
Fast GPU Algorithms for Graph Connectivity

by

Kishore Kothapalli, J. Soman, P J Narayanan

in

Workshop on Large Sacle Parallel Processing
(LSPP)

Report No: IIIT/TR/2010/27

Centre for Security, Theory and Algorithms
International Institute of Information Technology

Hyderabad - 500 032, INDIA
April 2010

A Fast GPU Algorithm for Graph Connectivity

Jyothish Soman, Kothapalli Kishore, and P J Narayanan

IIIT-Hyderabad

Gachibowli, Hyderabad, Andhra Pradesh

India-500032

Email: {jyothish@students., kkishore@, pjn@}iiit.ac.in

Abstract—Graphics processing units provide a large compu-
tational power at a very low price which position them as an
ubiquitous accelerator. General purpose programming on the
graphics processing units (GPGPU) is best suited for regular
data parallel algorithms. They are not directly amenable for
algorithms which have irregular data access patterns such
as list ranking, and finding the connected components of a
graph, and the like. In this work, we present a GPU-optimized
implementation for finding the connected components of a
given graph. Our implementation tries to minimize the impact
of irregularity, both at the data level and functional level.

Our implementation achieves a speed up of 9 to 12 times
over the best sequential CPU implementation. For instance, our
implementation finds connected components of a graph of 10
million nodes and 60 million edges in about 500 milliseconds
on a GPU, given a random edge list. We also draw interesting
observations on why PRAM algorithms, such as the Shiloach-
Vishkin algorithm may not be a good fit for the GPU and how
they should be modified.

Keywords-GPU ; Connected Components; Irregular algo-
rithms; GPGPU;

I. INTRODUCTION

The advent of General Purpose Computing on the GPU,

also called as GPGPU, has placed GPUs as a viable general

purpose co-processor. The architecture of GPUs fits the data

parallel computing model best where a common processing

kernel acts on a large data set. Several general purpose data

parallel applications [5] and higher-order primitives such as

parallel prefix sum (scan), reduction, and sorting [8], [12],

[23] have been developed on the GPU in recent years. From

all these applications, it can be observed that GPUs are more

suited for applications that have a high arithmetic intensity

and regular data access patterns. However, there are several

important classes of applications which have either a low

arithmetic intensity, or irregular data access patterns, or both.

Examples include list ranking, an important primitive for

parallel computing [21], histogram generation, and several

graph algorithms [11], [26], [25]. The suitability of GPUs

for such applications is still a subject of study. Very recently,

the list ranking problem on GPUs is addressed in [21] where

a speed up of 10 is reported with respect to the CPU for a

list of 64 million nodes.

Graphs are an important data structure in Computer

Science because of their ability to model several problems.

Some of the fundamental graph problems are graph traver-

sals, graph connectivity, and finding a spanning tree of a

given graph.

In this paper, we study the fundamental graph problem

of finding connected components of a graph on the GPU.

It finds application in several other graph problems such as

bi-connected components, ear decomposition, and the like.

Our implementation achieves a speed-up of 9-12 over the

best sequential CPU implementation and are highly scalable.

Our work can thus lead to efficient implementations of other

important graph algorithms on GPUs.

A. Related Work

There have been several PRAM algorithms for the graph

connected components problem. Hirschberg et al. [13], [14]

discuss a connected components algorithm that works in

O(log2 n) time using O(n2) operations. However, the input

representation has to be in the adjacency matrix format,

which is a limitation for large sparse graphs. For sparse

graphs, Shiloach and Vishkin [24] presented an algorithm

that runs in O(log n) time using O((m+n) log n) operations

on an arbitrary CRCW PRAM model. The input for this

algorithm can be in the form of an arbitrary edge list. A

similar algorithm is presented by Awerbuch and Shiloach

in [1]. However, it should be noted that the PRAM model

is a purely algorithmic model and ignores several factors

such as the memory hierarchy, communication latency and

scheduling, among others. Hence, PRAM algorithms may

not immediately fit novel architectures such as the GPU.

In [10], the authors presented a wide range of op-

timizations of popular PRAM algorithms for connected

components of a graph along with empirical results on a

Connection Machine 2 and a Cray YMP/C90. Their work

includes optimizations for the Shiloach-Vishkin algorithm

[24] and the Awerbuch-Shiloach algorithm [1]. Though

the architectures on which they reported empirical results

are dated, many algorithmic observations and inferences

presented are relevant to our work also. Another attempt

at implementing connectivity algorithms was by Hsu et al

[15]. Their method shows good speedups on graphs that can

be partitioned well. For random graphs, no major speedups

were reported.

Graph connectivity on symmetric multiprocessors (SMP)

is studied by Bader and Cong in [4]. Their idea is to

give each processor a stub spanning tree to which unvisited

nodes may be added iteratively. In a recent work, Harish

and Narayanan [11] have implemented a modified BFS-

style graph traversal on the GPU. Their implementation

works with a sorted edge list as the input. There have also

been other efforts to implement parallel BFS on different

architectures (cf. [22], [27], [9]).

II. THE SHILOACH-VISHKIN ALGORITHM

A common feature of all parallel algorithms for connected

components is to maintain a partition of the vertices of the

graph so that nodes in the same partition belong to the same

connected component. The partition is refined iteratively

and termination is achieved when no further refinement to

the partition is possible. (Initially, each node is in its own

connected component, and hence its own partition). The

partitions are also typically maintained as trees with the

root of the tree serving as a representative of that partition.

Different algorithms [14], [24], [1] differ in the processing

done during each iteration.

The Shiloach-Vishkin algorithm [24] involves iterative

grafting and pointer jumping operations. In each iteration, if

(u, v) is an edge in the graph, then, under certain condition,

the trees containing nodes u and v are combined to form a

single tree. This process is called grafting. Further, during

each iteration, pointer jumping is applied to reduce the

height of the resulting trees. The algorithm terminates when

all the trees in the forest are stars, and each node is

assigned to one star. In each iteration the following steps

are performed:

• Grafting trees: For each edge uv so that parents of u

and v are different, one node changes parent, if parent

of either u or v is the root of its tree and the parent of

the other node has a lower index than the former.

• Grafting star trees onto other trees: This is done

to reduce the depth of the resultant trees. The trees

are checked to ascertain whether they are stars or not

by allowing nodes which are at a depth of 2 or larger

with respect to the root of the tree to mark its parent

and the parent of its parents as members of non stars.

Thus all the nodes which are not part of a star will

be marked by this process. This step reduces the worst

case complexity of the algorithm.

• Single pointer jumping: One step of pointer jumping

is done to reduce the depth of the trees.

It is shown by Shiloach and Vishkin that this algorithm

runs in O(log n) time using O(m + n) operations. The

number of iterations required for an edge to be inactive is

large, hence increasing the memory bandwidth usage. This

is also relevant because reading an edge list is bandwidth

intensive. Figure 1 provides an illustration of the running of

the Shiloach and Vishkin algorithm.

III. GPU CONNECTED COMPONENTS ALGORITHM

Connected components is considered an irregular memory

access algorithm (irregular algorithm), which is not a good

fit for the GPU computational model which relies heavily

on regularity of memory access. The CUDA Programming

Guide[20] provides a detailed description of the effects of

irregular and regular memory access on GPU performance.

The focus of any algorithm designed for the GPU re-

lies on regular/coalesced memory accesses and increasing

computation, focusing on data movement in the shared

memory. The requirements for connected components and

GPU computational model are thus orthogonal to each other.

Thus mapping the connected components algorithm on to the

GPU is non trivial.

The work presented here tries to reduce irregular memory

access based on the guidelines of algorithms of [1], [24],

[10]. While designing the algorithm, the following principles

were considered:

• Removing atomic operations

• Reducing the overhead caused by the 64 bit reads for

the end points of the edges

• Allowing partial results from previous iterations to be

carried forward to reduce redundant computations

• Minimising the number of times an edge makes an

active contribution to the algorithm

We have focused on developing an algorithm that reduces

irregular memory accesses, and allows transfer of informa-

tion from one iteration to the next, hence streamlining the

algorithm.

The Shiloach-Vishkin algorithm as proposed [24] may

not be quite suitable on modern architectures such as the

GPU. One of the reasons for this is the excessive number of

irregular reads during the grafting and the pointer jumping

steps. An important point to be noted here is that the average

number of iterations till which an edge is active is large.

Also, if an edge has taken part in a grafting step once, it is

not necessary that it cannot participate in another iteration

of grafting. Hence, we require a method that requires an

edge to succesfully participate in grafting at-most once. The

number of reads of the full edgelist should be minimal, and

the pointer jumping step is further optimized. In this section,

we devise ways to handle the given constraints, thereby

improving the performance on the GPU.

Our adaptation follows three main steps: 1) Hooking 2)

Pointer Jumping 3) Graph Contraction. Hooking is the time

intensive operation in the algorithm. It tries to connect ele-

ments of the same component together. Pointer jumping tries

to find the root node for each component after the hooking

step. The fundamental building blocks of our algorithm are

as follows:

1) Hooking: Hooking is the process of selecting a vertex

as the parent of another. For each edge, if the two

ends lie in different components, it tries to connect

1,2 5,6 2,5 1,3 4,5 3,2 4,6

(a) Edge list

1

2

3 4

5

6

(b) Corresponding graph

1

2

3 6 4

5

(c) Each node attaches to another with a
lower index

(d) Complete pointer jumping

(e) Each tree behaves like a single node and the
above two steps are repeated

1

2 3

5

46

(f) Final tree

Figure 1. A simple example of the modified Shiloach Vishkin algorithm is
shown in the Figures. The base graph goes through the iterations as shown
in the Figures (c) through (f). The first graft (c), Pointer jumping (d), second
iteration follows the same method as shown in (e) and (f), where all the
nodes in the graph are connect to a single node

(a) Initial tree (b) Partial pointer jumping

(c) Complete pointer jumping

Figure 2. Effect of different degrees of pointer jumping

the root nodes of the two components. The orientation

of the connection is based upon the labels of the

indexes. The orientation is varied across iterations.

As the hooking process is randomized, the sensitivity

to vertex labels is reduced. We use the alternating

orientation hooking process as mentioned in HY1 of

[10]. In even iterations, the node with lower label

selects the node with higher label as its parent and

the reverse happens in odd iterations.

2) Multilevel pointer jumping: Instead of one step

of pointer jumping as originally proposed in the

Shiloach-Vishkin algorithm [24], we perform complete

pointer jumping. In complete pointer jumping, each

tree is reduced to a star in every iteration. Figure

2 illustrates the difference. We add that the HY1

algorithm of Greiner [10] also uses complete pointer

jumping.

Further, when we use complete pointer jumping, notice

that nodes in a tree are at only two levels: root node

and internal nodes or leaf nodes. Also, after a tree is

grafted onto another tree, only the root nodes in one

tree have to perform pointer jumping. This helps in

improving the performance on the GPU.

Though the number of iterations required remains

the same as Shiloach Vishkin [24] and Awerbuch

Shiloach [1], we observe that the number of read write

operations decrease significantly.

3) Graph contraction using edge hiding: Explicit graph

contraction requires large amount of data movement

across the global memory of the GPU, which is a

costly operation. The time taken by such a process

only increases the run time of the algorithm. Hence

an implicit method of hiding edges from the graph is

used. As edges are only active in the hooking stage,

edges which are known to be in the same component

are inactivated in the next stage of hooking.

The complete algorithm is presented in Algorithm 3. Our

algorithm can be seen as a modification of HY1 of [10] for

the GPU. The algorithm presented here runs in worst case

of O(log n) iterations, and O(log2 n) time, doing O((m +
n) log n) work on a PRAM model. The pointer jumping step

takes a total of O(n log n) of work, using O(log2 n) time.

Begin

Initialize Parent[i] = i;

while All edges are not marked do

for each edge (u, v)
if edge is unmarked and Parent[u] 6= Parent[v]

max=max{Parent[u], Parent[v]};

min=min{Parent[u], Parent[v]};

if iteration is even Parent[min] = max;

else Parent[max] = min;

else Mark edge (u, v);
end-for

end-while

Multilevel pointer jumping();

end.

Figure 3. Algorithm for Connected Components

IV. IMPLEMENTATION DETAILS

The implementation on the GPU for the algorithm given in

Figure 3 has scope for further implementation optimization,

which be describe in this section.

A. Input Representation

An edge list, seen as an arbitrarily ordered array of edges,

is a natural choice for implementing our algorithm. When

a connected components algorithm is used as a subroutine

for another graph problem, such as finding the bi-connected

components of a graph in parallel (cf. [16, Chapter 5]), an

algorithm that can work with a random edge list is im-

portant. Further, compared to other standard representations

such as adjacency lists, an edge list representation is not

any stronger. In the GPU context, however, an edge list

representation does not support information locality.

B. GPU Implementation

Each edge (u, v) is represented by a 3-triple

〈u, v,state〉. For an edge (u, v), the variable state

shows whether u and v belong to the same component or

not. Each edge is stored as a 64-bit integer. The state flag

is stored in a separate array. This is done so that state

information can be read in a fully coalesced manner. In the

hooking step, the edgelist needs to be read, for each half

warp the edges can be read in a single memory transaction.

Global memory bound GPU algorithms generally focus

on two features, we have managed them as given below:

• Reducing uncoalesced reads: In the pointer jumping

phase of the algorithm, we can identify which nodes

have to participate in this operation by distinguishing

between leaf nodes and internal nodes. See also Figure

2. This allows one to reduce the number of uncoalesced

reads by an early case distinction.

But the hooking stage does not support any functional

method which can be used to reduce uncoalesced reads.

Each iteration stores whether an edge was found to

connect vertices in the same component, if so it was

marked inactive, hence would not participate in future

iterations. This state information directs the algorithm

whether or not to perform a hooking operation involv-

ing the given edge. This state information can be read

by a thread block of 512 threads in a single transaction

of 64 bytes. Also in the first iteration of the algorithm,

nodes hook to their neighbours, rather than the parents

of the neighbours, this reduced irregular reads and

writes appreciably.

• Reducing thread divergence penalty: Thread seri-

alization is present in both the major components of

the algorithm, namely pointer jumping and hooking.

It is the second major bottleneck for performance. To

reduce the effect of thread divergence, work load was

increased on a single branch of the divergent branch.

The other branches were not required to do any other

operations. Thus the ratio of run time of the two

divergent threads is large. Hence thread serialization

penalty was minimized. Another factor to be noticed

is that, given two warps, each with different number

of divergent threads there was little difference in the

SIMD code running on the SMs for a kernel.

The algorithm presented here can be categorized as an

unordered algorithm [18]. Hence atomic operations are not

required in both hooking and pointer jumping, as random

execution is supported by the algorithm.

The relevant kernels in the connected component algo-

rithm are the the hooking kernel and the pointer jumping

kernels. Pointer jumping is divided into two kernels to assist

global synchronization. The number of threads per block is

kept at 512 to maximize the GPU utility. This configuration

is hardware specific and can be considered to be Tesla

S1070/C1060 specific.

A practical issue comes up in the first step of the multistep

pointer jumping, which requires multiple iterations. As all

threads cannot be active at the same time, the method

requires external synchronization. This can add an additional

overhead in terms of both algorithmic complexity as well as

runtime, as data needs to be loaded before each iteration

from the global memory of the device to the SMs. Thus

increasing work and time taken. But as our method only

requires nodes which are not connected to the root node

to jump in the next iteration, the current state information

of the nodes can be stored so that redundant reads do not

take place. As each thread block can retrieve relevant state

information in a small number of coalesced memory trans-

actions, the overhead added is hidden by the uncoalesced

reads/writes caused by pointer jumping. Also, as reading

the parent information only duplicates the effort in the

previous iteration, the algorithmic complexity is not changed

in practice.

V. EXPERIMENTAL ENVIRONMENT AND RESULTS

In this section, we report the results of our experiments.

The experiments were run on the following systems:

• CPU: An Intel Core i7 920, with 8 MB cache, 4

GB RAM and a 4.8 GT/s Quick path interface, with

maximum memory bandwidth of 25 GB/s.

• GPU: A Tesla C1060 which is one quarter of a Tesla

S1070 computing system with 4 GB memory and 102

GB/s memory bandwidth. It is attached to a Intel Core

i7 CPU, running CUDA Toolkit/SDK version 2.2. [20].

A. Experimental Datasets

To gain as many insights as possible into the efficacy

of our modifications to the Shiloach-Vishkin algorithm, we

conduced our experiments on four different data sets. These

four data sets are described below.

• Random graphs: We used random graphs from the

G(n,m) family generated using GTgraph generator

suite [3]. Random graphs serve to study the effect of

unstructured topology on the runtime of our algorithm.

• Synthetic social networks: Social networks are gaining

lot of research attention in recent years due to their

large application base. Hence, we studied our imple-

mentation on social networks focussing on the effect of

the presence of high degree nodes and clusters. These

instances are generated using the R-MAT generator [6],

an implementation of which is present in GTGraph.

• Real world instances: The above two datasets are

synthetically generated. Hence, we also considered real

world instances from the repository maintained by

Leskovec, which have also been used in [2],[17].

• k regular geometric graphs : Finally, to study the

effect of regular topology on the runtime of our al-

gorithm, we considered k-regular geometric graphs.

These graphs are constructed by choosing n nodes

over a two dimensional Cartesian space, and for each

node, its k nearest neighbors are chosen as neighbors.

The k nearest neighbors are found using the ANN:

Approximate Nearest Neighbors package [19]. In our

experiments, we used k = 6.

B. Experimental Results

We compare the performance of our implementation to

that of the best known sequential algorithm for the same

problem. In the case of connected components, a good

choice for the best known sequential algorithm is the depth

first search of a graph [7], [10]. A speedup of 9-12 compared

to a sequential (single-core implementation) implementation

of DFS is noted. Figure 4 shows a comparison of DFS with

our algorithm on social networks of size 1 million to 7

million and of degree 5. In Figure 4, the label DFS CPU

refers to a single-threaded implementation of DFS on an

Intel Core i7 CPU, and the label Connected GPU refers to

the implementation of our connected components algorithm

on one quarter of a Tesla GPU. Connected CPU shows an

8 threaded implementation, on an Intel i7 CPU, of the same

algorithm.

 10

 100

 1000

 10000

 1 2 3 4 5 6 7

m
il

li
se

co
n

d
s

Number of vertices in millions

DFS_CPU
Connected_GPU
Connected_CPU

Figure 4. Comparison of connected components on GPU versus DFS on
CPU, with constant degree of 5.

We now move to comparison of our implementation

for various instances of random matrices and scale-free

networks. We considered three different ways to compare

our implementations. For each of the graph classes we used,

we kept the average degree fixed and varied the number of

vertices. The results of this comparison are plotted in Figure

5. We also compared by keeping the number of vertices fixed

and varying the number of edges. The results are shown in

Figure 6. Finally, we kept the number of vertices fixed and

varied the number of edges. The results of this comparison

are show in Figure 7. In all these figures, the label DFS CPU

refers to the single-core implementation of DFS on a CPU.

The label Connected GPU refers to our implementation of

the connected components algorithm on the GPU. SV GPU

refers to Shiloach Vishkin Algorithm on the GPU[24]. It

can be noticed that the optimization carried out on the SV

algorithm are particularly useful.

Some observation about the plots in Figures 5–7 are given

below. In almost all cases our implementation achieves a

speed-up of about 10 compared to DFS CPU. The figures

 10

 100

 1000

 10000

 1 2 3 4 5 6 7

m
il

li
se

co
n

d
s

Number of vertices in millions

DFS_CPU
SV_GPU

Connected_GPU

 10

 100

 1000

 10000

 1 2 3 4 5 6 7

m
il

li
se

co
n

d
s

Number of vertices in millions

DFS_CPU
SV_GPU

Connected_GPU

(a) (b)

Figure 5. Connected Components with constant average degree of 5 with (a)R-MAT and (b) Random

 1

 10

 100

 1000

 2 4 6 8 10 12 14 16 18

m
il

li
se

co
n

d
s

Average degree

DFS_CPU
SV_GPU

Connected_GPU

 10

 100

 1000

 5 10 15 20 25 30

m
il

li
se

co
n

d
s

Average degree

DFS_CPU
SV_GPU

Connected_GPU

(a) (b)

Figure 6. Connected Components with constant number of vertices (1M) with (a)R-MAT and (b) Random

 10

 100

 1000

 10000

 1 2 3 4 5 6 7 8 9

m
il

li
se

co
n

d
s

Number of vertices in millions

DFS_CPU
SV_GPU

Connected_GPU

 10

 100

 1000

 10000

 2 4 6 8 10 12 14 16 18

m
il

li
se

co
n

d
s

Number of vertices in millions

DFS_CPU
SV_GPU

Connected_GPU

(a) (b)

Figure 7. Connected Components with constant number of edges 15M with (a)R-MAT and (b) Random

clearly show that the algorithm performs well in low diamter

graphs. Also in graphs with higher diameters, the number of

iterations was larger than low diameter graphs. The speedup

due to multilevel pointer jumping was more evident in such

graphs. A rough comparison is given in the Table I.

Number of Random Social 6-regular
vertices Graph Networks graphs

(in million) (ms) (ms) (ms)

1 17 13 22
2 38 28 51
3 60 50 79
4 91 55 120
5 120 80 159
6 145 88 186
7 165 98 218

Table I
COMPARISON OF OUR ALGORITHM ON THE GPU WITH DIFFERENT

FAMILY OF GRAPHS. THE AVERAGE DEGREE OF THE GRAPHS IS FIXED

AT 6 IN ALL CASES FOR THESE EXPERIMENTS.

To study the scalability of our algorithm, we considered

another set of experiments where large graphs are taken as

test cases. The results of these experiments are given in Table

II. It can be observed from Table II that even for a graph

of 10 million vertices and 100 million edges, our algorithm

can finish in less than a second. Though the results show

practicality of the solution, we are bottlenecked by limited

memory of a GPU system.

Number Time taken
of Edges in M in ms

20 211
30 293
40 342
50 412
60 468
80 596
100 745

Table II
PERFORMANCE OUR ALGORITHM ON A SORTED EDGE LIST FOR LARGE

RANDOM GRAPHS, NUMBER OF VERTICES 10 M

C. Real World Instances

In this section, we consider experiments on real-world

instances obtained from the repository maintained by Jure

Leskovec [2]. These instances have sizes that vary from

1 million vertices to 5 million vertices. We ran our GPU

connected components algorithm on these instances and the

results are shown in Table III.

VI. COMPARISON WITH EXISTING WORK

One of the ways to consider our work is to study the

ability of GPUs, which are ubiquitous and easily available,

to efficiently implement graph algorithms. Hence, we mainly

vertices, Run Time
Data set #edges

(in M) (in ms)

Live journal 4.8, 69 207
Wiki Talk 2.4, 5 12

Citation n/w 3.7, 16.5 127

Road Networks

California 2, 5.5 27
Pennsylvania 1.0, 3.0 15

Texas 1.4, 3.8 17

Table III
RUN TIME OF OUR ALGORITHM ON VARIOUS REAL-WORLD INSTANCES.

focused on comparing our run-time with respect to the best

known CPU implementation, that is DFS in this case.

However, one has to also consider the efficacy of our

implementation with respect to popular existing parallel

implementations for finding the connected components of

a graph. To this end, we make the following observations.

Bader and Cong’s SMP implementation [4] were on dated

systems. Hence a direct comparison is not possible. The

speedups they achieved over sequential is 4.5-5.5 with 8

processors. Theoretically, GPU thus provides a speedup of

2-3 over an 8 threaded Core i7.

Another widely accepted and popular parallel implemen-

tation is that of parallel Boost Graph Library [9]. Parallel

BGL is implemented on a cluster system. We do note signifi-

cant speedup of our implementation with respect to reported

results for parallel BGL on a 64 node Opteron cluster.

However, one cannot compare cluster based implementations

with that of co-processor based implementations, like GPUs.

For example, while a GPU based implementation is limited

by its available memory, cluster based implementations

can scale to very large instances. Also, the latency over

the interconnect network will be large for a cluster based

systems, which in the case of GPUs is very low.

There are a few related works on the GPU. The authors

of [11] implement a variation of BFS on the GPU. Our

implementations offer a reasonable speedup of about 4-

5 compared to their implementation. Moreover, their im-

plementation requires a sorted adjacency list based input

representation. Our method is less sensitive to the topology

of the graph.

To test the feasibility of computing connected compo-

nents on the GPU instead of the CPU, we implemented

an OpenMP based multithreaded implementation of our

method. The GPU implementation gave a speedup of 7-

8X. It should be noted that our method is focussed on

improvements for a random edge list format, hence little

cache based performance could be achieved for the CPU

implementation. Compared to a DFS implementation, our

CPU implementation achieved a speedup of around 1.2-1.5

X. Also, the time taken for format conversion from edge

list to adjacency list, required for DFS on the CPU is not

included in the timing for the CPU.

VII. CONCLUSION

We have presented here an algorithm that is practical

on the GPU, and gives good performance across input

types. With additional book keeping, we can also find a

spanning tree. Thus further applications such as bi-connected

components can be implemented using our method.

REFERENCES

[1] AWERBUCH, B., AND SHILOACH, Y. New connectivity and
msf algorithms for ultracomputer and pram. In ICPP (1983),
pp. 175–179.

[2] BACKSTROM, L., HUTTENLOCHER, D., KLEINBERG, J.,
AND LAN, X. Group formation in large social networks:
membership, growth, and evolution. In Proceedings of the
12th ACM SIGKDD international conference on Knowledge
discovery and data mining (2006), ACM, p. 54.

[3] BADER, D., AND MADDURI, K. GTgraph: A suite of
synthetic graph generators. url: http://wwwstatic. cc. gatech.
edu/kamesh.

[4] BADER, D. A., AND CONG, G. A fast, parallel spanning tree
algorithm for symmetric multiprocessors (smps). Journal of
Parallel and Distributed Computing 65, 9 (2005), 994–1006.

[5] BUCK, I. GPU Computing with NVIDIA CUDA. In
SIGGRAPH ’07: ACM SIGGRAPH 2007 courses, 2007.

[6] CHAKRABARTI, D., ZHAN, Y., AND FALOUTSOS, C. R-
MAT: A recursive model for graph mining. In SIAM Data
Mining (2004), vol. 6.

[7] CORMEN, T., LEISERSON, C., RIVEST, R., AND STEIN, C.
Introduction to algorithms, 1990.

[8] DOTSENKO, Y., GOVINDARAJU, N., SLOAN, P., BOYD, C.,
AND MANFERDELLI, J. Fast scan algorithms on graphics
processors. In In Proceedings of ICS (2008), pp. 205–213.

[9] GREGOR, D., AND LUMSDAINE, A. Lifting sequential graph
algorithms for distributed-memory parallel computation. In
Proceedings of the OOPSLA (2005), vol. 40, ACM New York,
NY, USA, pp. 423–437.

[10] GREINER, J. A comparison of parallel algorithms for con-
nected components. In Symposium on Parallel Algorithms
and Architectures (1994), Press, pp. 16–25.

[11] HARISH, P., AND NARAYANAN, P. J. Accelerating Large
Graph Algorithms on the GPU using CUDA. In Proc. of
HiPC (2007).

[12] HARRIS, M., OWENS, J., SENGUPTA, S., ZHANG, Y., AND

DAVIDSON, A. Cudpp: Cuda data parallel primitives library.
http://gpgpu.org/developer/cudpp., 2008.

[13] HIRSCHBERG, D. S. Parallel algorithms for the transitive
closure and the connected components problem. In Proc. of
the ACM STOC (1976), pp. 55–57.

[14] HIRSCHBERG, D. S., CHANDRA, A. K., AND SARWATE,
D. V. Computing connected components in parallel com-
puters. Communications of the ACM 22, 8 (1979), 461–464.

[15] HSU, T., RAMACHANDRAN, V., AND DEAN, N. Par-
allel implementation of algorithms for finding connected
components in graphs. Parallel algorithms: third DIMACS
implementation challenge, October 17-19, 1994, 20.

[16] JAJA, J. An Introduction to Parallel Algorithms. Addison
Wesley, 1992.

[17] LESKOVEC, J., KLEINBERG, J., AND FALOUTSOS, C.
Graphs over time: densification laws, shrinking diameters and
possible explanations. In Proceedings of ACM SIGKDD (New
York, NY, USA, 2005), ACM, pp. 177–187.

[18] MÉNDEZ-LOJO, M., NGUYEN, D., PROUNTZOS, D., SUI,
X., HASSAAN, M. A., KULKARNI, M., BURTSCHER, M.,
AND PINGALI, K. Structure-driven optimizations for amor-
phous data-parallel programs. In PPoPP ’10: Proceedings
of the 15th ACM SIGPLAN symposium on Principles and
practice of parallel computing (2010), ACM, pp. 3–14.

[19] MOUNT, D., AND ARYA, S. ANN: A library for approxi-
mate nearest neighbor searching. In CGC 2nd Annual Fall
Workshop on Computational Geometry (1997).

[20] NVIDIA, C. Cuda: Compute unified device architecture
programming guide. Technical report, NVIDIA, 2007.

[21] REHMAN, M. S., KOTHAPALLI, K., AND NARAYANAN, P. J.
Fast and Scalable List Ranking on the GPU. In In Proceedings
of ICS (2009), pp. 152–160.

[22] SCARPAZZA, D. P., VILLA, O., AND PETRINI, F. Efficient
breadth-first search on the cell/be processor. IEEE Trans-
actions on Parallel and Distributed Systems 19, 10 (2008),
1381–1395.

[23] SENGUPTA, S., HARRIS, M., ZHANG, Y., AND OWENS,
J. D. Scan primitives for gpu computing. In Proceedings
of the 22nd ACM SIGGRAPH/EUROGRAPHICS Symposium
on Graphics Hardware (2007), pp. 97–106.

[24] SHILOACH, Y., AND VISHKIN, U. An O(log n) parallel
connectivity algorithm. Journal of Algorithms 3, 1 (1982),
57–67.

[25] VINEET, V., HARISH, P. K., PATIDAR, S., AND

NARAYANAN, P. J. Fast minimum spanning tree for
large graphs on the gpu. In In Proc. of High Performance
Graphics (2009).

[26] VINEET, V., AND NARAYANAN, P. J. CUDA Cuts: Fast
Graph Cuts on the GPU. In Proceedings of the CVPR
Workshop on Visual Computer Vision on GPUs (2008).

[27] YOO, A., CHOW, E., HENDERSON, K., MCLENDON, W.,
HENDRICKSON, B., AND CATALYUREK, U. A scalable
distributed parallel breadth-first search algorithm on Blue-
Gene/L. In Proceedings of ICS (2005), IEEE Computer
Society, p. 25.

