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Abstract

Template-based object detectors such as the deformable
parts model of Felzenszwalb et al. [11] achieve state-of-
the-art performance for a variety of object categories, but
are still outperformed by simpler bag-of-words models for
highly flexible objects such as cats and dogs. In these cases
we propose to use the template-based model to detect a dis-
tinctive part for the class, followed by detecting the rest of
the object via segmentation on image specific information
learnt from that part. This approach is motivated by two ob-
servations: (i) many object classes contain distinctive parts
that can be detected very reliably by template-based detec-
tors, whilst the entire object cannot; (ii) many classes (e.g.
animals) have fairly homogeneous coloring and texture that
can be used to segment the object once a sample is provided
in an image.

We show quantitatively that our method substantially
outperforms whole-body template-based detectors for these
highly deformable object categories, and indeed achieves
accuracy comparable to the state-of-the-art on the PASCAL
VOC competition, which includes other models such as bag-
of-words.

1. Introduction

The vast majority of current methods for object cate-
gory detection use some form of sliding window classi-
fier. In particular, template-based models such as the De-
formable Parts Model (DefPM) by [11] currently achieve
state-of-the-art performance for the majority of the ob-
ject classes in international benchmarks such as the PAS-
CAL VOC 2010 [8]. The success of these methods em-
phasizes the importance of geometry in the description of
most visual categories. Yet, for highly flexible and de-
formable objects such as cats and dogs (figure 1), DefPMs
and other template-based models are still outperformed by a
large margin by simpler bag-of-words models, which have
a much weaker notion of geometry [8]. Not surprisingly,
several authors [13, 40] advocates the study of these object

Figure 1. The deformable and truncated cat. Cats exhibit (al-
most) unconstrained variations in shape and layout. The cat ex-
amples shown here are detected by our Distinctive Part Model, but
missed by the template based method of [11].

categories as prototypical cases for which geometric mod-
eling is challenging.

The question we address here is whether it is possible to
extend template-based models such as DefPM to be com-
petitive for these highly flexible categories as well. The key
insight is that for many objects color and texture are fairly
uniform across the entire body, or vary in a manner that
can be learnt; and also that many objects have a distinctive
part that can be detected well with the current generation
of template-based detectors, even though their overall ap-
pearance is highly variable. The idea is then to detect first
a distinctive part of the category, and second, to segment
the category instance primarily using image specific fea-
tures learnt from that part. We call this a Distinctive Part
Model (DisPM, section 2).

For example, for a cat the head is a distinctive part and
can be detected well by a template detector such as DefPM.
The detected head then provides the cat’s fur color and tex-
ture, and, in turn, these color/texture distributions can be
used to segment out the cat’s body. These assumptions are
satisfied for instance by numerous animal classes, such as
sheep, cows, zebras, horses, elephants. A similar approach
can be applied to naked humans (e.g. using face detection to
learn an image specific skin color [14]), but clothing renders
the model less applicable in this case.

The question is: how well does this DisPM work as
a detector? As will be seen (by results on the PASCAL
VOC 2010 detection competition [8] in section 3) the per-



formance surpasses existing template models trained on the
whole body by far. DisPM is in fact able to detect cats and
dogs in quite variable poses, and under considerable partial
occlusions and truncations (figure 1).

Related work. Our approach extends template-based de-
tectors such as DefPM, which, by allowing only for limited
geometric variability, usually do not work well for highly
deformable objects. Similarly, articulated models, such as
the pictorial structures [10] typically used for human lay-
out detection, are not appropriate for objects such as cats
and dogs as they do not capture the deformation and limb
occlusions that they exhibit.

Our method is also directly related to [24] and [40], that
have designed and evaluated cat head detectors; section 3
shows DefPM to be a much better detector at this task.
Fleuret and Geman [13] have used cats as an example ap-
plication of their object model based on stationary features.
Their coarse-to-fine search strategy uses the cat head as a
privileged part, as we do. Unfortunately this algorithm was
not evaluated on public benchmarks, making a direct com-
parison difficult.

Previous work has combined object category detection
and segmentation in various ways [16, 19, 22, 33, 34, 36].
However, often the goal of these methods has been segmen-
tation of the entire image, rather than object category de-
tection, whilst others [2, 3, 20, 21, 27, 28, 37] have gener-
ally targeted typical views of vehicles and animals (e.g. side
views of horses) that are suited to template based detectors.
Their aim has not been to handle the variety in appearance
and deformation that it is our goal for the new DisPM detec-
tor. In fact, a significant difference is that DisPM restricts
the use of the template detector to extract just an object part
and then leverages on segmentation to extend it to the whole
deformable object.

Finally, our work is generally related to sliding-window
object detectors. Within the window there may be be a
single feature type represented, such as HOG [6] or HOG
parts [11], or a bag of visual words [23], or a grid or pyramid
of visual words [12, 26], or a combination of such features
and kernels [18, 38]. In the recent PASCAL VOC 2010 ob-
ject detection competition [8] all the top methods were of
this kind. There are a number of methods for object de-
tection that start from bottom up segmentation, rather than
sliding/jumping windows [1, 15, 17, 25, 29], but they are
yet to be competitive with the window based detectors.

2. The distinctive part model
The DisPM extends template-based models to the detec-

tion of highly deformable object categories. Consider the
case of cats, which we will use as our running (actually sit-
ting) example for describing the new model: extreme artic-
ulations, atypical viewpoints, and partial occlusions induce

(g) Object (h) Distinctive Part (i) Trimap

Figure 2. Annotations. (a) The PASCAL VOC annotations are
tight bounding boxes around the object instances. (b) Additional
annotations for the distinctive object part, in this case cat/dog
heads. (c) Pixel-level segmentation of the object also provided
by PASCAL VOC.

variations of the appearance of a cat that cannot be captured
by a template-based model. This is true even for models
such as the DefPM detector that account explicitly for de-
formations of the template.

The DisPM works around this problem by detecting first
a stable and distinctive object part, such as the cat head, for
which a template-based detector is appropriate. It then uses
the detected part to initialize and constrain the segmentation
of the rest of the object. DisPM is therefore composed of
three elements, illustrated in figure 3: (i) a template-based
detector of the distinctive object part, (ii) a model of the ob-
ject body appearance (color or texture), and (iii) a segmen-
tation algorithm. The segmentation is used here to assist the
detection process.

The next three sections describe in detail the three com-
ponents of the model. For the template-based detector (i) we
use the DefPM model based on the implementation publicly
available from the author’s website (section 2.1). For the
local appearance model (ii) we model colors by histograms
in RGB space, along with an object boundary detector to
aid segmentation (section 2.2). For the segmentation algo-
rithm (iii) we use the standard graph cut model of Boykov et
al. [5] (section 2.3). Since the appearance model is learned
from the object region itself (starting from the distinctive
part), graph cut and estimation of the appearance model are
alternated to refine the segmentation result (GrabCut [35]).

Training data. We learned and evaluated our model on
the PASCAL VOC 2010 detection competition data [8]
(note that VOC encourages evaluating detectors specialized
on particular object categories as well as general purpose
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Figure 3. Overview of the model. A distinctive part, the head in this case, is detected using the DefPM model [11]. (b) The detected
part ROI (red rectangle) is used to define a search region for the object (yellow rectangle), and also seeds the foreground color distribution
(green rectangular region). The background color distribution is learnt from the red area. (c) the foreground posterior, computed using
the seed and background data (red is high, blue is low probability). These posteriors form the unary term of the energy function used in
segmentation. The pairwise terms use the Berkeley edge detector response (d). A graph cuts binary optimization gives the foreground
segmentation (e). The detection result is a tight bounding box around the foreground segment (f).

detectors). The VOC data is a large collection of images
with annotations for twenty object classes, including cats
and dogs. In particular, the VOC 2010 data contains about
10,000 training and validation images and 10,000 test im-
ages. The VOC publishes bounding box annotations and
trimaps (figure 2) for the training and validation subsets,
while the evaluation on the test data is carried independently
by the VOC itself.

Recently Bourdev and Malik [4] advocated the use of
manual annotations for training distinctive object parts
(poselets). Here we use a similar approach. Specifically, the
VOC training and validation data are annotated with bound-
ing boxes by following the same procedure used for the con-
struction of the VOC annotations [9]: for example, a head
bounding box is defined as a tight fitting box, containing the
face and ears (e.g. in figure 2). These annotations are then
used to learn the distinctive part model.

2.1. Part model

The distinctive object part is detected by means of the
DefPM. As will be shown in section 3, this model is ex-
cellent for structures that are relatively stable, such as, for
example, the face of a cat, but is relatively poor for highly
deformable objects, such as the cat body. The detected part
is used to determine an image-specific color model for the
cat, and also to predict a (maximal) bounding box for the
entire cat.

The DefPM detector is a mixture of templates, each of
which is a collection of parts connected by springs. Parts
are described by linear filters on top of low level features
such as HOG [6] and the model is learned by means of a
latent SVM. See section 3 for further details and figure 3(b)
for example detections.

2.2. Whole object model

The object appearance model captures the material of the
object (color) and the object discontinuities (edges). For
the object color, there are two source of information that
can be used. First, some colors cannot belong to any of
the object instances (e.g. there are no green, blue, or purple
cats), which is used to construct a color prior for the cate-
gory. This is learned from the trimap object segmentations
(Fig. 2) by computing color histograms of the foreground
(cat) and background (non-cat) regions. Second, the color
of the specific object instance being detected, and of the
background scene in which it is found, can be estimated
from the distinctive part. For cats and dogs, the head pro-
vides a cue on the color of the fur, and image pixels far
enough from the head are used to estimate the color of the
background.

Category color prior. Colors are modeled by means of
histograms. We use a relatively high dimensional histogram
h ∈ R32×32×32 but smooth it by a small Gaussian ker-
nel (of isotropic standard deviation σ = 0.025) in order
to reduce the variance of the estimator. The global fore-
ground/background color histograms h0

fg,h
0
bg are obtained

from all the foreground/background regions in the training
set.

Instance-specific color. The distinctive part of the object
is used to obtain an instance-specific foreground hfg and
background hbg color models. The foreground color is es-
timated by sampling the pixels contained in the foreground
seed. The seed is a rectangular sub-region of the distinc-
tive part that is contained in the foreground region with
very high probability in the training data. For instance,
the foreground seed of cats roughly corresponds to the fore-



head. The location of this region inside the distinctive part
is learnt from the training data. The background color is
estimated from the pixels that are outside a maximal bound-
ing box, i.e. a bounding box that contains almost surely the
entire object. The maximal bounding box is obtained by
aligning and scaling a template box to the rectangle of the
distinctive part detection. The dimensions of the template
itself are learned by requiring it to be the smallest box that
contains 99% of the object pixels for all training images. To
handle the case where no part of the image is inside the
maximal bounding box, a thin strip of pixels around the
image (20 pixels wide) is always included to estimate the
background color. Examples of the seed and of the bound-
ing box are shown in figure 3(b) (these regions will be used
in section 2.3 to further constrain the segmentation geomet-
rically).

Foreground and background posteriors. Let x be an
image and y be a partition of the image into foreground (ob-
ject) and background components. In particular, let xi ∈ R3

denote the color of the i-th pixel (in RGB space) and let yi
be equal to +1 if the pixel belongs to the object and to −1
otherwise. Given the color histogram hfg,hbg,h

0
fg,h

0
bg, we

can define three likelihoods:

p(x|y = +1, fg) = hfg(x), p(x|y = −1, bg) = hbg(x),

p(x|y = +1, fg0) = h0
fg(x), p(x|y = −1, bg0) = h0

bg(x),

fg and bg are foreground background pixels from the given
image, and fg0 and bg0 are foreground and background pix-
els from the set of training images. By assuming P [y =
+1] = P [y = −1] = 1/2, these are combined into two
posteriors

p1(y|x) =
p(x|y = +1, fg)

p(x|y = +1, fg) + p(x|y = −1, bg)
, (1)

p2(y|x) =
p(x|y = +1, fg0)

p(x|y = +1, fg0) + p(x|y = −1, bg0)
. (2)

The first one discriminates between the color of the object
instance and the color of its surrounding (as estimated from
the seed and the maximal bounding box), and the second
one between that of the object and of generic clutter. The
latter helps eliminating impossible colors (e.g. green cats)
that may not be sampled outside the maximal object bound-
ing box. These two are combined into a unique posterior
by additive combination (p(y|x) ∝ c1p1(y|x) + c2p2(y|x)
where the weights ci are learnt from validation data (and
have the values c1 = 1/10, c2 = 9/10). Example fore-
ground posteriors, p(y = 1|x), are shown in figure 3(c).

Modeling edges. In addition to color, the model also uses
an edge detector in order to further improve the quality of

the final object segmentation. The edge map will be used
to encourage the segmentation boundaries to match discon-
tinuities of image edges. In this work we leverage on the
powerful Berkeley PB edge detector [30]. Compared to
other detectors such as Canny, PB is designed to suppress
intensity discontinuities which correspond to texture rather
than actual object boundaries. See figure 3(d).

2.3. Segmentation model

Once the distinctive object part has been detected, it must
be extended to a segmentation of the entire object (see fig-
ure 3(e)). As we expect the object to be highly deformable
but to have a distinctive material, this can be achieved by a
well designed segmentation algorithm.

For segmentation we use a graph cut [5] based energy
minimization formulation. The cost function is given by

E(x,y) = −
∑
i

log p(yi|xi) +
∑

(i,j)∈E

S(yi, yj |x) (3)

The edge system E determines the pixel neighborhoods
and here is the standard eight-way connectivity scheme.
The pairwise potential S(yi, yj |x) favors neighbor pixels to
have the same label unless a PB edge separates them:

S(yi, yj |x) = γ exp(−ej(x)/β) (4)

where ej(x) is the PB edge intensity at pixel j and β =
〈ej(x)〉 is the average edge intensity in the image. Note
that the edge is measured only at pixel j, as defined by the
edge system E (here j is the pixel more on the right/south).
The parameter γ is learnt on the validation data.

The distinctive part detection is used to fix the values of
some labels y (clamping) as follows: (i) the foreground seed
region must be labeled as foreground, and (ii) the region
outside the maximal bounding box must be background.
These two regions were defined above in section 2.2.

The segmentation is defined as the minimizer
argminy E(x,y) of the energy using graph cut. In
fact, since the color of foreground and background can
be estimated more accurately as a better segmentation of
the object becomes available, GraphCut is alternated to
re-estimate the color model, in the manner of GrabCut [35].
In section 3 we show that initializing from the posteriors of
section 2.2, yields a substantial improvement in detection
performance over simply initializing from the clamped
regions.

Cleaning-up and detection. Given the segmentation re-
sult from GrabCut, this is cleaned-up by preserving only
the connected foreground component that intersects with
the distinctive part and discarding the others. The final ob-
ject bounding box is estimated as the smallest box that fully
contains the segmented foreground region (see figure 3(f)).



Figure 4. Distinctive part detector. First row: The DefPM
model [11] for the cat head, used as distinctive part, and exam-
ple detections. Second row: the same for dog.

The detector score is obtained from a combination of the
DefPM score and size of the distinctive part detection.

3. Results
Following the PASCAL VOC best practices [8], the var-

ious components of the model are evaluated in detail on the
PASCAL VOC 2010 train/validation sets and overall results
for the complete model are given on the test set to allow for
a direct comparison with other published methods. Since
we use head annotations to train the distinctive part model,
we evalute our results against the VOC detection competi-
tion 4, which allows additional annotations.

The performance of a detector is evaluated in term of
the Average Precision (AP) of the ranked list of detections,
where a detection is considered to be correct if its overlap
ratio with a ground truth bounding box is at least 0.5 and if
it is not a duplicate (see [9] for details).

Learning the distinctive part. The distinctive part anno-
tations are used to train a DefPM model for the part (fig-
ure 4) with one aspect, eight high resolution parts, and a low
resolution one (root filter). The low level image features are
HOG [6, 11] (capturing shape) and LBP [31] (capturing tex-
ture). The DefPM detector supports multiple components,
but in our experiments we use a single one as we found em-
pirically that this worked better in our case. Figure 4 shows
examples of the detected cat/dog heads with variations in
pose, appearance, and size.

Precision-recall curves for the DefPM detector for the
cat heads in the VOC 2010 validation data are given in fig-
ure 5(b). With the standard PASCAL VOC overlap ratio
of 0.5, the detector AP is 45% with HOG features only,
and this improves to 49% when the LBP features are added.
Since the DisPM uses the distinctive part as a seed to obtain
a segmentation for the whole object, a less strict (than 0.5)
overlap ratio often suffices for this purpose (as will be seen
below). Thus it is interesting to note that for a (looser) over-
lap ratio of 0.2, the AP of the head detector is 61% with a
recall of 80%. The recall-precision curve for this overlap ra-

tio is also shown in figure 5(b). The DefPM performs much
better than alternative cat head detectors available in the lit-
erature. Specifically, when trained and tested on the VOC
2007 cat heads, DefPM achieves an AP of 54.6%, while
the detector of Zhang et al. [40] obtains 34.4% with the
same data. The detector of Laptev [24] obtains 18.7% on
the VOC 2007 test data (when trained on the VOC 2006
training data).

Whole object detectors: baselines. The first baseline is
the standard DefPM model trained to detect the whole ob-
ject. For cats, training on the VOC training data and test-
ing on the validation data gives an AP of just 29% (fig-
ure 5(a)). Based on the PASCAL VOC 2010 results, the
performance of the newest DefPM version (which is not yet
available to the public) is, on the VOC 2010 test data, about
the same (31.8%). This level of performance is relatively
poor compared to other classes (e.g. the performance of the
DefPM detector on the VOC vehicles is around 50% AP).
The model does not seem capable of capturing the variabil-
ity of the cat bodies. To verify this, consider as a second
baseline a simple head-to-cat regressor. This regressor is
obtained by computing the average ratios between the size
of the cat head and the margins between the cat head bound-
ing box and the bounding box of the whole cat. These ratios
are then used to predict a bounding box for the cat given a
novel head detection. This simple head-to-cat regressor has
31.1% AP, which already exceeds the performance of the
DefPM detector trained on the whole cat.

Whole object detectors: upper-bounds. Given the de-
tections for the distinctive part, it is easy to compute an up-
per bound for the performance of the DisPM by mapping
each part detection to its corresponding ground-truth object
bounding box, if there is one (we say that the part corre-
sponds to the object if more than 50% of the area of its
bounding box is included in the object bounding box). In
this way, one obtains a cat detector with AP of 67% (fig-
ure 5(c)). While this is an ideal result, it is worth noting
that the performance is more than twice that of the standard
DefPM detector.

Postprocessing. All the top methods in the PASCAL
Challenge [8] rerank detections based on global image cues
and other statistics. In our case, the final scoring for a can-
didate detection is obtained by combining, by means of a
linear SVM, the following seven features. The first fea-
ture is the DefPM score for the distinctive part; the sec-
ond and third features are the output of image-level bag-of-
word classifiers [39], trained to detect cats and dogs respec-
tively (the inclusion of both animals helps disambiguating
between them, similarly to [11]); the fourth and fifth fea-
tures are also two global cat and dog scores, obtained as
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gc−basic  AP: 0.37
dpm−ber−rr  AP: 0.41
dpm−rr  AP: 0.46
dpm  AP: 0.48
ub  AP: 0.67

(c)
Figure 5. Performance of the model components for cat detection on the VOC2010 Validation data. (a) Baseline cat ROI detection
results – the DefPM model (trained on the whole object) and regression on the head detections. (b) Head ROI detection results using
the DefPM model (trained only on heads) with and without LBP. (c) Components of the DisPM model: gc-basic (GrabCut initialized
from the clamped regions, without Berkeley edges nor reranking), dpm-ber-rr (as previous case, but GrabCut with the posterior from
Sect. 2.2), dpm-rr (with Berkeley edges), dpm (with reranking). Finally, ub shows the upper bound on the detection AP.

the maximum response of the DefPM detectors within each
image. The last two features are the size of the detection
relative to the image size and its aspect ratio, which capture
weak pose information. Postprocessing improves the results
by 2-3% AP points, a similar gain was noted by [11].

Results on cats and dogs. Having defined and measured
upper and lower bounds (from the baselines), we now turn
to the performance of the DisPM itself. This is shown in
figure 5(c), where the contribution of the various compo-
nents of the model are detailed for the VOC 2010 validation
data: (i) the most basic (damaged) form of the model is to
segment using GrabCut but with the foreground and back-
ground regions defined only by the clamped areas, and with-
out using the Berkeley edge detector (instead the pair wise
term (4) measures neighboring image intensity differences
directly as in [5]). This is shown as gc-basic and has an
AP of only 37%. Adding in the posterior computation from
section 2.2 to initialize the GrabCut (dpm-ber-rr) in-
creases the AP to 41%. A further increase is obtained by us-
ing Berkeley edges instead of image differences in (4), and
the performance reaches 46% (dpm-rr). Finally, the full
DisPM including the reranking step (dpm) achieves 48%,
which surpasses the baselines (DefPM and regressor) by
about 20% AP. A similar analysis holds for dogs, for which
the final AP of the DisPM detector is 36%, which also about
20% better than both the baselines (the upper bound being
51%). While the performance of the DisPM exceeds both
the baselines by a wide margin, there is still a significant
gap to the upper bound. We describe the reasons for this
gap below, and in section 4 discuss how the gap can be re-
duced. Examples detections are shown in figures 7 and 8
for cats and dogs respectively.

Finally, on the VOC 2010 test data the performance of
the cat and dog detectors are respectively 45.3% and 36.8%,
both of which improve significantly on the latest DefPM
results (31.8% and 21.5%) and are very close to the state of

(a) (b) (c) (d)
Figure 6. Failure cases of the DisPM detector. Top row: pre-
dicted detection bounding box superimposed on the image. Bot-
tom row: the foreground segmentation. Failure modes (details in
section 3): (a) multiple cats, (b) head and body of different color,
(c) background and cat of the same color, (d) disconnected cat re-
gion (see paw on the left).

the art (47.7% and 37.2%) [8].

Failure modes. Figure 6 gives examples of the algorithm
failing. The principal reason for failure is that the fore-
ground head seed is not able to predict the body color ade-
quately. This is because the body has varying brightness due
to shadows or highlights, or because the fur has two differ-
ent colors but the head and body have different proportions
of these. Other less common failures are due to multiple
cats, background bleeding, or foreground occlusion where
the cat is divided into several unconnected components.

4. Conclusion and discussion

Given the current performance of the DisPM detector,
the truth about cats and dogs is that starting from a distinc-
tive part it is possible to detect far more and varied instances
than can be obtained with a whole body template detector.
Indeed, the DisPM detector is comparable to the state of the
art. This is remarkable – a simple model using only two fea-
ture types (HOG and LBP for the distinctive part) and image
specific color, matches the performance of algorithms using
multiple features, including pyramids and kernels (e.g. the
PASCAL VOC 2010 winner for this class).

However, to improve the DisPM performance further



Figure 7. Cat detections. A sample of the detections and seg-
mentations produced by the DisPM detector (VOC 2010 valida-
tion data). It can be seen that cats are successfully detected despite
having different fur colors, and appearing in a variety of postures
etc.

will require using more hints, cues and constraints in the
segmentation model. For example: (i) Class based edge
classification – learning which of the edges are due to the
cat silhouette edges, and which arise from other sources

Figure 8. Dog detections. A sample of the detections produced by
the DisPM detector (VOC 2010 validation data).

(e.g. an occlusion boundary of a chair). Others have learnt
edges for classes quite successfully [7, 32]. (ii) Class spe-
cific color restrictions – For example that cat coloring is
uni or bi modal, e.g. only grey or black and white. (iii)
Class specific shape restrictions – that parts of the boundary
should be smooth and curved.

Although we have primarily investigated the DisPM de-
tector for a subset of the animals of the PASCAL VOC chal-
lenge, there is no doubt that the distinctive part approach is
applicable to many other animal classes.
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