding previously seen images that are
similar to the current view of the robot, methods for qualita-
tive localization draw on those used for content based image
retrieval. Features of some sort are extracted from the current
view image and compared to those stored using a suitable
similarity measure. The approaches can be divided into two
broad classes depending on the type of features used, those
that use global descriptors of the image as features and
those that use local descriptors. Colour histograms [4] are
simple global descriptors that have effectively been applied to
robot localization, but they tend to give rather coarse results.
The use of dimensionality reduction techniques to generate
lower dimensional image representations that can be used
for localization have also been studied. [5] uses kernel
principal component analysis to generate global features.
In [6], Fourier domain analysis of images captured by
an omnidirectional camera was used to generate a Fourier
signature that was used for localization.

Local features tend to be more robust to occlusions and
changes in viewpoint. The successful use of local features in
image retrieval applications motivated investigation of their
applicability to qualitative robot localization. One approach
would be to directly match local features (such as SIFT
descriptors) between the current view and each of the stored
images as done in [7]. This provides accurate results but
because the descriptors extracted from the current view need
to be matched against descriptors from all the stored images,
the method does not scale well to large sets of images.
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This paper presents a vision based localization method
suitable for use in large scale urban environments especially
for Indian roads. The method builds upon existing Bag-Of-
Words techniques [8], [9] to address specific challenges
that arise in urban environments such as occlusions by
vehicles and similarity in visual appearance between different
locations. The method can be used as a local localization
scheme if a priori information of pose is available or can be
used as a global localization method.

In outdoor environments, GPS is widely used for localiza-
tion as it provides a straightforward way to obtain fairly ac-
curate position and velocity estimates. In urban environments
buildings can block the visibility of satellites and reflect
signals which can cause GPS localization to fail. Crowded
urban spaces with many buildings and indoor environments



where GPS is inaccurate or unusable tend to be rich in visual
data. Thus vision based localization complements GPS well.

Vision based localization can be performed using image
retrieval. An image taken from the robot’s current pose is
compared against a database of images taken from various
poses in the environment to find the best matching image, as
images coming from nearby poses in the environment tend
to have similar content it can be inferred that the robot is
near the pose at which the retrieved image was captured. One
approach is to directly match local features (such as SIFT
features [10]) between the current view and each of the
database images as done in [7]. However, for large image
databases this method is too slow and requires too much
storage to be feasible.

Bag-Of-Words image retrieval techniques where images
are modelled as collections of visual words can scale effec-
tively to much larger image databases. In [11] visual words
are matched and verified geometrically for localization in an
indoor environment. In [12] BoW based image retrieval is
used to perform localization from a side mounted camera
in an urban environment. Instead of using a previously
determined, fixed vocabulary, the visual vocabulary used
is built by choosing words which are more informative
for the localization process. This results in an increase in
performance for a given vocabulary size but requires all
the images to be available before the vocabulary is built.
If images are added incrementally, the chosen vocabulary
will be suboptimal. FABMAP [13] learns a generative
model of the set of visual words describing appearance of a
scene. This model can be used to compute the similarity
between the current view and database images and also
determine the probability of the images having come from
the same location which allows it to handle environments
where spatially separated locations are highly similar in
appearance.

Lack of discriminating landmarks comes from the fact that
urban areas contain many structures and objects that appear
repeatedly at different positions in the environment. As a
result, widely separated locations may have similar appear-
ances (figure 1(b)). Features in an image belonging to these
common structures will be less informative for the purpose
of determining robot pose. The method presented addresses
this issue of non discriminative features by assigning weights
to features on the basis of mutual information between robot
pose and feature observation. As mentioned before, while
navigating through an Indian road many dynamic objects
such as other vehicles and pedestrians will be visible as
shown in figures 1(a) and 3. These dynamic objects
can occlude the scene and corrupt localization results. Our
method uses geometric inferencing to detect moving objects
and filter out the features they generate. Similar geometric
inferencing techniques were used for localization in indoor
environments by current authors in [14]. The resulting
filtered sets of visual words are used for localization.

Even though the current state of the art feature detectors
[15] [10] [16] generate good matches between image pairs, a
large fraction of the features they detect are unstable to even

small changes in viewpoint and are non repeatable. These
unstable features will act like noise in the bag of words
describing an image. They are unlikely to generate valid
matches and could produce invalid matches with unrelated
images in the image database. Our method addresses this
problem by using closely sampled images instead of well
separated key images but only adding features that are stable
to the database.

The method presented was tested by attaching a camera
to the top of a car recording a video sequence while driving
along a path roughly 5km in length down city roads. A
localization database was built from the frames in this video
and the algorithm was tested for both global localization and
local localization by matching frames from two other runs
along the same path to the database built from the training
run. GPS readings were used to verify the correctness of the
localization results.

The localization method proposed performs qualitative
visual localization using image retrieval techniques. It builds
upon standard bag-of-word based retrieval to handle specific
issues that arise during large scale localization in outdoor
urban environments. Bag of Words based methods model
images as sets of local features that have been quantized
into visual words. Two images are matched by comparing the
sets of visual words they generate. For localization, features
selected from the images should ideally have the following
three qualities

1) Stability: The images features selected should be stable
to small changes in camera viewpoint. Visual words
that have poor repeatability are not useful for localiza-
tion.

2) Staticness: Image features that come from dynamic ob-
jects in the environment such as traffic and pedestrians
can obviously not be used to localize the robot.

3) Distinctiveness: In almost any environment, there will
be objects (such as lane markings on the road) that
appear frequently at many different places. Features
from such objects can not give much information about
the pose of the robot as they do not help discern
between different poses.

Also, the localization process should use a priori informa-
tion about the robot pose. Once the robot has been localized
to a particular location, it can be safely assumed that the
robot will be at a nearby position in the next frame. Hence
some knowledge of which frames are likely to be returned by
the image retrieval process is generally available beforehand
which is not the case in most image retrieval applications.

An outline of the proposed localization method is il-
lustrated in figure 2. SIFT features from a query image
are extracted and quantized into visual words. Quantization
is performed using the greedy N-Best paths search [12].
Features from dynamic objects are detected and filtered out
by analyzing the motion of feature points between frames as
described in section I-B. This filtered bag of visual words is
passed on to the image matcher which finds candidate images
most similar in appearance to the given query (sections I-
C and I-D). Weights are assigned to each of the visual



(a) Heterogeneous traffic in Indian roads (b) The images show views that are highly similar in appearance which
are from widely separated locations

Fig. 1.

words used by the matcher. Weights are assigned (section
I-C) so that words which are more distinctive around the
current robot position hypotheses get higher weights. Feature
matches from the best candidate images are then geometri-
cally validated (section I-D) to obtain the localization results.
These results are fed back into the system by updating the
robot position distribution (section I-E). To ensure that
unstable features are used for localization, only features that
have matches in neighboring frames in the training image
sequence are added to the localization image database.

Fig. 2. A Block Diagram showing the design of the proposed localization
system

A. Notation Used

The function U(x; a, b) denotes a discrete uniform prob-
ability between a and b. N (x;µ, σ2) represents a Gaus-
sian distribution with mean µ and standard deviation σ,
N̂ (x;µ, σ2) is the discretized version of the same normal
distribution. The robot pose X is treated as a discrete
variable. A pose is labelled by the index of the nearest image
in the image database.

B. Detecting Dynamic Scene Elements

In an urban scene the fastest changing elements will be
those due to vehicular and pedestrian traffic. For a vision
based localization system to work in this sort of dynamic
environment it is important to be able to detect traffic for
two reasons. Firstly, there will be occasions when the field
of view of the camera is dominated by traffic and it will
not be possible to localize. The system should be able to
detect these failure cases. Secondly, using visual features that
come from dynamic scene elements can corrupt localization
results.

Learning the appearance of objects belonging to general
categories like vehicles and pedestrians and using the re-
sulting model for detection is a complicated problem and it
would be difficult to design such a detector that could run

in real-time. Instead, we use camera geometry and motion
cues to detect traffic. Motion is detected by matching features
between frame pairs. To ensure that there is a large enough
base line and that vehicle motion is sufficient to create
measurable disparities, the nth frame in a video sequence
is not matched to its predecessor but the n − kth frame
instead. If a significant proportion of the features matched
between the two frames do not change positions, then it is
inferred that the robot is currently stationary. If not, the robot
is in motion. When the robot is stationary, detecting dynamic
scene elements is trivial. All features whose position in the
image have changed between frame n and frame n− k are
from objects in motion.

When the robot is in motion, detecting other moving
objects becomes more difficult. Three images are used frame
n, frame n−k and frame n−2k referred to as I0, I1 and I2
respectively. The feature correspondences between I0 and I2
are used to estimate the essential matrix E between the two
views. The essential matrix is then decomposed to give the
camera rotation R and translation T (up to scale) between
the two views

Now that the relative pose of the second camera with
respect to the first ([R2|T2]) is known, the 3D positions
Pj of each feature with respect to the camera I0 can be
calculated by triangulating their coordinates in the image. A
pose estimation algorithm is used to determine the position
[R1|T1] of camera I1. The expected coordinates of each
feature in I1 can be determined from the camera projection
equation p̂1j = K[R1|T1]Pj

The expected coordinates of each of the features in I1,
p̂1j are compared to the coordinates actually observed p1j .
If they are significantly displaced from each other, it can be
inferred that the jth feature is from a moving object in the
scene. Both the robot and the other vehicles will be typically
moving in the same direction, roughly along the camera’s
principal axis. In this case estimating the 3D positions of
feature points and checking whether they remain consistent
over a frame triplet as described above is not always reliable
because triangulation of features when the camera baseline
is along the principal axis and the features are close to the
camera center is a poorly conditioned problem.

Instead we exploit the fact that as the robot moves forward,
the apparent size of objects should increase. Objects will only
appear to shrink if they are also moving forward at a speed



faster than the robot. Any object whose size decreases with
time when the camera is moving forward can be assumed
to be a moving object. Due to uneven road surfaces, camera
vibration etc there will be some rotational component to the
camera motion even while the robot is in forward motion.
This rotation is corrected for using a homography H to warp
the scales s2j and image coordinates p2j of features in I2
before comparing them to I0.

Any feature whose scale s̃2j in I2 is larger than its scale
s0j in I0 or which is further from its nearest neighboring
feature in I2 than in I0 is marked as a feature from a
moving object. Figure 4 shows some examples of the motion
detection algorithm. Most of the false motion detections are
due to feature mismatches.

The motion detection algorithm is used both while build-
ing the image database and while localization is being
performed. When the image database is being built, features
determined to be from moving objects are not added to the
database. During localization, dynamic features are removed
from the bag of words describing the current view.

C. Assigning Weights to Visual Words

Visual words that appear frequently at many different
places provide less information regarding pose than those
that appear rarely and whose occurrences are tightly clustered
around a single location. The features that are most helpful
in localizing are those that can be reliably detected around
a single location. We assign weights to visual words such
that words that tend to be more useful in determining pose
are given higher weight and those that are unstable or occur
at many locations have low weights. The weight assigned to
the jth visual word in the vocabulary tree is denoted as Wj .

The usefulness of a visual word can be interpreted in terms
of how strongly its observation correlates with the robot
being near a particular pose. This notion of usefulness can
be quantified in terms of information gain. If the pose of
the robot is modeled by probability mass function PX(x),
the entropy of the distribution, H(X) is a measure of the
‘randomness’ of the distribution of X . If an observation of
the presence of visual word Zj from the current position is
considered, then the distribution of X conditioned over Zj

is PX(x|Zj).
The conditional entropy H(X|Zj) will always be less

than or equal to H(X) with equality holding only if X is
completely independent of Zj . If there is any dependence
between the random variables X and Zj , then knowledge
of the absence or presence of Zj from the current view
helps decrease the uncertainty in the robot’s pose X . The
mutual information I(X;Zj) is a measure of how much
measuring Zj reduces the uncertainty of X and is defined
as I(X;Zj) = H(X)−H(X|Zj)

The probability of a feature Zj being visible from a
position x0 is approximated as

PZj (Zj = 1|X = x0) =
1

|N(x0)|
∑

x∈N(x0)

V (Zj , x)

Where V (Zj , x) is an indicator function whose value is
zero unless visual word Zj was seen at pose x in the training
video sequence in which case its value is unity. N(x0) is a
set of poses such that elements x ∈ N(x0) form a local
neighborhood around pose x0. This averaging of Zj over a
neighborhood around x0 is necessary because it is possible
for the feature extractor to fail to detect a word in an image
even if it is present. The conditional distribution PX(x|Zj =
1) is given by

PX(x|Zj = 1) =
1− η
|F (Zj)|

∑
(x̂∈F (Zj)

U(x; x̂− w, x̂+ w) +

ηU(x; 1, |X|)

Where F (Zj) is the set of all poses x ∈ X from
which feature Zj was visible. w defines the size of the
neighborhood in terms of the width of a window around
each feature occurrence in which it contributes to P (x|Zj).
η is a mixing coefficient which is set a small value (between
zero and one) to ensure that PX(x|Zj = 1) takes a non zero
value for all values of x. We can now calculate the probability
of observing a feature Zj from the marginal distribution as
P (Zj = 1) =

∑
x∈X PZj

(Zj = 1|X = x)PX(x)
The conditional probability PX(x|Zj = 0) can be ex-

pressed as

PX(x|Zj = 0) =
PX(x)− PX(x|Zj = 1)P (Zj = 1)

1− P (Zj = 1)
(2)

In terms of the probabilities calculated above, the mutual
information I(X;Zj) between X and Zj takes the form

Wj = I(X;Zj) =

−
∑
z∈0,1

∑
x∈X

P (Zj = z)PX(x|Zj = z) logPX(x|Zj = z)

At each localization iteration, the prior distribution PX(x)
of the robot pose changes as described in section I-E.
The weights assigned to the features depend on this prior
distribution and change with PX(x). The number of visual
words in a vocabulary tree tends to be large (order of 105

to 106), calculating new weights for all the visual words
at each localization iteration is not feasible. However, only
the weights of visual words present in the current view are
needed which means that only a few thousand weights need
to be calculated at each iteration.

D. Localization by Image Matching

When a new query frame is captured for localizing, SIFT
feature points are extracted and are then quantized using
the vocabulary tree to get a set of visual words. Weights
for each of the visual words present in the query frame
are calculated (Section I-C) using the current pose pdf. The
features extracted from the query are matched against the
features in all the database images.

In generalized applications features in the query are con-
sidered to be possible matches to all features in the database



images that have the same visual word label. Since the
vehicle or robot to which the camera is attached moves along
the road, there are constraints on camera motion that can
be used to filter out many false feature matches. Camera
roll will be minimal and so matching features will always
be detected at similar orientations. Orientation is quantized
into 32 bins and features are stored in the image database
by word and orientation. Features are matched only against
other features in the same or neighbouring orientation bins.
Also, if pitching motion can be neglected, features that have
positive height at some viewpoint will always have positive
height and will thus always be detected in images above the
principle point of the camera. Similarly, a feature detected
below the principle point of the camera will always be
detected below the principle point. This is used to further
filter out false feature matches.

After feature matching, each frame in the database has
been assigned a score equal to the sum of the weights of all
visual words that appear in both the query and the database
frame. Each database frame’s score is normalized by the total
number of features it contains. These scores are then low pass
filtered and the highest scoring database images are selected
for geometric validation.

To geometrically validate the matches from the high
scoring database images, an essential matrix is fitted between
the query features and the features from each of the selected
images. Each matched feature pair that lies close to its
epipolar lines is counted as an inlier. The database frame
with the highest number of inlier matches is returned as the
image in the database closest to the robot’s current position.

E. Updating The Pose Probability Distribution

Once the robot has been localized, the pose pdf PX(x)
needs to be updated. The possible poses of the robot are
the high scoring frames from the localization step with the
frame having the highest number of geometrically validated
matches (the localization result) being the most likely posi-
tion. If k position hypotheses (x1, x2, ..., xk) were geomet-
rically validated during localization and the ith hypothesis
had ci valid matches, then PX(x) is updated as

PX(x) = (1− η)
k∑

i=1

αiN̂ (x; ci, σ) + ηU(x; 1, |X|) (3)

η is a mixing coefficient which is set to some small value
between 0 and 1 that ensures that PX(x) is non zero for all
values of x. This helps in recovery if a localization fails and
the system loses track of the robots’ position.
PX(x) takes the form of a number of peaks around the

most likely poses with a small value at other poses. If
localization is performed at a high rate PX(x) is can be
used directly as the prior in the next localization iteration,
otherwise it needs to be updated using a motion model.

II. EXPERIMENTAL RESULTS

The proposed localization method was tested in an urban
environment. A van fitted with a forward facing monocular

Fig. 3. Some challenging queries for which the proposed localization
method succeeded. The images in the upper row are the queries, the images
in the lower row are the results that were returned.

camera (Flea2 colour Firewire camera with a 5mm lens)
and a GPS receiver that was used to record vehicle position
for each image captured that was used as ground truth data
for quantitatively verifying the localization results. Frames
for building the image database and performing localization
iterations were captured at 7.5fps. The internal parameters
of the camera were determined beforehand.

The vocabulary tree used was built over a set of 1500 im-
ages containing a total of roughly 1.7 million SIFT features.
The vocabulary tree built had a height of 6 and a branching
factor of 12 for a total vocabulary size of approximately
248k. While quantizing features, the best 6 paths were
followed. The vocabulary tree was built from an image set
captured outside the environment in which the localization
was performed to demonstrate that localization performance
is good even when the tree is not tailor made to describe the
image features present in the vehicle’s environment.

Fig. 4. Dynamic Object Detection: Matched features that were determined
to be from moving objects are marked with red crosses, matched features
that appeared to be stationary are marked with green circles

The path followed for testing the algorithm is shown
in figure 5. The total length of the circuit was roughly 5
kilometers. The car was driven down the path 3 times. The
first run was used for building the image database (containing
4953 images) and the video sequences captured over the
next two runs (Test1 and Test2) were used for verifying the
localization algorithm. Test1 covered a full circuit along the
path shown in figure 5 while Test2 covered around three
fifths of the entire path. Both the test sequences Test1 and
Test2 started from different positions on the path.

Both the test sequences were used to test the localization



Fig. 5. The car was driven along a 1 → 2 → 3 → 2 → 4 → 5 → 4 →
2 → 1 path

Fig. 6. Some frames for which the localization failed. The images in
the left column are the queries, the images in the middle column are the
incorrect results that were returned and the right column contains the correct
matching images determined from GPS ground truth data.

algorithm as a local localization and global localization
method. For local localization, the frames from the test
videos were provided in sequence and the algorithm used
the resulting continuity in vehicle position to maintain a pose
distribution estimate as described in section I-E. For global
localization, the same algorithm was used, but a robot pose
distribution was not maintained. For each query frame, the
prior distribution of the robot was assumed to be uniform.

Figure 3 shows some examples of frames from the test
sequences that were successfully localized despite large parts
of the image being occupied by vehicles. Figure 6 shows
some of the frames for which localization failed and the
image matching returned erroneous results.

The graphs in figures 7 show the indices of the result
found in the database during localization for each frame from
Test1 and Test2 respectively. In each figure the graph on the
left shows the matching images found using a direct image
retrieval system that does not detect dynamic objects or use
a pose prior and uses uniform feature weights. The graphs
in the center show the results of global globalization and the
graphs on the right show local localization results.

For a query frame, the localization result returned was
defined to be correct if it was captured from a location 7.5
meters or less from the point at which the query image was
captured. Table I shows the localization error rate for direct
image matching and the proposed localization algorithm
(both local and global variants) on the Test1 and Test2
sequences. Table II shows the mean distances between test
frames and localization results for the two sequences using

TABLE I
LOCALIZATION ERROR RATE

Direct Retrieval Global Localization Local Localization
Test1 3.0612% 1.7493% 0.9371%
Test2 2.18% 2.0% 0.7463%

TABLE II
MEAN LOCALIZATION ERRORS

Direct Retrieval Global Localization Local Localization
Test1 8.7177m 7.6287m 3.1695m
Test2 2.4275m 2.5656m 2.2928m

both global and local localization.

A. Analysis

In both Test1 and Test2, the proposed method gives better
results that direct image retrieval with fewer jumps and
mismatched frames for both local localization and global
localization as shown in figure 7. During the training
sequence and in Test1 the vehicle stopped briefly at a traffic
signal. This is the cause of the jitter in the retrieved frame
indices observed around query frame number 3000 visible in
7a. In Test2 the vehicle moved through the same traffic signal
without pausing which resulted a small jump in the retrieved
frame index around query frame number 2200 which can
be seen in figure 7b. As expected, local localization which
exploits the continuity in vehicle pose over time by using a
prior pose distribution outperforms global localization. Using
the proposed method localization reduced the number of
erroneous results by around two thirds compared to direct
image retrieval.

III. CONCLUSION

This paper presented a qualitative visual localization sys-
tem that can be used in large scale outdoor environments.
Challenges arising in these environments such as dynamic
objects and perceptual aliasing due to visual self similarity
are addressed. The probability density functions being used
to update pose distribution probability and determine the
probability of the robot being at a pose given a feature
observation are heuristics. Finding theoretically well founded
ways of finding these distributions is a direction for future
work.

Dynamic objects are currently detected by analyzing the
motion of detected local features over time. However there
are cases where this method is badly conditioned and unre-
liable. It may be possible to address this problem by using
motion cues to gradually learn appearance models of the
dynamic objects typically present in an environment and
then using a combination of both appearance and motion
for detection of moving objects.



(a) Test1

(b) Test2

Fig. 7. The above graphs show the frame by frame localization results for the sequences Test1 and Test2. The first graph in each row shows the frame
each image in the corresponding test sequence was localized to using direct image retrieval. The red graphs in the center show the results obtained by
the proposed global localization method and the graphs on the right show the local localization results where the previous localization iteration is used to
generate a robot pose prior
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