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Abstract—Automatic retinal image analysis is emerging as an
important screening tool for early detection of eye diseases. Glau-
coma is one of the most common causes of blindness. The manual
examination of optic disk (OD) is a standard procedure used for
detecting glaucoma. In this paper, we present an automatic OD
parameterization technique based on segmented OD and cup
regions obtained from monocular retinal images. A novel OD
segmentation method is proposed which integrates the local image
information around each point of interest in multi-dimensional
feature space to provide robustness against variations found
in and around the OD region. We also propose a novel cup
segmentation method which is based on anatomical evidence
such as vessel bends at the cup boundary, considered relevant
by glaucoma experts. Bends in a vessel are robustly detected
using a region of support concept, which automatically selects
the right scale for analysis. A multi-stage strategy is employed
to derive a reliable subset of vessel bends called r-bends followed
by a local spline fitting to derive the desired cup boundary. The
method has been evaluated on 138 images comprising 33 normal
and 105 glaucomatous images against three glaucoma experts.
The obtained segmentation results show consistency in handling
various geometric and photometric variations found across the
dataset. The estimation error of the method for vertical cup-to-
disk diameter ratio is 0.09/0.08 (mean/standard deviation) while
for cup-to-disk area ratio it is 0.12/0.10. Overall, the obtained
qualitative and quantitative results show effectiveness in both
segmentation and subsequent OD parameterisation for glaucoma
assessment.

Index Terms—Glaucoma, optic disk, cup, neuroretinal rim,
segmentation, cup-to-disk ratio, active contour, vessel bend,
retinal images.

I. INTRODUCTION

GLAUCOMA is one of the common causes of blindness
with about 79 million in the world likely to be afflicted

with glaucoma by the year 2020 [1]. It is characterized by
the progressive degeneration of optic nerve fibers and leads
to structural changes of the optic nerve head, which is also
referred to as optic disk, the nerve fiber layer and a simulta-
neous functional failure of the visual field. Since, glaucoma is
asymptomatic in the early stages and the associated vision loss
cannot be restored, its early detection and subsequent treatment
is essential to prevent visual damage [2].

The optic disk (OD) is the location where ganglion cell
axons exit the eye to form the optic nerve through which
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visual information of the photo-receptors is transmitted to
the brain. The OD can be divided into two distinct zones,
namely, a central bright zone called the cup and a peripheral
region called the neuroretinal rim where the nerve fibres
bend into the cup region [3]. Major structures of the OD
are shown in Fig. 1. The loss in optic nerve fibers leads to
a change in the structural appearance of the OD, namely, the
enlargement of cup region (thinning of neuroretinal rim) called
cupping. Glaucoma detection typically considers the medical
history, intra-ocular pressure and visual field loss tests of a
patient together with a manual assessment of the OD, through
ophthalmoscopy. Since enlargement of the cup with respect
to OD is an important indicator of glaucoma progression,
various parameters are estimated and recorded to assess the
glaucoma stage. These include the diameter and area of OD,
cup diameter, rim area, mean cup depth, etc. The subjectivity
in the manual estimation of cup parameters is overcome,
when possible, by using advanced modalities such as Optical
Coherence Tomography and Heidelberg Retina Tomography.
These provide the 3-D depth information either in the form of
a colorless or pseudo-color image. The disk boundaries on the
3-D image are then manually marked by the experts to extract
the desired disk parameters.

Colour fundus imaging (CFI) is another modality that can be
used for glaucoma assessment. It has emerged as a preferred
modality for large-scale retinal disease screening [4] and has
already been established for large-scale diabetic retinopathy
screening. It is possible to acquire fundus images in a non-
invasive manner which is suitable for large scale screening. In
such programs, an automated system that can decide whether
or not any signs of suspicious for a disease are present in
an image can improve efficiency; only those images deemed
suspect by the system would require examination by an
ophthalmologist.

There have been efforts to automatically detect glaucoma
from 3-D images [5][6]. However, due to their high cost
they are generally unavailable at primary care centers and
hence a solution built around these imaging equipments is
not appropriate for a large-scale screening program. Our work
is aimed at developing a pre-screening system to enable
glaucoma detection for large-scale screening programs using
CFI. In this paper, we present partial results of this work.

Previously published work on automated glaucoma de-
tection can be categorised into three main strategies: i)
without disk parameterisation, ii) with disk parameterisation
using stereo CFI, and iii) with disk parameterisation with
monocular CFI. In the first category, a set of features are
computed from the CFI and two-class classification is em-
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Fig. 1. a) A OD-centric monocular retinal image b) Cup boundary through
vessel bends of interest.

ployed to declare a given image as normal or glaucomatous
[7][8][9][3][10][11][12]. These features are computed at the
image-level without performing OD and cup segmentation.
Given the huge photometric and morphological variations
presented by the OD, selection of features and classification
strategy is difficult and challenging.

In the remaining class of strategies, which are based on disk
parametrisation, OD and cup regions are segmented to estimate
the relevant disk parameters. As against monocular CFI, a
stereo set of CFI allows capture of partial depth information
which helps in better characterising the region inside the OD
such as the cup, neuroretinal rim. Considerable body of work
in disk parameterisation has been carried out using stereo CFI
[13][14][15][16][17][18]. However, only a handful attempts
have been made to parameterise OD from monocular CFI.
In this work, we focus on the parameterisation of OD from
monocular images. Next, we describe the challenges associated
with the problem and provide an overview of the related
literature.

A monocular CFI gives a 2-D projection of retinal structures
where OD appears as a bright circular or elliptic region
partially occluded by blood vessels as shown in Fig. 1(a).
Retinal nerve fibers converge to the OD and form a cup-
shaped region known as the cup. Figure 1(a) highlights both
regions. OD segmentation itself is a challenging task mainly
due to blood vessel occlusions, ill-defined boundaries, image
variations near the disk boundaries due to pathological changes
and variable imaging conditions. Specifically, occurrence of
similar regions (Atrophy) near disk boundary, irregular disk
shape and boundary are the most essential aspects to be
addressed by a OD segmentation method. A sample image is
shown in Fig.2 to illustrate the above conditions. Detecting
the cup boundary from a monocular image (without depth
information) is a challenging task as depth is the best marker
for cup. Medical experts use both appearance and anatomical
knowledge to determine the cup boundary in different cup
regions given only a monocular image. Anatomical evidence
such as vessel bends at cup boundary is used as a reliable
visual cue for determining cup boundary. Figure 1(b) shows
the cup boundary marked by a glaucoma expert using such
vessel bends (highlighted by arrows). The incorporation of

Fig. 2. a) Original color retinal image b) Highlighting ill-defined boundary
region and image variation near OD boundary due to atrophy (a pathological
change).

such knowledge for automated vertical cup-to-disk diameter
ratio (CDR) estimation is seen in [19][20].

There are a few attempts at automated OD and cup
segmentation from monocular images for structure seg-
mentation as well glaucoma detection point of view
[21][22][23][24][25][19]. It is noteworthy that works related
to glaucoma detection focus only on the estimation of CDR
which has been traditionally used to detect glaucomatous
cases. However, CDR has been found to be inconsistent in
explaining the amount of OD damage caused by glaucoma
[26]. For instance, some patients have small CDR but signifi-
cant visual field loss, whereas some have large CDR with little
visual field loss. This is mainly argued to be due to limitations
with the CDR parameter which cannot account for various
configurations of optic cup and neuroretinal rim and focal
notching (local enlargement of cup region). Consequently, an
alternate OD evaluation methodology, called the disc damage
likelihood scale has been introduced to precisely describe the
amount of OD damage caused by glaucoma [26]. This is based
on the appearance of the neuroretinal rim of the OD corrected
for disc diameter.

Thus, an accurate segmentation of OD and cup is essential
to get better localisation of neuroretinal rim to enable new
glaucoma evaluation methodologies which consider other fac-
tors in addition to CDR. In this paper, we present a scheme for
OD parameterisation which consists of two novel OD and cup
segmentation methods. The aim is to derive a rich description
of OD which is suitable for different glaucoma assessment
methodologies. The proposed OD segmentation is robust to
image variations with-in and near a OD region. The cup is
modeled as a region enclosing pallor region (shown in fig.
1(a)) and defined by a boundary passing through a sparse set
of vessel bends called relevant bends (r-bends). Results of a
detailed evaluation of the proposed scheme on 33 normal and
105 glaucomatous images are also presented.

The organisation of the paper is as follows. Section II
reviews related work on OD segmentation and describes the
proposed method. In Section III existing approaches for cup
segmentation from monocular CFI are reviewed and a new r-
bends based cup segmentation method is presented. In Section
IV the experiments and results are presented. We end with a
discussion and conclusion in Section V.
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II. OD SEGMENTATION

A. Background

Interest in OD segmentation is not limited to glaucoma
detection. It is a fundamental task for automatic processing
of retinal images such as image sequence registration, and au-
tomatic measurements for treatment evaluation or for diabetic
retinopathy diagnosis [27]. Hence, there is a wider body of
literature on OD segmentation which is briefly reviewed in
this section.

Initial attempts have been made with shape-based template
matching in which OD is modeled as a circular [28][29] [30]
or elliptical [31] object. This matching is performed on an
edge map extracted from the underlying image. This approach
suffers due to vessel edges present in and around the OD
region. To handle this, morphological-based pre-processing
step is employed to suppress the vessel prior to template
matching [30]. The circular template is further improved in
[31] by considering intensity information inside and outside
the OD region. The shape-based modeling of the disk region
fails to characterise shape irregularity which typically arises
due to some pathological changes or variation in view.

A number of gradient-based active contour models have
been proposed to better capture shape irregularity in the disk
region. In these approaches, a contour is initialised either
manually [32] or automatically [33] and deformation in the
contour takes place under the influence of energy term defined
on the image gradient. The strategy is to first employ a
gradient vector flow (GVF) based active contour model for
disk boundary detection [34] followed by a minimisation of
the effect on the perturbance in the energy value due to
high gradient at vessel locations. This is achieved either by
employing a pre-processing step [32] or by constraining the
segmentation result to a circular or elliptically shaped object
[35][36].

A variational, level-set based deformable model is proposed
in which the obtained segmentation result is smoothed using an
ellipse fitting operation [24]. While the enforcement of a shape
model, either in the energy formulation or as a post-processing
step, helps in handling local gradient minima it altogether
limits the extraction range of irregular OD shapes which occur
commonly in a clinical scenario. To overcome this limitation,
a model-free snake approach which is an improvement over
earlier active shape model [37][38], is proposed in [14]. In this
approach, after each deformation, contour points are classified
in a supervised manner into an edge-point cluster or uncertain-
point cluster. The uncertain-point cluster mainly comprises of
points which belong to the vessel region. The updating is
only carried out on the contour points which belong to the
edge-point cluster. Deformation of each point uses both global
and local information to overcome local gradient variations.
The successful results on both normal and challenging OD
examples have been reported on which their earlier approach
[37][38] was failing. This method shows promise in capturing
a range of shape and image variations, however the accuracy
in the segmentation is sensitive to the contour initialization.

More recently, work in active contours has been focused
on region-based approaches[39] inspired by the basic idea

Fig. 3. Sample results of C-V active contour[39][41]. Green: Ground truth
by an expert; White: Obtained result. a) First row: successful example, b)
Second row: failure example.

of the Mumford-Shah model [40]. The advantages in us-
ing the region-based approaches over image gradient-based
methods include the following: a) robustness against local
gradient variations, b) feasibility of segmentation of color and
multi-spectral images even in the absence of gradient-defined
boundaries, c) lower sensitivity to contour initialisation and
noise, and d) better ability to capture concavities of objects. In
such models, foreground and background regions are modeled
statistically and an energy functional is minimised to best
separate foreground and background regions.

Figure 3(a) shows a successful segmentation on an im-
age with large gradient distractions near boundaries [41].
However, in cases where the object to be segmented cannot
be easily distinguished in terms of global statistics, region-
based active contours may lead to erroneous segmentations.
Figure 3(b) shows a failure example due to smooth region
transition between object and background region. To handle
such over-segmentation, traditional Chan-Vese (C-V) model
has been modified by incorporating circularity constraint in
[42]. However, restricting the scope of segmentation output to
a certain shape, limits the extraction range of irregular OD
shapes similar to the approaches described earlier.

Here, we propose a novel OD segmentation method based
on region-based active contour model to improve the segmen-
tation on the range of OD instances. The scope of the C-V
model is enhanced by including image information at a support
domain around each point of interest. The model is further
refined to differentiate the OD region from the similar charac-
teristic regions (atrophy) around it by integrating information
from the multiple image feature channels. This method does
not impose any shape constraint on the underlying model and
hence is a good solution for OD segmentation. In the next
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section, we explain the original C-V model and present our
enhanced active contour model.

B. Localised and vector-valued C-V active contour model

Consider a vector-valued function (image) I : Ω → IRd

where Ω ⊂ IRn is the image domain and d ≥ 1 is the
dimension of the vector I(x). In the problem at hand n =2 and
d = 3. Let C(s) : [0, 1] → IR2 be a piecewise parameterized C1

curve. For a gray valued image, the C-V model [39] defines
an energy functional as:

E(c+, c−, C) = λ+

∫
inside(C)

|I(x) − c+|2dx (1)

+λ−
∫

outside(C)

|I(x) − c−|2dx

+μ length(C)

where inside(C) and outside(C) represent the region inside
and outside of the contour C, respectively and c− and c+

are two constants that approximate the image intensity inside
and outside of the contour. The parameters λ+, λ− > 0 and
μ > 0 are weights for the fitting and the regularizing terms,
respectively.

This model assumes that an image consists of statisti-
cally homogeneous regions and therefore lacks the ability to
deal with objects having intensity inhomogeneity. Figure 3(b)
shows an example. Intensity inhomogeneity is very common
in natural images, especially in OD region it is a frequently
occurring phenomena. In computer vision, there have been
some attempts to improve C-V model for such situations [43]
[44] [45]. Here, the basic idea is to use local instead of global
image intensity into the region-based active contour model.
These methods report significant improvement in the segmen-
tation over original C-V model for segmenting objects with
heterogeneous intensity statistics. However other than intensity
heterogeneity within OD, smooth region transition at boundary
locations and occurrence of similar characteristic regions near
the OD boundaries (atrophy) make OD segmentation a much
more difficult case altogether. Figure 8 illustrates more OD
examples with additional challenges. The local intensity based
statistics [43] [44] is not sufficient to discriminate between the
OD and atrophy regions.

We propose a region-based active contour model which uses
local image information at a support domain around each point
of interest (POI) inspired by localised C-V models [43] [44]
by using a richer form of local image information gathered
over a multi-dimensional feature space. The intention is to
represent the POI more holistically by including descriptions
of the intensity, colour, texture, etc. This approach should yield
a better representation of image regions and make the proposed
model robust to the distractions found near the OD boundaries.

Let x and y denote two points in an image I . We define a
local function κ for each x as:

κ(x, y) =
{

1 if ||x − y|| ≤ r
0 otherwise

where, κ which defines the local image domain around a point
x within a radius of r. Using the above function, the energy
(mentioned in Eq.(1)) for a point x is redefined as:

Ex(h+, h−, C) = λ+

∫
Ωy

κ(x, y) |I(y) − h+|2dy (2)

+λ−
∫

Ωy

κ(x, y) |I(y) − h−|2dy

where, h− and h+ are two constants that approximate region
intensities inside and outside of the contour C respectively,
near the point x. The local function ensures the value of h
that minimises Ex(h+, h−, C) is only influenced by the image
information within the local domain. This way the behavior of
any individual point is constrained by the regional information
from a local domain. This helps in capturing local boundaries
which get missed by a C-V model due to small difference
in the global statistics of interior and exterior region of the
contour.

Now, we incorporate information from a multi-dimensional
feature space, in the above model. Let Ii be the ith feature of
an image on Ω with i=1, . . . , d. The extension of the above
model to the vector case is:

Ēx(h+, h−, C) =
1
d

d∑
i=1

λ+
i

∫
Ωy

κ(x, y) |Ii(y) − h+
i |2dy (3)

+
1
d

d∑
i=1

λ−i

∫
Ωy

κ(x, y) |Ii(y) − h−i |2dy

where h+= (h+
1 , . . . , h+

d ) and h−= (h−1 , . . . , h−d ) are two constant
vectors approximating regions’ feature values inside and out-
side the contour C respectively in each feature space. The
λ+

i > 0 and λ−i > 0 are weight parameters for the error term
defined for each feature space.

The above energy Ēx defined for a point x ∈ Ω can be
minimised when this point is exactly on the object boundary
and values of h+ and h− are optimally chosen. The integral of
Ēx over all points x is minimised to obtain the entire object
boundary. This is defined as:

E(h+, h−, C) =
∫

Ω

Ēx(h+, h−, C)dx (4)

This energy is converted to an equivalent level-set formula-
tion [46] for curve evolution.

1) Level-set formulation of the model: In a level-set formu-
lation, a contour C ⊂ Ω is represented by the zero level set
of Lipschitz function φ : Ω → IR. In this representation, the
energy functional Ēx(h+, h−, C) in (3) can be rewritten as

Ēx(h
+, h−, φ) =

1

d

d∑
i=1

λ+i

∫
Ωy

κ(x, y) |Ii(y) − h+i |2 H(φ(y))dy (5)

+
1

d

d∑
i=1

λ−i

∫
Ωy

κ(x, y) |Ii(y) − h−i |2 (1 − H(φ(y)))dy

where H is the Heaviside function. Now, the energy term
in (4) can be written as:
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E(h+, h−, φ) =

∫
Ω

Ēx(h
+, h−, φ) (6)

=

∫
Ω

[
1

d

d∑
i=1

λ+i

∫
Ωy

κ(x, y) |Ii(y) − h+i |2 H(φ(y))dy

]
dx

+

∫
Ω

[
1

d

d∑
i=1

λ−i

∫
Ωy

κ(x, y) |Ii(y) − h−i |2 (1 − H(φ(y)))dy

]
dx

A distance regularization term [44] is incorporated to pe-
nalise the deviation of φ from a signed distance function
characterised by the following integral:

ξ(φ) =
∫

Ω

1
2
(|∇φ(x)| − 1)2dx (7)

To regularise the zero level contour of φ, the length of zero
level curve of φ is also added which is given as:

ζ(φ) =
∫

Ω

δφ(x)|∇φ(x)| dx (8)

Now, we define the entire energy functional as

F (h+, h−, φ) = E(h+, h−, φ) + α ξ(φ) + β ζ(φ); (9)

where α and β are non-negative constants. This energy
functional is minimised to the OD boundary. The minimisation
method and performed approximations are provided in the
appendix.

C. OD localisation and contour intialisation

The first step is to localise the OD region and extract a
region of interest for further processing. The red colour plane
of CFI gives good definition of OD region and thus is a good
choice for the OD localisation task. The contour initialisation
is the next essential step to initiate the active contour evolution.
In our method, we perform localisation and initialisation steps
together by performing circular Hough transform [47] on the
gradient map.

The vessel segments are identified using a curvature-based
technique [48]. These regions are suppressed and inpainted
by performing selective morphological closing in 8 directions
and retaining maximum response for each vessel pixel. Next,
a Canny edge detector at a very low threshold is applied on
the pre-processed (vessel-free) image to get edge points. On
these points, a circular Hough transform is applied for a range
of expected OD radius (rmin to rmax). This range is chosen
based on the retinal image resolution.

We select the OD center which has maximum value in
the accumulator matrix while performing Circular Hough
transform. Next, the edges near the identified center location
in the image domain are used to estimate the radius of the
circle. The circle points are identified using estimated radius
and used to initialise the active contour mentioned in section
II-B.

Fig. 4. Different feature space representation for the OD region. a) Original
colour image, b) Red colour plane, c) Texture space-1, and d) Texture space-2.

D. Segmentation in multi-dimensional feature space

A multi-dimensional image representation is obtained from
colour and texture feature space. In normal image conditions,
red colour plane gives a better contrast of the OD region. To
better characterise OD in pathological situations, two different
texture representations are derived.

First, Gaussian filter responses obtained at three fine scales
σ =

√
2, 2, 2

√
2 are integrated together by summing. Second,

we use a special class of texture filter bank proposed in [49]
defined as:

L(c, σ, τ) = L0(σ, τ) + cos
(πτc

σ

)
e
−
(

c2

2σ2

)
where τ is the number of cycles of the harmonic function
within the Gaussian envelope of the filter, commonly used
in the context of Gabor filters. L0(σ, τ) is added to obtain
a zero DC component. These filter responses are obtained at
three pairs (σ, τ) = (4, 2), (6, 3), (8, 3) and summed together
to capture regularity in the texture profile at a finer level.
These responses are computed on the red colour plane of the
image. Prior to this computation, the points belonging to the
vessel region are removed and interpolated as mentioned in
section II-C. In general, the choice of texture representation is
driven by the discriminability it provides to help distinguish
OD region from the various atrophy regions occurring near
to the OD. Figure 4 shows three different feature space
representations.

Now, an image point x is represented by a three element
vector where value of individual vector element is taken from
red colour plane, texture feature space 1 & 2, respectively.
This vector-valued image is used by the active contour model
presented in section II-B to get the OD boundary.
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III. CUP SEGMENTATION

A. Background

Very few methods have been proposed for cup segmentation
from monocular image. Since 3-D (depth) images are not
easily available, Liu et. al. [25] proposed a method in which a
potential set of pixels belonging to cup region is first derived
based on the reference colour obtained from a manually
selected point. Next, an ellipse is fit to this set of pixels to
estimate the cup boundary. A variant of this method obtains the
cup pixels via thresholding of the green colour plane [25]. Cup
boundary obtained via ellipse fitting yields only coarse cup
boundary. In [41], cup symmetry is used after thresholding to
obtain a coarse cup segmentation. However, fixed thresholding
is also not adequate to handle large intensity variations in the
cup region that arise due to physiological difference across
patients. The energy minimization-based deformable models
are not appropriate for this problem due to the absence of edge
or region based information associated with the cup region to
derive an energy functional.

In order to address these problems, additional information
such as small vessel bends (’kinks’) which anatomically mark
the cup boundary have been used in [19]. The bends of small
vessels as they traverse from the disc to the cup, provide
a physiological validation for the cup boundary [19][20]. In
[19], image patches are extracted around an estimated cup
boundary obtained in [25] and vessel pixels are identified using
edge and wavelet transform information. Next, vessel bends,
characterized by points of direction change in the vessel pixels
are detected and used to obtain the cup boundary. This method
is highly dependent on the preliminary cup boundary obtained
from [25]. Furthermore, the statistical rule for selecting vessel
pixels is very sensitive to the inter-image variations.

Typically, both appearance and anatomical knowledge are
considered by the glaucoma experts to determine cup region.
Hence, we propose a method that integrates both these infor-
mation under a common framework. The cup is modeled as
a region enclosing the pallor region (shown in fig. 1(a)) and
defined by a boundary passing through a sparse set of vessel
bends.

B. Cup segmentation using r-bends information

The objective is to segment the cup region by using both
vessel bends and pallor information. As seen in fig. 1(b) and
cyan points in fig. 6(b), vessel bends can occur at many
places within the OD region. However, only a subset of these
points define the cup boundary. We refer to this as relevant
vessel bends or r-bends. The first problem at hand is to find
this subset. We use multiple sources of information for this
purpose: the pallor region which spatially defines the inner
limit of r-bends, bending angle and location in the OD region.
A second problem is that the anatomy of the OD region is
such that the r-bends are non-uniformly distributed across a
cup boundary with more points on the top and bottom; they
are mostly absent in the nasal side and very few in number in
the temporal side. We propose a local interpolating spline to
naturally approximate the cup boundary in regions where r-

Fig. 5. The proposed cup segmentation method

Fig. 6. a) Angle of a vessel bend, b) uniform pallor samples(red), bend
points(cyan) and c) fitted circle(red) and potential r-bends

bends are absent. Figure 5 shows an overview of the proposed
method.

1) Medial axis detection: The OD region has both thick and
thin vessels. Detecting both reliably is difficult in the presence
of inter-image intensity variations. Several methods have been
proposed for vessel segmentation in literature (see [50]). We
follow a method proposed earlier by us [48] which formulates
the blood vessel detection as a problem of trench detection in
the intensity surface. The selection of this space gives robust-
ness to the image variations and detection is solely driven by
the shape of trench and directional continuity associated with
a vessel structure. Trenches are regions characterized by high
curvature, oriented in a particular direction.

The curvature is computed using surface tangent derivative
[48] defined as:

Υ(x) =
d2y/dx2

1 + (dy/dx)2

For each point, Υ is computed in 4 different directions. The
maximum value of the responses Υmax and corresponding
orientation α (perpendicular to the vessel direction) are re-
tained and further assessed to obtain trench points. A point
is declared as a trench if value of Υmax is greater than both
threshold value t and the values of neighboring pixels in α
direction.

For the robust detection of low contrast vessels, we employ
a two-phase thresholding scheme in which first, a high value of
t is applied to get high contrast vessel points (set-1). Then, low
value of t is applied to get a new set of low contrast vessel
points (set-2). Points in set-2 which are found connected to
the set-1 are included in the final set along with set-1. This
strategy helps in successfully extracting low contrast vessels
while rejecting noise. The final trench points give a medial
axis-based representation of vessel structure which is more
precise in quantifying vessel bends compared to edge-based
representation. The next task is to extract vessel bends from
this representation.
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Algorithm 1 Multi-Stage selection of r-bends
1: Coarse Selection: Fit a circle to the set of candidate bends

bi and bright pixels in the pallor region
2: Select the bends which lie in the vicinity of this circle for

the next stage
3: Fine Selection: Classify the bends into two categories: a)

sector 1&3, b) sector 2&4
4: Compute the parent vessel-segment orientation bθ

i for each
bend bi

5: Scan each sector in steps of 20◦

6: if Bend(s) exist then
7: if bθ

i is correct then
8: if multiple then
9: Select r-bend with least bend angle

10: else
11: Select r-bend
12: end if
13: end if
14: else
15: continue
16: end if

2) Vessel Bend detection: The amount of bending in vessels
varies according to the caliber of vessel. Thin vessels show
significant bending compared to a thick vessel. This is due
to the fact that thick vessels are more rigid. The selection of
appropriate scale for detecting bends in both types of vessels
is crucial because bend in a thick vessel is apparent only at
a larger scale compared to a bend in thin vessel. We employ
a scheme based on the concept of dynamic region of support
(ROS) which has been proposed for corner detection [51] to
find the appropriate scale to analyse a candidate point. This is
explained below.

First, we extract vessel segments terminated by end and/or
junction points. For each segment, we compute 1D shape
(curvature) profile and locate the local maxima. These local
maxima constitute a candidate set of bends bi. A ROS for
any bi is defined as a segment of vessel around bi and bound
on either side by the nearest curvature minimum. Choosing
the bounds to be based on curvature minima automatically
ensures the size of the ROS to be large for thick vessels and
small for thin vessels. The angle of bend θ is then computed
as the angle between the lines joining a bend point and the
centers of mass on both sides of the ROS. The center of mass
of an arm is defined by the mean position of pixels on the
arm (illustrated in fig. 6(a)). Since only vessels bending into
the cup are of interest, bends above θ = 170◦ are eliminated
from the candidate set. The detected vessel bends in a sample
image are highlighted in fig. 6(b) with cyan markers.

3) Multi-stage selection of r-bends: The task of identifying
the r-bends from bi is performed in two stages to reduce the
required analysis, by utilizing anatomical knowledge associ-
ated with r-bends. In the first stage, a coarse selection is done
based on a bend’s proximity to the pallor region. In the second
stage, the spatial position and bending information are used to
identify the set of r-bends.

Coarse Selection: Let p : (xp, yp) be a set of points within

Fig. 7. a) Estimated cup boundary, b) final OD and cup boundary.

the pallor region. These are found by retaining the top 25%
of the bright pixels within the OD. Next, let b : (xb, yb) be
the locations of the bends bi. The region containing potential
r-bends is localised by finding a best-fit circle (in the least-
squares sense) to the set of points (x, y) = {p, b}. The bends
which lie in the vicinity of this circle (inside and outside) are
passed to the next stage. Figure 6(c) shows sample candidate
r-bends obtained in this stage.

Fine Selection: Each candidate bend is analysed in terms of
its sector-wise location (as in fig. 6(c)) and its parent vessel
orientation. This analysis is based on anatomical knowledge
that bends formed by vertical vessels in Sec-1&3 and hori-
zontal vessels in Sec-2&4 are the probable r-bends. The final
refined set of r-bends is found as follows: A sector is radially
analysed with a step size of 20◦ and in each step, only bends
formed by vessels with the ′correct′ orientation are retained.
If multiple bends remain, then the bend with smaller value of
θ is selected as thin, rather than thick, vessel bends are more
reliable indicators for the cup boundary. These usually occur
in the diagonal region between two sectors. The complete
selection procedure is also illustrated in Algo. 1.

4) 2D spline interpolation: Typically, r-bends are sparse
and not uniformly distributed across the sectors. In their
absence, experts use their clinical knowledge (experience of
direct 3D cup examination) to approximate a cup boundary.
Hence, it is difficult to get the cup boundary in the regions with
no r-bends. We choose a local, cubic cardinal spline, which is a
generalisation of Catmull-Rom spline, with a shape parameter
t. The parameter t helps control the bending behaviour and
thus the shape according to the sector. The value of t is
kept high in sectors 2&4 as they usually have low vessel
density (r-bends) compared to sector 1&3. A closed-form 2D
spline curve is obtained by considering, sequentially a subset
of r-bends. Figure 7(a) shows the interpolated cup boundary
passing through the r-bends and Fig. 7(b) shows final obtained
boundaries for a sample OD region.

IV. EXPERIMENT AND RESULTS

A. Dataset

The proposed method was tested on a dataset of retinal
images collected from an ongoing pilot study in collaboration
with a local eye hospital. The dataset has 33 normal and
105 glaucomatous (total of 138) images. All images were
taken under a fixed protocol with 30- degree field of view,
centered on the OD and of dimension 2896×1944 pixels. For
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Fig. 8. OD segmentation results. First column: original image; Second column: initialised contour; Third column: GVF results; Fourth column: C-V model
results; Fifth column: proposed method results. Green colour indicates boundary marked by an expert and white colour indicates obtained boundary by a
method. The last two rows show representative examples of high atrophy condition.

each image, ground truth was collected from three glaucoma
experts, referred to as Expert-1, Expert-2 and Expert-3 with
experience of 3, 5 and 20 years, respectively. To compensate
for inter-observer marking variations, we also derived an
average OD boundary for each image by averaging boundaries
obtained from three experts. This average boundary will be
referred to as Expert-A. The evaluation of the algorithm has
been carried out against three experts individually and also
against average expert marking.

B. Evaluation Measures

For OD segmentation, different comparisons have also been
made with two known active contour models: a) gradient
vector flow (GVF) [32], and b) C-V model [41]. In order
to assess the strength of individual active contour models,
curve initialisation and pre-processing are kept same for each
model. Similarly, for cup segmentation, the performance of
the proposed method is compared against two commonly used
approaches: a) Thresholding [41], and b) Ellipse fitting [25].

A common quantitative analysis is performed to assess over-
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all performance of both OD and cup segmentation methods.
This evaluation is based on the similarity in the a) detected
area and in the b) detected boundary against each individual
expert and average expert marking.

To assess the area overlap between computed region and
ground truth, the pixel-wise precision and recall values are
computed. These are defined as:

Precision =
tp

tp + fp
Recall =

tp

tp + fn

where tp is the number of true positive, fp is the number
of false positive and fn is the number of false negative pixels.
To better appreciate results, we compute a single performance
measure called traditional F-score (F) that is the harmonic
mean of precision and recall. It is defined as:

F = 2
Precision . Recall

Precision + Recall

This is also known as the F1 score, because recall and preci-
sion are evenly weighted. The value of F-score lies between
0-1 and for an accurate method, F-score value should be high.

A boundary-based evaluation was done by measuring the
distance between two closed boundary curves. This helps
assess the accuracy of boundary localisation. Let Cg be the
boundary curve marked by the expert and C o be the curve
obtained by a method. The distance (D) between two curves
is defined as (in pixels):

D =
1
n

θn∑
θ=1

√
(dθ

g)2 − (dθ
o)2

where, dθ
g and dθ

o are the distance from centroid of curve Cg to
points on Cg and Co, respectively in the direction of θ and n is
the total number of angular samples. The distance between the
computed boundary and ground truth should ideally be close
to zero.

The area and contour information were also used to compute
two standard disk parameters used in glaucoma detection.
These are the ratio of cup-disk: a) vertical diameters and areas.
This was computed for the proposed system and compared
against three experts and average expert marking.

C. Results

1) OD segmentation: Figure 8 shows sample test images
and results obtained by three different active contour models
(in the last three columns). The radius r defined for the
function κ is fixed at 40 pixels for all the reported experiments.
The second column illustrates the initialised contour obtained
by the scheme mentioned in section II-C. The first row presents
an example of an irregularly shaped OD with high gradient
variations near the initialised contour. The GVF model fails to
capture the entire OD region due to local gradient minima. The
C-V model is able to handle local gradient variations however
low bright regions get excluded due to a subtle difference
present between average intensity of the detected foreground
and background regions. The proposed method performs better
and captures the boundary except where the boundary regions
are occluded by thick blood vessels. This situation mainly

Fig. 9. Evaluation against three experts and expert-A. White contour:
computed result; other colours: expert marking.

arises due to the pre-processing carried out to suppress the
vessel pixels. The vessel pixels at the boundary are usually
get interpolated by the background pixels (outside OD region)
therefore considered background by the proposed method.
The second row presents an example of fuzzy OD boundary
where the proposed method better captures the OD boundary
compared to other methods. The third and fourth rows show
two successful segmentation results on two challenging and
high atrophy cases. The fifth row shows an example where
GVF result has better overlap with localisation compared
to other two models. This is mainly due to the gradient
information in some regions being a stronger cue than multi-
features. However, it can be seen that information integration
over multiple feature plane helps in obtaining smooth OD
boundary.

Next, we present a detailed look at one of the results
(in Figure 9) to illustrate the inter-observer variability (sub-
jectivity) present in the expert marking and the need for
deriving an average boundary (Expert-A). This example has
a good definition of OD boundary and it is carefully selected
to demonstrate subjectivity, a well known aspect in medical
image analysis on a well defined case. This subjectivity is
mainly due to an expert’s level of clinical experience and partly
due to their comfort level with the marking tool. The obtained
contour by the proposed method has better consensus with the
average marking compared to individual expert markings.

In order to assess the overall performance on the dataset, the
computed average F-score and boundary distance figures are
given in Table I-A. From this table, it can be observed that
the proposed method has the highest performance as it has
the highest F-score and minimum distance between derived
boundary and the averaged boundary. This table presents the
overall performance and does not illustrate the difference in
performance on difficult cases. The differential performance on
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TABLE I
A) AVERAGE F-SCORE, AND B) AVERAGE BOUNDARY DISTANCE COMPUTED IN RADIAL DIRECTION ON THE ENTIRE DATASET.

A: F-Score B: Boundary Distance (in pixels)

OD Segmentation Cup Segmentation OD Segmentation Cup Segmentation

GVF CV model Ours Threshold Ellipse r-bends GVF CV model Ours Threshold Ellipse r-bends

Fitting Fitting

Expert-1 0.90 0.95 0.96 0.66 0.67 0.80 33.2 14.8 12.9 45.5 44.6 27.7

Expert-2 0.88 0.94 0.95 0.65 0.67 0.83 35.3 15.6 14.2 48.1 46.0 24.7

Expert-3 0.91 0.96 0.97 0.71 0.72 0.81 30.1 13.5 10.8 36.1 35.2 24.9

Expert-A 0.90 0.96 0.97 0.68 0.69 0.84 31.2 13.1 11.1 42.4 40.6 23.2

Fig. 10. Cup Segmentation Results. First column: original image; Second column: Expert-A; Third column: Threshold-based method [41]; Fourth column:
ellipse Fitting-based [25]; Fifth column: proposed method results.

a subset of 8 difficult images (see Fig. 11 for sample images)
having slowly varying OD boundaries or atrophy regions
is reported in Table II. The figures here clearly reflect the
limitations of C-V model. The GVF performs is able to avoid
over segmentation due to its sensitivity to the small gradient
changes. To examine the over/under segmentation of these 3
methods, we computed the average signed boundary distance
on these 8 difficult images (refer to Table III). The positive
values obtained by GVF model indicate under-segmentation
results whereas C-V model gives over-segmentation results.
Hence, based on these evaluations, we conclude that the
presented model achieves better and consistent segmentation
compared to the GVF and C-V models.

The selection of radius parameter r, which defines the local
image domain around a point of interest, is important. For

example, a small radius will increase the model’s sensitivity
to small gradients within the local image domain and lead to
a behaviour similar to GVF model. Whereas, a large r will
decrease the sensitivity to small gradients and result in the
model behaving similar to the C-V model. Based on the high
image resolution and typical scale of OD boundaries in the
dataset, r = 40 was found to give the best performance. Next,
we present the cup segmentation results.

2) Cup segmentation: Sample test images and results ob-
tained with the proposed r-bend based scheme are shown in
Fig. 10. For comparison, the segmentation results obtained by
two other methods:i) thresholding-based and ii) ellipse fitting-
based, are also shown. Overall, the proposed characterisation
for the cup region establishes its potential with a significant
improvement in the segmentation results when compared to
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TABLE II
A) AVERAGE F-SCORE, AND B) AVERAGE BOUNDARY DISTANCE

COMPUTED IN RADIAL DIRECTION ON 8 DIFFICULT IMAGES.

A: F-Score B: Boundary Distance
(in pixels)

GVF CV model Ours GVF CV model Ours

Expert-1 0.91 0.76 0.93 14.99 42.13 12.30
Expert-2 0.91 0.78 0.94 16.18 39.13 11.43
Expert-3 0.92 0.76 0.93 13.37 40.17 12.02
Expert-A 0.91 0.78 0.94 14.84 39.43 11.92

TABLE III
AVERAGE SIGNED BOUNDARY DISTANCE (dθ

g − dθ
o) ON 8 DIFFICULT

IMAGES.

GVF C-V model Ours
mean std mean std mean std

Expert-1 7.38 10.14 -19.85 25.70 -2.02 12.90
Expert-2 11.61 8.86 -18.19 22.72 2.34 11.32
Expert-3 5.26 8.62 -21.66 25.22 -4.08 12.35
Expert-A 8.77 8.78 -19.30 26.00 -0.44 12.09

the other two methods.
A closer look at the results reveals that the segmentation

accuracy is higher at the detected r-bends than in locations
which do not have vessel bends. This can be more clearly
seen in the last row. Here, better segmentation is achieved
in the dense vessel region (the left/nasal side) compared to
the right/temporal side. To explain this further, we show the
detected cup boundary against three experts on a sample image
(overlaid on segmented OD region) in Fig. 12. It can be seen
that the cup boundary at r-bends is closer to the expert marked
boundaries (fig. 12(a-2)), whereas in regions where they are
absent, the interpolated result is unable to match the boundary
marked by the experts. However, a fair degree of disagreement
between experts at no bend region attests to the complexity of
the problem. We also observed some challenging situations
where our detected r-bends are not considered relevant by
experts. For instance, in fig. 12(a-1) boundaries marked by
experts are away from the detected r-bends though there was
no 2D clue present to support their markings.

Table I-B presents the quantitative assessment of the cup

Fig. 11. Sample difficult images.

Fig. 12. Detected cup boundary.

segmentation results using F-score and distance of derived
boundary to ground truth. The obtained results shows that pro-
posed method gives significant improvement in performance
in both F-score and boundary-based measures compared to
other two methods. Overall, the proposed cup segmentation
method performs well against expert-A. This improvement in
the performance justifies the role of proposed characterisation
for the cup.

3) Parameter estimation for glaucoma assessment: Glau-
coma assessment is based on the cup disk diameter ratio
(CDR), with the diameter measured in the vertical direction.
We assess our proposed system by computing this parameter
and one other parameter which is the ratio of cup and disk
areas. The area ratio is selected to assess the overall seg-
mentation accuracy achieved in all directions unlike the CDR
which reflects accuracy only in vertical direction. Accuracy
in estimating area ratio parameter indicates suitability of
the proposed segmentation methods in deriving other disk
parameters. For instance, an alternate glaucoma assessment
scheme [26] takes into account of the neuroretinal rim region
to quantify the focal cupping. This requires an accurately
segmented disk and cup.

Both CDR and area ratios are computed and assessed
against ground truth which comprises of three experts and
their average marking. Figure 13 shows parameter values
obtained from the ground truth and from the proposed system
on a sample image. The estimated value of the CDR is
considerably good notwithstanding the disagreement between
experts. Whereas, the obtained value of area ratio indicates a
case of cup over-segmentation. For an overall assessment, the
mean μ and standard deviation σ of the error in estimating
both parameters for 33 normal and 105 glaucomatous images
are computed and reported in Table. IV. The figures indicate
that the average estimation error μ, σ for both parameters is
much smaller in glaucomatous images compared to normal
images over all four ground truths. This indicates high sen-
sitivity in glaucoma detection by the proposed method. For
comparison, we consider the inter-observer variability. The
CDR estimation error for expert-2 against expert-1, taken as
ground truth, yields the following results: the mean/standard
deviation of error for CDR are 0.10/0.08 for normal case and
0.08/0.05 for glaucoma case. The corresponding figures for
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Fig. 13. Estimated CDR against ground truth.

TABLE IV
ESTIMATION ERROR IN A) CUP-TO-DISK AREA AND B) VERTICAL DIAMETER RATIO

A: Cup-to-Disk Vertical Diameter Ratio B: Cup-to-Disk Area Ratio

Expert-1 Expert-2 Expert-3 Expert-A Expert-1 Expert-2 Expert-3 Expert-A

Category/No. μ σ μ σ μ σ μ σ μ σ μ σ μ σ μ σ

Normal/33 0.26 0.15 0.18 0.11 0.21 0.11 0.21 0.13 0.33 0.20 0.25 0.15 0.29 0.17 0.28 0.17

Glaucoma/105 0.09 0.08 0.10 0.08 0.09 0.08 0.09 0.08 0.12 0.10 0.12 0.10 0.12 0.11 0.10 0.09

Total/138 0.13 0.13 0.12 0.09 0.12 0.10 0.12 0.11 0.17 0.16 0.15 0.13 0.16 0.14 0.15 0.14

the area ratio are as follows: 0.11/0.10 for normal case and
0.11/0.08 for glaucoma case. These results indicate that the
sensitivity of proposed method in estimating both parameters
on glaucomatous images is within the range of inter-observer
variability found between experts.

To sum up, we have presented qualitative and quantitative
results of assessment of the proposed segmentation methods
which includes a comparison against some standard existing
schemes. There are a few insights which can be drawn
from our experiment results. With respect to the glaucoma
assessment via CDR or areas ratio, the proposed method is
more accurate in estimating CDR as it yields a smaller average
error against three experts and their average, as seen from the
last row of the Table IV. This indicates higher segmentation
accuracy in vertical direction for both OD and cup. The source
of higher error in the estimation of area ratio is due to the
inaccuracy of cup segmentation method particularly in nasal
and temporal side where no 2D clue such as r-bends are
found. In such regions, due to the loss of depth information in
monocular images, a good degree of disagreement can also be
seen between experts as explained in Section IV-C2. Moreover,
the tendency for disagreement between experts was found to be
more in the case of normal rather than glaucomatous images.
It is noteworthy that the error in the estimation of CDR and
area ratio is consistently small and similar across experts for
glaucomatous images which indicates high consensus between
experts in OD and cup boundaries compared to normal images.

V. CONCLUSION

In this paper, we presented a solution for glaucoma assess-
ment which allows derivation of various geometric parameters
of the OD. This is in contrast to earlier approaches which
have largely focused on the estimation of CDR which varies
considerably within normals. It is also well recognised that
there is significant intra and inter observer error in manual

assessment with this parameter [26]. Alternative OD parame-
ters have been considered important to indicate glaucomatous
progression and staging based on the configurations of optic
cup and neuroretinal rim [26] etc. The presented work enables
more comprehensive evaluation of the OD and performing
glaucoma detection using multiple disk parameters.

The presented solution for glaucoma assessment was in
the form of two segmentation methods for OD and cup.
A novel, active contour model is presented to get robust
OD segmentation. This has been achieved by enhancing the
C-V model by including image information at the support
domain around each contour point. An attractive aspect of the
extension is the strengthening of region-based active contour
model by the integration of information from multiple image
feature channels. The obtained results show that our method
captures OD boundary in a unified manner for both normal
and challenging cases without imposing any shape constraint
on the segmentation result, unlike the earlier methods. Since
the proposed enhancement of the C-V model is general, its
scope is not limited to OD boundary detection but is widely
applicable to other segmentation applications, especially in the
medical imaging domain. However, this model is computa-
tionally more intensive (depending on the value of r) than the
C-V model since local image statistics over multiple feature
planes is utilised. A novel cup segmentation method using
r-bends information is also presented. Trench-based vessel
modeling and a region of support-based bend detection that
have been employed to build robustness to varying thickness
of the vessels. The final cup boundary is obtained using local
spline interpolation on the detected r-bends.

In summary, both segmentation methods have been ex-
tensively evaluated on a dataset of size 138 images, with
associated ground truth from 3 experts and compared against
existing approaches. In cup segmentation, it is observed that
boundary estimation errors are mostly in regions with no
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depth cues which is consistent with the high inter-observer
variability in these regions. This signals the ambiguity in
2D information and the importance of 3D information in
cup segmentation which will be investigated in our future
work. Overall, the obtained results of the proposed method
for glaucoma assessment, via OD parametrisation, establishes
the potential for an effective solution for glaucoma screening.

APPENDIX A

The Heaviside function H in Eq. (5) is approximated by a
smooth function Hε defined by

Hε(x) =
1
2

[
1 +

2
π

arctan
(x

ε

)]
(10)

The derivative of Hε is the following smooth function

δε(x) = H ‘
ε(x) =

1
π

ε

ε2 + x2
(11)

The approximation of H , δ by Hε, δε respectively, in Eq. (5)
and Eq. (8) gives an approximated form of energy functional
given in Eq. (9).

Fε(h+, h−, φ) = Eε(h+, h−, φ) + α ξ(φ) + β ζε(φ); (12)

The value for ε is chosen 1 for a good approximation [44].
This energy functional is minimised to find the OD boundary.

GRADIENT DESCENT FLOW: The gradient descent method
is used to minimise the approximated energy functional. For
a fixed level set function φ, functional Eq.(12) is minimised
w.r.t the functions h+

i and h−
i for i = 1, 2, . . . , d. We obtain

h+
i =

κ(x, y) ∗ [Hε(φ(y)) Ii(y)]
κ(x, y) ∗ [Hε(φ(y))]

(13)

h−
i =

κ(x, y) ∗ [(1 − Hε(φ(y))) Ii(y)]
κ(x, y) ∗ [1 − Hε(φ(y))]

(14)

Keeping h+
i and h−

i fixed and minimising the energy
functional Eq.(12) w.r.t to φ, the obtained gradient vector flow
is:

∂φ

∂t
= −δε(φ)(e+ − e−) + αδε(φ)div

( ∇φ

|∇φ|
)

(15)

+β

(
∇2φ − div

( ∇φ

|∇φ|
))

where δε is the smooth Dirac function given in Eq.(11) and
e+ and e− are the functions below:

e+(x) =
1
d

d∑
i=1

λ+
i

∫
Ωy

κ(x, y) |Ii(y) − h+
i |2dy

and

e−(x) =
1
d

d∑
i=1

λ−i

∫
Ωy

κ(x, y) |Ii(y) − h−i |2dy

where h+
i and h−i are given by Eq.(13) and Eq.(14), respec-

tively.
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