Video Scene Segmentation with a Semantic Similarity

Niraj Kumar, Piyush Rai, Chandrika Pulla, C V Jawahar

Center for Visual Information Technology
IIIT Hyderabad
Gachibowli, Hyderabad-32
India

Abstract. Video Scene Segmentation is an important problem in computer vi-
sion as it helps in efficient storage, indexing and retrieval of videos. Significant
amount of work has been done in this area in the form of shot segmentation
techniques and they often give reasonably good results. However, shots are not
of much importance for the semantic analysis of the videos. For semantic and
meaningful analysis of the videos (e.g. movies), scene is more important since
it captures one complete unit of action. People have tried different approaches
in scene segmentation but almost all of them use color, texture etc. to compute
scene boundaries. In this paper, we propose a new algorithm based on a Bag of
Words(BoW) representation which computes semantic similarity between shots
using a Bipartite Graph Model (BGM). Based on semantic similarity, we detect
the scene boundaries in the movie. We have tested our algorithm on a multiple
Hollywood movies, and the proposed method is found to give good results.

1 Introduction

Efficient and effective management of large amount of visual data is an important chal-
lenge [18]. Management of videographic data requires effective methods to process,
organize, summarize and index in a semantically meaningful manner. Often video shot
is taken as a fundamental unit to process the videos. Detection of shots can now be
done relatively reliably for a variety of transitions [19][15]. However, for many of the
high level video processing tasks, we need a scene level description of the video. A
video scene is typically defined as a series of shots constituting a unit of continuous
related concept (such as a fixed setting or the same action). Notion of scene is far
more semantic in nature, compared to that of shots. Video scene segmentation refers
to the partitioning of a video into a continuous sequence of shots or frames that are
homogeneous in a semantic manner. It is a fundamental problem in semantic video pro-
cessing and its solutions have many applications in video summarization, indexing, and
retrieval [20][16][17].

There have been some previous attempts for scene segmentation in the last decade.
Rasheed et al. [1] proposed a two-pass algorithm to segment the movie/TV shows into
scenes. In the first pass,the scene boundaries are detected based on color similarity
feature among the shots present in a window (Backward Shot Coherence). In the sec-
ond pass, the over segmented scenes are merged based on motion similarity constraint.
In [2], a weighted undirected graph called Shot Similarity Graph (SSG) is first con-
structed. The similarities between the nodes (weights in the graph) of SSG is computed

using both color and motion information. Then the SSG is split into smaller story units
by applying the normalized-cut [8] technique for graph partitioning. This is a divisive
method to segment the movie into scenes unlike the previous method. Zhai et al. [3] pro-
posed a temporal video segmentation, where an arbitrary number of scene boundaries
are randomly initialized and they are automatically updated using two types of updates
— diffusion and jump. The updates of the model parameters are controlled by a Markov
Chain Monte Carlo (MCMC) process. Most of these methods are based on either local
or global constraints. Zhiwei Gu et al. [4], states that not only the global distribution of
time and content, but also the local temporal continuity should be taken into account.
They propose an Energy Maximization based Segmentation(EMS), in which the global
and local constraints are represented by content and context energy. These energies
are optimized in two steps. First the content energy are modeled by fitting generative
model (using EM) to estimate the initial values of scene labels. And then the iterative
conditional modes (ICM) are used for context energy to find global optimization.

Efficient video segmentation has traditionally relied on a proper selection of fea-
tures [21][22] and an appropriate distance measure [23] . Examples of popular features
include color, texture, motion vectors etc. Different features and homogeneity criteria
generally lead to different segmentation of the same video. Often, the segmentations
thus obtained are at the level of shots. Similarity across shots is used for scene segmen-
tation.

Previous approaches [1][2] uses color as a feature to compute similarity between
shots and consider only pairwise similarity that is single length path similarity to define
the similarity between shots. The first problem with this approach is that the color does
not take into account the semantics of the shots. The second problem arises with pair-
wise similarity. For a set of given three shots a, b and c, it is possible that similarity
between a and b is lesser than what we get by adding similarities between a-c and
c-b. Hence, it is possible that multiple path length similarity is greater than the direct
path similarity or single path length similarity. Thus, to get a better similarity matrix for
video shots, we need to consider multiple length path as well, instead of just a single
length path. This gives us the semantic similarity between shots and this should give
the better result than the previous work and approaches.

Determining semantic similarity between two sets of words is an important problem
also in text domain [24]. It is often addressed with the help of Bag of Words Model.
Documents (web pages etc) are represented in the form of bags-of-words (BoW) model.
The idea is that each document is associated with tags (generally some keywords) and
using those tags we compute the semantic similarity between two web pages based on
concept similarity of the words occurring in the documents. But employing the same
method in the images/videos is considerably difficult. The main problem is that how
we associate textual tags with images/shots. This may require high level understanding
of the image/video. Rather, we use a visual-bag-of-words model [10] for the videos.
The problem at this step is that we cannot directly get the semantic meaning behind
the visual words as they are only some feature points unlike the text domain where the
the tags itself can give some semantics to the web pages. Therefore, it is important to
device a way in which the semantic similarity of two shots in a video can be computed.

In this paper, we propose a method to compute semantic similarity between shots
and then using that to get the scene boundaries of the movie. Section 2 describes the
basic method. Section 3 presents details of the semantic similarity computation with the
help of a bipartite graph model. Section 4 contains various experiments and results to
validate the utility of the proposed methods.

2 Scene Segmentation with a Similarity Matrix

Scene is a set of contiguous shots which are connected by a central concept or theme.
First we find shots and key frames in the given movie and then we propose a bag-of-
visual-words (BoW) model representation of shots. Followed by this, we compute a
semantic similarity matrix which gives the semantic similarity between each pair of
shots. Then we apply normalized cut on the graph induced by the similarity matrix to
group the shots into scenes. Figure 1 depicts the general flow of the scene segmentation
algorithm proposed.

Movie

Shot Detection

key-frames detection

Key_fra mes - - - -

Semantic Similarity Computation

Shot Clustering/Scene Boundary Detection
scenc TR A) e PR LMWL R B E T

Fig. 1. This figure depicts a schematic flow of how the scenes are being detected in the movie.
Initially we have the complete movie as input. We apply shot segmentation and key frame extrac-
tion to get the shots and key frames. Then Semantic Similarity Computation module computes
semantic similarity between shots. The Semantic Similarity Score or SS Score has been shown
in the figure for two pairs of shots. Then Scene Boundary detection module takes the shots and
similarity score as input and output the scene boundaries.

2.1 Shot Segmentation and Key frame Extraction

Shot segmentation and key frame extractions has been studied widely and a number
of approaches are available in this area [7][6]. To segment the movie into shots, we

use the method described in [7]. We take color histogram of consecutive frames and
if difference between the histograms is above a certain threshold, the former frame is
declared as shot boundary. After getting the shots in the movie, we use a variant of the
unsupervised clustering method as described in [6] to get the key frames from each of
the shots. Given a shot, we represent each of the frames in the shot as histogram taken in
HSV space. Then we apply clustering on those histogram points to get the most suitable
histogram points (cluster centers) and those frames corresponding to the cluster centers
are taken as the key frame for that shot. For simplicity, we have predefined the number
of clusters and so number of key frames extracted from each of the shots is same.

2.2 Semantic Similarity

Semantic Similarity between a pair of shots is defined as the similarity between them
based on visual content of those shots. We define ‘Semantic similarity’ between two
shots based on following two conditions:

— If an object ‘0’ appears in shot S; and the same object appears in shot S;, then there
exist a similarity between \S; and .S based on object ‘0’.

— If shot S; is similar to shot S; and shots S; is similar to shot S then S; is also
similar to S. This type of similarity is called ‘Transitive Similarity’.

We have defined a scene as a set of shots which are continuous in time and which are
connected via a central concept (for example, a conversation). A conversation scene
can be of type ABAB... or ABCABC.... where former represents a scene in which two
persons are talking consecutively one by one and the later represents a scene where three
persons are talking one after the other. Now looking at the content of these shots when
we try to see the difference between these shots what we find is that the difference
among these shots exist because of foreground objects e.g face of the person while
most of the background or environment object (e.g wall, table etc) remains the same.
Now because of our first hypothesis, there will be similarity between shots based on
background objects or environment objects. Now to understand the relevance of the
second hypothesis, consider a car racing scene or a scene of the highway. if there are
three consecutive shots such as A[ab]B[bc]C[cde] where A, B and C are the shots and
a,b,c.d,e are the content or objects or vehicle in the shots. In this case, there will be a
similarity between A and B based on object ‘b’ and further there will be a similarity
between B and C based on object ‘c’ using the first hypothesis. On the other hand,
there will be a similarity between A and C because A is similar to B and B is similar
to C according to the second hypothesis. The above two examples explains why the
meaning or semantics of the scene will be captured in similarity computation using the
two hypothesis given above.

2.3 Semantic Similarity Matrix Computation

In this section, we explain an algorithm which captures the two hypothesis given in
the previous part approximately to compute the semantic similarity between shots. To
achieve this, we first compute Bag-of-VisualWords representation for the shots of the

movie. The set of all the visual words for a movie is the visual vocabulary for that
movie. Visual words are computed by taking all the keyframes from all the shots and
applying clustering on the SIFT features extracted from those keyframes. Now a shot
S; can be represented as a K dimension vector (histogram) where S;; gives the count
of j*" visual word in i*" shot and K is the total number of visual words or vocabulary.
A visual word w; appears in shot .S; if there is some feature point from keyframes of
it" shot which lies in j*" cluster where j*" cluster represents j* visual word. Using
this convention, a shot is represented by

S =n1,n2,..,Mj,....,NK e))

where n; gives the frequency of jt" visual word divided by total number of visual
words present in this shot, and K is the size of the vocabulary. With this representation
of the shot, we use Euclidean distance and intersection distance to find the distance
between pair of shots. Euclidean distance between i** and j** shot is given by D;; =
Zle Ini, — njx|? and intersection distance between i** and j'* shot is given by D;;
= Zszl min(nik, n;i). Here n;, gives the normalized frequency of k" visual word
in 7*" shot. The similarity between the shots will be inversly related to this distance.
Once we compute all pairwise distance between two shots, we can visualize a graph
G (V, E) where V is the set of vertices consisting of all the shots and E is the set of
edges between each pair of shot and each edge joining i!" and j*" shot is associated
with an edge weight equal to distance computed between i*" and ;" shot as explained
above.

Now, We define a matrix D' of size t x t where t is number of shots. Df : is defined as
the minimum distance between i*” and j*" shot by considering path length up to [. Path
length tells the maximum number of vertices(shots) used in computing the minimum
distance between two shots. The value / is decided based on expected number of shots
in a scene. We can compute D' matrix using either the straightforward matrix multipli-
cation algorithm which takes O(t*) time or Floyd Warshall algorithm [12] which takes
O(t?) time. After applying this algorithm, we get a similarity matrix such as

1

= @)
DL,

Simij =

2.4 Scene Boundary Detection

Rasheed and Shah [2] have used normalized cut [8] technique to partition their
shot similarity graph into scenes. We also use a similar approach. After finding
the similarity between shots, our aim is to partition the shots into scenes in a way such
that

— All the shots in a scene are continuous in time.
— Intra similarity within a scene is maximized.
— Inter similarity between scenes is minimized.

To do this, we construct a graph G (V, E) where V is the set of all the shots and
E is the set of edges joining each pair of shots. e;; is the edge joining i*" shot with 5"

shot. Each edge e;; is associated with a weight w;; such that

Here £ (i, §) accounts for temporal similarity between i and j* shotand Sim (i, J)

is the semantic similarity between i*" and j* shot. £ (i, j) term is important because
there might be a case when two shots which are far apart are visually similar but the
similarity between them should decrease because of the distance.We compute f (i, j) as
inverse of the absolute difference between i and 7.

Normalized cut as described in the paper [8] is used to partition this graph
G(V, E) into two parts G1 (Vi, Ej) and Ga (V2, Es) suchthat V = ViUV
and V1 (V2 = ¢. The idea behind this algorithm is to maximize intra class similarity
and minimize inter class similarities which is also our objective. However, if we apply
normalized cut directly on the graph, we may find some partitions of the graph
where shots will not be contiguous in time but we need to partition the graph in such a
way that shots are contiguous in time i.e., for each graph G (v, E) which is partitioned
into two sub-graphs G1 (V1, FEp) and G5 (Va, FE3), the following condition should
hold

(i < jori>j);Vu € Vi,v; € Vs)

We use the objective function given in Equation 5 to find the weakest link between two
consecutive shots in the graph and then apply the same procedure recursively on either
side of the partition.

cut(Vy, Va) cut(Vy, Va)

Ncut = ’
cut(Vh, Va) Assoc(V1,V) + Assoc(Va, V) ®

cut(Vl, Vg) = Z Wy (6)
i€Vy,jEV,
Assoc(VY, V) = Z Wi (7
i€V, jev

Using the above equations, we compute Ncut values for each of the probable parti-
tion (for example initially there are n — 1 possible partition) and find the partition for
which ncut value is maximum and if this ncut value is above a threshold, we divide
the graph into two partitions and the same procedure is repeated recursively on the
subgraphs.

3 BGM and Semantic Similarity Computation

3.1 Bipartite Graph Model(BGM)

The algorithm proposed in the previous section shows some improvement in result when
compared with [2]. This could be due to the better features/representation we use com-
pared to the previous method. However, it does not capture the full semantics of a

Visual Words Shots

Fig. 2. This figure shows a bipartite graph model where all the visual words are on the left hand
side and all the shot nodes are on the right hand side.

scene and is also an inefficient algorithm. To overcome these issues, we look in the text
domain about how they solve the problem of computing semantic similarity between
documents. One interesting idea is to use Bipartite Graph Model to compute
semantic similarity between documents. The approach uses #f-idf values to build a bi-
partite graph and then using this graph, they compute semantic similarity. One similar
approach in image domain is image retrieval application [5] that uses Bipartite
Graph Model to retrieve the similar images efficiently. We have tried to use a near
similar idea in video domain to compute semantic similarity between shots.
We have already represented shots in terms of visual words. We define two parameters-
shot-visual word, SV matrix which is equivalent to term-document matrix and inverse
shot frequency, 1SF, for the visual words which is equivalent to inverse document fre-
quency in text domain. SV and ISF is given by:

SV i) count of j" visual word in it" shot ®
A =
) total number of visual words in it shot

ISF(i) = count of shots in which i*" visual word appears

®

total number of shots

Then we construct a bipartite graph as shown in Figure 2. All the visual words are on
the left side of the graph while on the right side are all the shot node. A bipartite graph
with visual words, shots and edges can be represented as G (W, E, S) where W is the
set of all visual words, W = w1, ws,,wg; S is the set of all the shots and is given
by S = s1,82,...... ,8n and E is the set of all edges and E = eft, e, egr.
Here eg,)f = SV(i, 7). Besides this with each visual word, is associated ISF for that
visual word. An edge joining j*" visual word with i*” shot has an edge weight which is

normalized frequency of the j** visual word in the i shot.

3.2 Semantic Similarity Computation Using Bipartite Graph

Using this bipartite graph, we can also compute the intersection distance matrix D
which has been computed in section 2.3. Intersection distance between two shots is
given by:

K
D(i,j) =Y _ min(si, sjx) (10)
k=1
We can compute the same thing using this graph as

D(i,j) = > min(e’*, e*) (11)

k=index of common visual words

Here e'* is the actual frequency of k' visual word in i*" shot. However for all the
subsequent discussion, weight associated with e** is the normalized frequency of k'
visual word in i*" shot. The above equation does not include transitive similarity and
computationally also it is not better than the previous one discussed in section 2.4.
Therefore, instead of computing like this, to find the similarity of 7*" shot with all other
shot, 3" shot node is given some initial cash to distribute among other shot nodes in
BGM based on relevancy. The relevancy is decided based on the edge weights joining
visual word nodes with shot nodes. The propagation of cash through BGM continues
until it runs out. The higher the amount of cash flowing through a shot node, the higher
is the similarity of that shot with 7*" shot. This algorithm is applied in such a way that a
shot node is given some cash initially. Now if this node is a shot node, it will propagate
the cash to the ‘visual word nodes’ in the proportion of edge weights joining shot nodes
with the visual word nodes. If the cash is propagated from a visual word node, some
part of the cash is absorbed at the word node in the proportion of ISF of that visual
word and rest amount of cash is propagated to the shot nodes joined with this visual
word. If the cash flowing through BGM goes below a certain threshold, we stop cash
propagation. At this point, all the shot nodes have the amount of cash they received. For
a j'" shot node total cash received is

+ cash? (12)

_ J
= cash current

J
cash previous

total
We take the cash values at different shot nodes as the similarity between it" and j'"
node i.e Sim(ij) = cash?, , , when i‘" shot node was given the initial cash. We ap-
ply this algorithm t times for each of the shot node to calculate all pairwise semantic
similarity where t is equal to number of the shots.

Absorption of amount value at the visual word nodes is very crucial to make the
algorithm more optimized with respect to time and space as it prunes the tree and so
does not apply this algorithm for the frequent occurring visual words. The more
a visual word is frequent, the less useful it is for the purpose of making distinction
between shots and so less useful in establishing semantic similarity. Also this algorithm
models and captures both of the hypothesis given in section 2.1. It will ensure that
there will be a semantic similarity between shots if an object ‘0’ is common to them
because in that case some amount will flow from one side to the other side increasing

its semantic similarity. Also it will capture transitive similarity of more than two path
lengths and the maximum length of transitive path will depend on threshold.

Using the above procedure, we compute Semantic Similarity matrix which
contains pair wise semantic similarity between each pair of shots. Then, we use the
approach described in section 2.4 to find the scene boundaries or to group the shots into
scenes.

4 Results

We evaluate the performance of our approach on three different videos. The first video
is 36 minutes long, taken from the movie “A beautiful Mind”, the second video set
is 51 minutes long taken from the movie “The Fellowship of the ring” and the third
video 60 minutes long taken from the movie “Gladiator”. The three movies are of dif-
ferent genre .The first is a drama/history slow paced movie while the second is an ac-
tion/adventure/fantasy movie and the third is an action/adventure/drama. For testing the
performance of our algorithm we need a ground truth scene which were manually de-
tected. In the phase of computing the bag of words we took about 700,000-800,000 sift
features in total and then clustered them assuming 1500 centers i.e. the visual words.
The results obtained using our algorithm are compared with the results of the method
proposed in [2]. For both the approach we used the same videos mentioned above.

The parameters used for performance evaluation are Recall : CT/GT, Precision: CT/DT,

Table 1. Comparison of the previous work results and results obtained by proposed method

Rasheed and Shah’s approach| Proposed Method
Movie BM |LOTR-1 GD BM |LOTR-1| GD
#Shots 219 | 358 363 219 | 358 | 363
Duration (min) 36 51 60 36 51 60
#G. Truth Scenes|| 18 29 28 18 29 28
#Detected Scene || 28 35 43 23 33 42
#Correct Scene 15 21 25 16 23 26
#False Negative 3 8 3 2 6 2
#False Positive 13 14 18 7 10 16
Recall 0.833| 0.724 0.893 0.889| 0.793 [0.929
Precision 0.536| 0.60 0.581 0.696| 0.697 [0.619
F-Score 0.652| 0.656 0.704 0.781(0.742 (0.743

Qxprecisi scall . . .
F-score: %, where GT is Ground Truth scene boundaries, CT is Cor-

rectly Detected scenes boundaries, DT is Detected Total scenes boundaries.

The output scene boundaries from the algorithm are compared with the ground-truth
scene boundaries such that a 30-seconds sliding window was swept over the detected
boundaries as tolerance factor. Finally, F-score is used to compare the results of the
algorithm proposed here and the algorithm mentioned in [2]. For proper comparison
we implemented the method proposed by Rasheed ef al. [2] and the Table-1 shows
comparative results of both the algorithms.

We have selected SIFT features for the representation of the video. But there can
be some other simple features as well. One such feature can be to use color histogram
to represent the shots of the video. The color histogram is calculated by dividing the
key frames into fixed size patches and then using hsv bins to represent the shot by color
histogram. We compared the algorithm accuracy when the color histogram is used as
the feature and when sift features used to detect key-points and the results are present
in Table-2. We can clearly see sift feature in general gives better results compared to
other simple representation of the shots.

Table 2. Comparison of the results when sift features and color histogram were taken as the
features of the bag of words computation on the movie “A Beautiful Mind”

Color Histogram as feature|Sift Features
G. Truth Scenes 18 18
Detected Scene 24 23
Correct Scene 14 16
#False Negative 4 2
#False Positive 10 7
Recall 0.77 0.889
Precision 0.58 0.696
F-score 0.66 0.78

Fig. 3. Ground Truth data scenes and Algorithm detected scenes

Comagrision of the algorithm oulput with actual scene boundaries for the movie " Beautiul Mind"
2 T T T T T T T

= Grourd Truth Data Scenes
— algorithm Generated Scenes

Seane index

0 1 1 1 1 | 1 I 1 1
0 05 1 15 z 25 3 as 4 a5 5
Frame Index

Fig. 4. Some of the Scenes detected

Mathematicians
Scene

Princeton
Dorm Scene

Teacher &
Students Scene

In Fig. 3 we gave the visual representation of actual detected scene when compared
to the ground-truth scene boundaries. In Fig. 4 we have shown some of the detected
scenes in the movie “A Beautiful Mind”.

5 Conclusion

We present a method of partitioning a video , particularly movie, into scenes. We have
considered the fact that a scene consists of shots which are semantically related and
continuous in time. To achieve that, we have presented a method to compute semantic
similarity between the shots. Once we get semantic similarity, we construct a graph and
the problem transforms into graph partitioning problem. The approach presented here is
found to be better than previous approaches in which semantic similarity between shots
was not considered. It can be seen from the results that it is important to compute the
similarity between the shots not only on the basis of direct similarity but it is important
to consider transitive similarity as well.

References

1. Zeeshan Rasheed and Mubarak Shah : Scene Detection In Hollywood Movies and TV Shows,
IEEE Computer Society Conference on Computer Vision and Pattern Recognition,Los Alami-
tos, CA, USA(2003)

2. Zeeshan Rasheed and Mubarak Shah : A graph theoretic approach for scene detection in pro-
duced videos, Multimedia Information Retrieval Workshop 2003 in conjunction with the 26th
annual ACM SIGIR Conference on Information Retrieval

3. Yun Zhai and Mubarak Shah : A General Framework for Temporal Video Scene Segmentation
In IEEE International Conference on Computer Vision, Los Alamitos, CA, USA(2005)

4. Zhiwei Gu and Tao Mei and Xian-Sheng Hua and Xiuqing Wu and Shipeng Li : Energy
Minimization Based Video Scene Segmentation In ICME(2007)

5. Karthik, S. and Pulla, C. and Jawahar, C.V. : Incremental on-line semantic indexing for image
retrieval in dynamic databases In Computer Vision and Pattern Recognition Workshops, 2009.

6. Yueting Zhuang and Yong Rui and Huang, T.S. and Mehrotra, S. : Adaptive key frame extrac-
tion using unsupervised clustering In ICIP 98

7. Zhang, Hongliang and Kankanhalli, Atreyi and Smoliar, Stephen W. : Automatic partitioning
of full-motion video, 1993

8. Jianbo Shi and Jitendra Malik : Normalized Cuts and Image Segmentation In IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, 2000

9. Josef Sivic and Bryan C. Russell and Alexei A. Efros and Andrew Zisserman and William T.
Freeman : Discovering objects and their location in images In IEEE Intl. Conf. on Computer
Vision, 2005

10. Sivic, J. and Zisserman, A. : Video Google: a text retrieval approach to object matching in
videos In Ninth IEEE International Conference on Computer Vision, 2003.

11. J. Zhang and S. Lazebnik and C. Schmid : Local features and kernels for classification of tex-
ture and object categories: a comprehensive study, International Journal of Computer Vision,
2007

12. Thomas H. Cormen and Charles E. Leiserson and Ronald L. Rivest and Clifford Stein :
Introduction to Algorithms, second edition, 2001

13. Lowe, David G. : Object Recognition from Local Scale-Invariant Features In ICCV’99.

14. Baeza-Yates, Ricardo A. and Ribeiro-Neto, Berthier : Modern Information Retrieval, 1999.

15. Rainer Lienhart : Comparison of automatic shot boundary detection algorithms, 1999.

16. A. Hampapur : Virage video engine In SPIE, 1997.

17. D. DeMenthon : Relevance Ranking of Video Data using HMM Distances and Polygon
Simplification In Int. Conf. on Adyv. in Visual Info. Systems, 2000.

18. Wactlar, H. : The Challenges of Continuous Capture, Contemporaneous Analysis, and Cus-
tomized Summarization of Video Content In Defining a Motion Imagery Research and Devel-
opment Program Workshop, 2001.

19. Zhang, Hongliang and Kankanhalli, Atreyi and Smoliar, Stephen W. : Automatic partitioning
of full-motion video In Multimedia Syst, Springer-Verlag New York, Inc, 1993.

20. R. Smith. : VideoZoom spatio-temporal video browser In IEEE Tran. on Multimedia, 1999.

21. Thomas Deselaers and Daniel Keysers and Hermann Ney : Abstract Features for Image Re-
trieval: An Experimental Comparison, 2007 .

22. Thomas Deselaers and Daniel Keysers and Hermann Ney : Features for Image Retrieval: A
Quantitative Comparison, 2004

23. A Vadivel and A K Majumdar and Shamik Sural : Performance comparison of distance
metrics in content-based Image retrieval applications, 2004 .

24. Danushka Bollegala, Yutaka Matsuo, Mitsuru Ishizuka : Measuring Semantic Similarity be-
tween Words Using Web Search Engines, 2007 .

25. loannis Antonellis and Efstratios Gallopoulos and I. Antonellis and E. Gallopoulos : Explor-
ing Term Document Matrices From Matrix Models in Text Mining, 2006

