
Towards More Effective Distance Functions for Word
Image Matching

Raman Jain
Centre for Visual Information Technology

IIIT-Hyderabad, India
ramanjain@students.iiit.ac.in

C. V. Jawahar
Centre for Visual Information Technology

IIIT-Hyderabad, India
jawahar@iiit.ac.in

ABSTRACT

Matching word images has many applications in document
recognition and retrieval systems. Dynamic Time Warping
(DTW) is popularly used to estimate the similarity between
word images. Word images are represented as sequences of
feature vectors, and the cost associated with dynamic pro-
gramming based alignment is considered as the dissimilarity
between them. However, such approaches are computation-
ally costly when compared to fixed length matching schemes.
In this paper, we explore systematic methods for identifying
appropriate distance metrics for a given database or lan-
guage. This is achieved by learning query specific distance
functions which can be computed online efficiently. We show
that a weighted Euclidean distance can outperform DTW for
matching word images. This class of distance functions are
also ideal for scalability and large scale matching. Our re-
sults are validated with mean Average Precision (mAP) on
a fully annotated data set of 160K word images. We then
show that the learnt distance functions can even be extended
to a new database to obtain accurate retrieval.

1. INTRODUCTION

Matching two word images by computing an appropriate
similarity measure, has many applications in document anal-
ysis systems [3, 18, 22]. This includes applications in ac-
cessing historic handwritten manuscripts [16, 21], searching
for relevant documents in a digital library of printed docu-
ments [3], holistic recognition [14] and enhancing OCR accu-
racies by post processing the classification results [11,19]. In
this paper we aim at learning effective similarity measures,
which are specific to word images. We limit our scope to
matching printed word images. Though our approaches are
demonstrated on English, our methods are language inde-
pendent.

Though words can be matched by comparing holistic fea-
tures [15], the popular approach for matching has been align-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAS ’10, June 9-11, 2010, Boston, MA, USA

Copyright 2010 ACM 978-1-60558-773-8/10/06 ...$10.00

ing sequences of feature vectors using Dynamic Time Warp-
ing (DTW) [17,20]. A sliding window (or a vertical strip) is
moved from left to right and features are computed for each
window. This results in a sequence of feature vectors. For
computing the distance between two such sequences, they
are first aligned using dynamic programming. Cost of align-
ment is treated as the distance between the two sequences.
To match sequences of length M and N , one needs to do
O(MN) operations. For retrieving from a large data set,
query has to be matched with every word in the database.
For large scale matching and retrieval, thus, this becomes
the bottleneck. Replacing DTW by Euclidean distance (pos-
sibly at the cost of accuracy) has been a step towards scal-
ability [13]. This can result in constant time (i.e., O(d))
retrieval.

Computing similarity based on a simple Euclidean distance
does not use the knowledge that the comparisons are made
between two word images. While computing the distance
between two feature vectors (whether they are made out of
sequences or holistic features), we need to note that the indi-
vidual features need not be uncorrelated. Most of the com-
parison techniques also do not use the fact that the words are
generated out of a language model. This could further im-
pose constraints on the possible feature vectors which could
be generated from words in a given language. In this paper,
we explore distance functions which can be learnt from ex-
amples. Our objective is to capitalize on the fact that not all
possible combination of characters are valid in a language,
and a distance function learnt from training examples can
actually benefit matching and retrieval on a test (unseen or
unannotated) data set. We validate our claims on annotated
and unannotated data sets presented in Section 2. Since we
have a reasonably large annotated corpus for comparison, we
use mean average precision (area under the precision-recall
curve) or mean precision for statistically validating the ap-
proach.

We start our experiments by comparing DTW and Euclidean
distance in Section 3. We observe that it is not reasonable
to conclude DTW is always superior to a fixed length rep-
resentation. This gives us hope for building efficient, at the
same time effective similarity measures. We then show how
a specific weighted Euclidean distance can perform superior
in a given setting (say when the set of possible queries are
known apriori). We design a query-specific classifier (QSC),
which is obtained by learning the weights (parameter asso-
ciated with the distance function) on a “training” data set



(Section 4). However, this method is restrictive. We then
extend QSC by systematically extrapolating the weights to
get new (or unseen) query’s weight. We demonstrate the
performance of our method on a large corpus of more than
five million words.

2. DATASETS AND EXPERIMENTAL SET-

TING

We first summarize the experimental framework we use through-
out the paper. We consider three different types of data sets
in English. They are aimed at quantitatively evaluating the
performance of the matching methods, as well as demon-
strating the generalization capabilities of learning schemes.
Data sets can be summarized as:

• Calibrated Data (CD): To study the effect of font
and size variations, we consider a calibrated data set of
word images. They are generated by rendering the text
and passing through a document degradation model [27].
Intensity of degradation is characterized using a scalar,
and is used for computing the probability of degrada-
tion for the boundary pixels. We consider two subsets
of this data set, CD1 and CD2. The set CD1 consists
of 1000 words in multiple fonts and sizes. All images
are equivalent to words typeset in 8pt to 15pt, and
scanned at 300 dpi. CD2 is similar to CD1 but has
higher amount of degradation.

• Real Annotated Data (RD): This data set consists
of a set of words with their ground truth (text) asso-
ciated to it. This data set is built out of 765 pages
from scanned books, publicly available on the web [1].
All the words in these pages are manually annotated
for conducting experiments and evaluating the perfor-
mance. There are a total of 162,188 word images in
this collection from four books which vary in fonts.

• Unannotated Data (UD): In addition to the com-
pletely annotated data sets mentioned above, we also
consider a data set of 5,870,486 words which come out
of scanned books. Since the data set is not ground
truth-ed, it can be used primarily to evaluate the pre-
cision for selected queries and not the recall.

Examples from these data sets are shown in Figure 2. The
examples demonstrate how the same word appears in all the
three different data sets. Note that the words in all the three
data sets are not the same. It depends on the content of the
books. However, they overlap. We use these datasets for
designing more effective similarity scores for the comparison
of word images. We use these similarity score for retrieving
similar word images. We evaluate the retrieval performance
with measures such as (i) Precision, (ii) Recall, (iii) F-Score,
(iv) AP, (v) mean of AP. Most of our results are presented
using mean of AP.

Precision is the ratio of number of relevant images to the
total number of images retrieved, for a particular query. It
measures how well a system discards irrelevant results while
retrieving. Recall is the ratio of number of relevant images
retrieved to the total number of relevant images present in

Figure 1: PR-curve on two different queries from
the RD dataset.

Figure 2: A comparison of words from three
databases. Words in first column are from CD1,
Words in second column are from RD and Words in
third column are from UD.

the database. It basically measures how well a system finds
what the user wants. By changing a matching threshold,
one can typically increase recall at the cost of precision. A
precision-recall(PR) curve plots how the variation in one af-
fects the other. FScore is the weighted harmonic mean of
precision and recall and measured in isolation. It combines
the precision and recall into one score. Average precision
(AP) measures the area under the precision-recall curve.
Average precision makes use of both recall and precision and
encourages the relevant results to appear at higher ranked
positions. Mean of the APs computed for multiple queries
gives us mean average precision (mAP) [25]. We plot the
precision recall graphs of two words (i.e., “even”and“think”)
in Figure 1. (These are computed in RD as discussed later).
It may be seen that the AP can be significantly different
for different words. The area under the curve for “even” is
0.502 and that for “think” is 0.928. Also note that, with a
given feature set, not all words are equally easy (or difficult)
to retrieve. A probable conclusion based on this is that the
matching scheme (or distance measure) we use need not be
the same for all words.



Measure
DTW (w) Euclidean (d)

w=1 w=2 w=3 w=4 w=5 d=80 d=90 d=100 d=110 d=120
Precision 0.653 0.512 0.432 0.320 0.271 0.594 0.596 0.596 0.598 0.599
Recall 0.805 0.793 0.787 0.731 0.731 0.793 0.793 0.793 0.792 0.787
FScore 0.721 0.622 0.558 0.445 0.395 0.679 0.680 0.680 0.681 0.680
AP 0.853 0.623 0.434 0.374 0.152 0.762 0.760 0.759 0.764 0.765

Table 1: Baseline results on comparing DTW and Euclidean distance on 300 queries from CD dataset.

2.1 Feature Extraction and Matching

We match and retrieve similar word images by comparing
their feature descriptors. For the comparison purpose, we
extract a set of profile features, which were also used in many
of the previous works [12,18,20]. Thus word images are rep-
resented as a sequence of feature vectors. Note that the ob-
jective of this work is not to propose any new set of features,
and we refrain from attempting that here. The features we
use are (i) upper word profile (ii) lower word profile (iii) pro-
jection profile (iv) transition (black-white) profile. Feature
extraction is summarized pictorially in Figure 3. More de-
tails can be seen in the previous works [12,18,20]. For each
of the “query”word images, we compute the nearest K word
images and compute the performance measures mentioned
above.

All these profiles/features are computed on non-overlapping
sliding windows (or a vertical strip) of w pixels. Prior to the
feature computation, all blank vertical strips are removed.
Since words can be of different length, the feature vector
sequences can be of different length. This makes DTW a
natural choice for comparison (and computing similarity).
However, Euclidean and similar distances (LP norms defined
over a vector space) have many advantages in scalability
and learning distance functions. We compute a fixed length
representation (say of dimensions d) by varying w for each
image.

Given a query image, we compute the distance of the query
image from all the database images and find the nearest K

matches. When query is text, an image is rendered first and
the feature vectors are computed corresponding to the query
word. Similar query processing was used in [3,12]

Figure 3: A pictorial representation of how profiles
are computed and represented as a feature sequence.

3. DTW VS FIXED LENGTH MATCHING

We first compare DTW and Euclidean distance based match-
ing schemes. For the DTW, we vary w and create feature se-

quences of varying length. For the Euclidean distance based
matching, we vary the dimensionality — d. We conduct our
experimental study on CD1 and CD2 together. Results of
this experiment are presented in Table 1. We compare the
performance of DTW and Euclidean distance while comput-
ing the nearest K neighbors. For these experiments, K was
set as 50. We observed that DTW gives superior results to
Euclidean distance in all these cases. Possibly similar ob-
servations were also shown in some of the previous works.
(However, this is not always true as we show later in this
section.) The success of this had been attributed to the fact
that a dynamic warping can align well under the font/style
variation of characters (either in print or in handwriting)
and thus provide a better estimate of the dissimilarity.

However, it is reasonable to see that, when the number of
fonts increases, both DTW and Euclidean distance based
matching result in poorer performance. For example, if the
mAP in a data set of 10 fonts in 0.829, the mAP in a data
set of 50 fonts is only 0.453. We use our calibrated data sets
for this study. This can be primarily attributed to the fea-
tures/descriptors we use. However, this could be a general
concern in many document image analysis tasks. (Interested
readers may also see how character recognition can be poor
when the number of fonts increase [6]). Figure 4 summarizes
the effect of number of fonts on the retrieval.

Figure 4: This graph shows how mAP changes when
number of fonts increases.

We further conduct experiments to closely compare the per-
formance of DTW and Euclidean distance based matching
in a wider problem setting. When the data is degraded,
DTW is getting affected more severely than Euclidean dis-
tance. The results can be seen in Table 2. This can be
partly attributed to the features and partly to the matching
scheme. Figure 5 shows that the observation is consistent.



i.e., with increase in degradation, DTW loses its advantages
over Euclidean in the performance. In the rest of the pa-
per, we now investigate, how a fixed length representation
can be matched better by learning an appropriate distance
function. This is primarily motivated by the need to build a
scalable, efficient and robust document image retrieval sys-
tem.

Dataset DTW Euclidean

CD2 0.421 0.471
RD 0.778 0.817

Table 2: Results(mAP) on Degraded dataset CD2
and RD with 300 queries in each.

Figure 5: Performance comparison of DTW and Eu-
clidean distance based matching with degradations
in data

DTW is computationally intensive compared to Euclidean
distance as shown in Figure 6. For example, DTW takes
approximately 16 secs while Euclidean distance takes only
0.3 secs to find the K nearest match in a database of 162,188
words. To match sequences of length M and N , DTW needs
to do O(MN) operations while using Euclidean distance,
one needs to do O(d) operations. For the comparison, we
set the dimensionality for the Euclidean distance matching
as the average of the sequence lengths in the database (in our
case 110) and the algorithm have been implemented in C++

Figure 6: This graph compares average time taken
by two different methods, DTW and Euclidean Dis-
tance, per query on increasing database size.

and run on a 2Ghz Dual core machine running Linux. It is
well known that the fixed length distance based matching
scheme is scalable to large collection. DTW based matching
is thus not suitable for such an indexing. There are many
useful data structures and indexing schemes proposed in lit-
erature to address this problem. Interested readers may find
specific details at [5,8]

4. RETRIEVALBYLEARNINGQUERYSPE-

CIFIC CLASSIFIER

We are interested in the following problem: given a query
word image, we would like to retrieve all similar word im-
ages from a database of word images, in a ranked manner.
This retrieval problem can be understood as the design of
an appropriate classifier for a given query. If one considers
a Nearest neighbor classifier, then the retrieved set is the
ranked list of word images sorted in the increasing order of
distance d(fi,q), where q is the query word image and fis
are the database images. In the simplest form, this could

be an Euclidean distance
q

P

j
(f j

i − qj)2. Where qj is the

jth feature of the feature vector representation. However,
this may not be the ideal manner in which we can design
the classifier. This is because: (i) this does not consider the
information that fi is in fact a fixed-length-representation
built out of a sequence representation (ii) there exists a la-
tent language model which generates these sequences and
assign different probabilities for generation of words (iii) the
classifier (or distance function) used to rank the word images
could be different for each query. This necessitates explor-
ing for a query specific classification scheme. Mahalanobis
distance could have taken care of some of the aspects related
to correlation of feature vectors.

We use a weighted Euclidean distance for matching word
images and retrieving relevant documents

d
′(fi,q,w) =

s

X

j

wj(f j

i − qj)2

where w = [wj ]T is a weight vector. We learn w from ex-
amples. Such learning per query has been used in relevant
feedback literature for retrieving documents [23] as well as
images [2, 7, 9]. In general, in these two cases, the weight
vector is learnt using the user feedback (User labels each of
the retrieved results as positive or negative. Thus the user
refines the retrieved results by continuous dialogue). Dur-
ing retrieval, in each of the iterations t, weight is typically
refined (with any of the below equations) as:

w
j(t + 1)← w

j(t) +
1

σ
j
+

(1)

w
j(t + 1)← w

j(t) +
σ

j
−

σ
j
+

(2)

where σ
j
+ is the standard deviation of the jth feature of

positive examples. Similarly σ
j
−

is for negative examples.
In the first case, weights are learnt only from the positive
examples, while in the second, weights get refined based on
positive and negative examples. Both these (and variants of



No learning Learning with + examples Learning with + and - examples

Figure 7: Example of images retrieved with and without learning, shown according to the rank in row major

these) are popular in relevant feedback literature [28]. How-
ever, our setting is some what different from the relevance
feedback methods. We are not looking for users to interac-
tively retrieve word images. We are interested in learning
a query specific classification/ranking scheme from a set of
training examples, and directly use them on the test or new
data.

Learning using Equation 2 is mildly different from a normal
setting in our case. We partition database images as posi-
tive, negative and neutral examples. Positive examples are
the true exemplars. Neutral ones are the examples, which
share characters at certain positions. For example, for a
query word of “search”, the word “series” is considered as
neutral, since both of them share “se”. Since we are using
fixed length representations built out of profile features, this
minimizes contradictions. Without introduction of a neutral
class, learning becomes difficult. All examples which are nei-
ther positive nor neutral are negative examples.

4.1 Retrieval with learnt distance functions

Our retrieval approach learns the query specific distance
function for optimizing the rank. The iterative method de-
scribed in the previous section can be done in closed form
for a completely annotated data set. This also removes the
necessity of having a user to refine the results. Learning
distance functions from labeled examples have received con-
siderable attention in the recent past [4,26].

Table 3 presents a quantitative comparison of performance
enhancement with learning. We can see that learning with
Equations 1 or 2 are almost similar. Figure 7 shows quali-
tative examples of the retrieval with and without learning.
It can be seen that visually similar looking images are re-
trieved with no learning, and with learning a better set is
obtained.

Datasets No Learning QSC with
Eq 1

QSC with
Eq 2

CD 0.737 0.946 0.944
RD 0.817 0.930 0.939

Table 3: Results(mAP) on two Dataset with 300
queries in each.

Some of the state of art approaches learn a Mahalanobis
distance metric for the k- nearest neighbor classification by
semidefinite programming [26]. The metric is learnt such
that top k- neighbors always belong to the the same class
while examples from the different classes are separated by
a larger margin. Some of others learn a distance function
for each training image as a combination of elementary dis-
tances between patch-based visual features. Then apply
these to classification of novel images [10]. There is another
approach where the weights are the ratios of standard de-
viations of the complete dataset to the the images selected
by user, but in our case we do not use neutral examples and
also their method is restricted towards new unseen queries.
Learning has been used in document retrieval, one of such
method is [12]. In their work they also aim to search for
keywords given by the user in a large collection of digitized
printed historical document and retrieve a better set with
the help of user feedback but again their method doesn’t
use any distance function learning.

5. EXTRAPOLATIONOFQUERYSPECIFIC

CLASSIFICATION

In the previous section we presented methods which allow
us to learn better distance functions for a given query. How-
ever, this method is limited to a finite set of query images.
In a generic setting of document image retrieval, user would
like to give an arbitrary query and retrieve the most relevant
document images based on word similarity computation. We
support textual queries for this purpose. We enable users
to provide user queries (rather than already existing word
images) by rendering queries and generating word images.
Even then the retrieved results need not be accurate because
the distance functions are not designed for these queries. We
would like to extrapolate the learnt distance functions into
a novel setting.

It is known that when the database is diverse, retrieval per-
formance deteriorates. This is due to the fact that database
contains multiple (possibly unknown) fonts and styles. To
address this issue we extrapolate the learnt distance function
to novel content and style space without any user involve-
ment. The weight vector learnt for similar queries (where
substrings are same), will be similar in dimensions corre-
sponding to the common substrings. We use this fact and
synthesize new weight vectors which share substrings with
the query word in the training database. To enhance the
performance in a heterogeneous style collection we retrieve



words based on multiple distance functions and generate a
final list by merging the multiple set.

In real life database we have variations in style and content.
However, the number of possible variations and styles (say
fonts, sizes) is far less compared to the content variations. It
has been shown in the past that given a collection, style and
content can be separated [24] with the help of expectation
maximization (EM) algorithm. However, a purely unsuper-
vised distance function learning in such a framework will
be computationally intensive. That is why we resort to the
method of learning appropriate distance function from the
training dataset and extend to the test dataset.

Here, distance functions are learnt for each word in the RD
dataset using the method described in Section 4. This is
done in closed form using the groundtruth word images in
the training set. Since the feature descriptors also depend on
the style variations of the text we do style specific learning.
Hence for each word image wi and style sk we have a word
weight vector Ww(sk, wi). During retrieval, from the un-
seen textual word query, word images with the same text as
query are synthesized in different styles. Distance functions
for these synthetic word images are computed from already
learnt weight vectors by extrapolation. We achieve this by
disintegrating the learnt weight vectors for words into learnt
weights vectors for subwords during training. And then by
using these subword weight vectors to compute weight vec-
tors for unseen words.

Since the feature vectors are extracted using a sliding win-
dow, the descriptor depends on the width of the image.
Therefore, each subword’s contribution to the word descrip-
tor (and eventually word weight vector) is directly propor-
tional to the width of that subword in the word. A subword
can be a pair or a sequence of characters or just a char-
acter, here we refer to character as subword. For any style
we know the approximate relative width for each subword in
the word. Now, we divide the word weight vector Ww(sk, wi)
according to relative widths of the subwords to get weight
vectors for each of them. These subword weight vectors are
then scaled to have a constant dimension ld. For style sk,
final weight vector for a subword lj , Wl(sk, lj), is computed
as:

Wl(sk, lj) =
X

i∈Wlj

Wwl(sk, lj , wi)

|Wlj |
(3)

where Wlj is set of all words that contain lj and Wwl(sk, lj , wi)
is the weight vector for subword lj when it occurs in word
wi and style sk. We call this content specific disintegration
of word weight vector or construction of subword weight
vector. This is demonstrated in Figure 9(a). We take an ex-
ample of a word “above” from RD dataset. It is shown how
with the help of query specific learning method we learn a
weight vector for this word image and then disintegrate it to
get subword weight vectors. Please note that the subword
weight vectors are subdivisions taken from word weight vec-
tor based on the relative subword width, which is approx-
imate and not exact. Inspite of this, our method achieves
good precision that shows its robustness. The projected sub-
word weight vectors, Wwl(sk, lj , wi), are shown at the end
of the pipeline. Such weight vectors are computed for each
subword-style combination across all the word images in the

Figure 8: Graph shows how mAP changes when di-
mension of feature vectors increases.

dataset. And the final subword weight vector computed us-
ing Equation 3.

Now as the output of the above training phase we have style
and content dependent weight vectors for each style-subword
combination. Essentially, we learn the matrix,

M(k, j) = Wl(sk, lj), k = 1, 2...|S| and j = 1, 2...|C|

where S is set of all styles present in the database and C is
set of all characters or subwords.

This matrix, M , of weight vectors is used to extrapolate
the learning from training data to get weight vector for any
new/unseen word. Specifically, features are extracted from
the synthetic test word images for each style. Then learnt
weight vectors for each of the subwords in the test word
image are mapped from ld to a new dimension. These new
lengths are directly proportional to the relative lengths of
the corresponding subwords and chosen such that their sum
is equal to d. These are appended to get the d dimensional
weight vector of the query word image for that particular
style. This process of extrapolation for retrieval is shown in
Figure 9(b). As an example we take a textual query “close”
from the UD dataset.

We perform two experiments to evaluate our query specific
learning with extrapolation method. In the first one, we
test our method by retrieving from a dataset which is same
as the training dataset. For this purpose, we train using
CD, RD datasets and retrieve from the respective dataset.
During evaluation, we selected 300 queries from each of the
datasets and retrieved 30 images per query with the smallest
distance. The mean of average precisions are reported in first
and second row of the Table 4.

In the second experiment, we test our method by retrieving
from a dataset which is different from the training dataset.
For this, we train using RD dataset and retrieve from UD
dataset. Since UD dataset is unannotated, we do not know
the total number of true positives and therefore cannot com-
pute average precision. Therefore, we compute mean preci-



Figure 9: (a) The pipeline shows how a weight vector is learnt for each subword during training in RD dataset
and (b) The pipeline shows how a weight vector is generated by extrapolation for an unseen query which is
later used for retrieval.

sion as a performance measure which is shown in last row of
the Table 4. We use 25 selected queries for this experiment
and retrieved 30 images per query. We also show its quali-
tative results on three queries in Figure 10. Variation in the
top 10 retrieved results shows that our method is robust to-
wards variation in fonts and styles. In both the experiments
our method outperforms the other two and also shows good
generalization.

Dataset Measure DTW Euclidean QSC with ex-
trapolation

CD mAP 0.853 0.764 0.902
RD mAP 0.778 0.817 0.923
UD mP 0.890 0.915 0.955

Table 4: Comparative results of extrapolation on
CD, RD and UD datasets.

The above method of extrapolation involves projecting a fea-
ture descriptor for word images to lower or higher dimension
feature space (d dimension). Projecting to a very different
feature dimension may lead to loss of important informa-
tion. So it is important to set the value of d appropriately.
We conduct an experiment to observe the effect of d on the
retrieval performance. Figure 8 shows how mAP varies with
d. From the plot, it can be observed that the performance
is stable for a good range: d = 110 to d = 270. The range
of d depends on the database which means that it can be
different for different languages.

The extrapolation method presented in this section enables
generalization of the learning done from training data. It
makes it possible to generate weight vector for any unseen
word.

6. ACKNOWLEDGMENTS

This work is supported by Ministry of Communication and
Information Technology, Government of India.

7. CONCLUSIONS

In this paper, we argue that a matching scheme based on
fixed length representation can be learnt to enhance the
word image matching module. We demonstrate that a query
specific classification algorithm can be designed for retrieval
of word images. This can be done in a computationally ef-
ficient manner. Our future work includes the development
of a scalable system which can retrieve word images by im-
plicitly using language models.

8. REFERENCES
[1] Digital library of india. http://dli.iiit.ac.in/.

[2] S. Aksoy, R. M. Haralick, F. A. Cheikh, and
M. Gabbouj. A weighted distance approach to
relevance feedback. In ICPR, pages 4812–4815, 2000.

[3] A. Balasubramanian, M. Meshesha, and C. V.
Jawahar. Retrieval from document image collections.
In Document Analysis Systems, pages 1–12, 2006.



because

English

Bertrand

Figure 10: Examples of word images retrieved from unannotated database of more than 5M words. First
column shows the query word. Some of the retrieved results are shown. For the top-20 retrieval, mean of
precision is 0.936

[4] A. Bar-Hillel, T. Hertz, N. Shental, and D. Weinshall.
Learning a mahalanobis metric from equivalence
constraints. Journal of Machine Learning Research,
6:937–965, 2005.

[5] C. Böhm, S. Berchtold, and D. A. Keim. Searching in
high-dimensional spaces: Index structures for
improving the performance of multimedia databases.
ACM Computing Surveys., 33(3):322–373, 2001.

[6] T. E. de Campos, B. R. Babu, and M. Varma.
Character recognition in natural images. In VISSAPP
(2), pages 273–280, 2009.

[7] T. Deselaers, R. Paredes, E. Vidal, and H. Ney.
Learning weighted distances for relevance feedback in
image retrieval. In ICPR, pages 1–4, 2008.

[8] D. S. Doermann. The indexing and retrieval of
document images: A survey. Computer Vision and
Image Understanding, 70(3):287–298, 1998.

[9] A. Franco, A. Lumini, and D. Maio. A new approach
for relevance feedback through positive and negative
samples. In ICPR (4), pages 905–908, 2004.

[10] A. Frome, Y. Singer, and J. Malik. Image retrieval and
classification using local distance functions. In NIPS,
pages 417–424, 2006.

[11] T. Hong, T., and J. J. Hull. Algorithms for
postprocessing ocr results with visual inter-word
constraints. In ICIP, 1995.

[12] T. Konidaris, B. Gatos, K. Ntzios, I. Pratikakis,
S. Theodoridis, and S. J. Perantonis. Keyword-guided
word spotting in historical printed documents using
synthetic data and user feedback. IJDAR, 2007.

[13] A. Kumar, C. V. Jawahar, and R. Manmatha.
Efficient search in document image collections. In
ACCV (1), pages 586–595, 2007.

[14] V. Lavrenko, T. M. Rath, and R. Manmatha. Holistic
word recognition for handwritten historical
documents. In DIAL, pages 278–287, 2004.

[15] D. Lowe. Object recognition from local scale-invariant
features. In ICCV, pages 1150–1157, 1999.

[16] Y. Lu, C. L. Tan, W. Huang, and L. Fan. An
approach to word image matching based on weighted
hausdorff distance. ICDAR, 2001.

[17] R. Manmatha, C. Han, and E. M. Riseman. Word
spotting: A new approach to indexing handwriting. In
CVPR, pages 631–637, 1996.

[18] M. Meshesha and C. V. Jawahar. Matching word
images for content-based retrieval from printed
document images. IJDAR, 11(1):29–38, 2008.

[19] V. Rasagna, A. Kumar, C. V. Jawahar, and
R. Manmatha. Robust recognition of documents by
fusing results of word clusters. In ICDAR, 2009.

[20] T. M. Rath and R. Manmatha. Word image matching
using dynamic time warping. In CVPR (2), pages
521–527, 2003.

[21] T. M. Rath and R. Manmatha. Word spotting for
historical documents. IJDAR, 9(2-4):139–152, 2007.

[22] J. Rodriguez-Serrano, F. Perronnin, J. Llados, and
G. Sanchez. A similarity measure between vector
sequences with application to handwritten word image
retrieval. CVPR, 2009.

[23] Y. Seiji and O. Takashi. Document retrieval using
relevance feedback. CICSJ Bull, 21(1):32–36, 2004.

[24] J. B. Tenenbaum and W. T. Freeman. Separating
style and content with bilinear models. Neural
Computing, 12(6):1247–1283, 2000.

[25] C. J. van Rijsbergen. Information Retrieval.
Butterworth, 1979.

[26] K. Q. Weinberger, J. Blitzer, and L. K. Saul. Distance
metric learning for large margin nearest neighbor
classification. In NIPS, 2005.

[27] Q. Zheng and T. Kanungo. Morphological degradation
models and their use in document image restoration.
In ICIP (1), pages 193–196, 2001.

[28] X. S. Zhou and T. S. Huang. Relevance feedback in
image retrieval: A comprehensive review. Multimedia
System, 8(6):536–544, 2003.


