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Abstract

In this paper, we present a monocular camera based

terrain classification scheme. The uniqueness of the

proposed scheme is that it inherently incorporates spa-

tial smoothness while segmenting a image, without re-

quirement of post-processing smoothing methods. The

algorithm is extremely fast because it is build on top

of a Random Forest classifier. The baseline algorithm

uses color, texture and their combination with classi-

fiers such as SVM and Random Forests. We present

comparison across features and classifiers. We further

enhance the algorithm through a label transfer method.

The efficacy of the proposed solution can be seen as we

reach a low error rates on both our dataset and other

publicly available datasets.

1 Introduction

The goal of terrain classification [3, 10] is to rec-

ognize various terrains that occur in urban and rural

environments in an automated fashion. An automated

solution to terrain classification is very crucial in vari-

ous domains such as (i) advanced driver assistance sys-

tems [13], (ii) autonomous navigation, (iii) remote sens-

ing, (iv) urban and rural planning. For instance, a mo-

bile robot navigating outdoors, comes across various

terrains such as soft, slippery, hard, smooth, rocky or

undulating ones. The navigation strategy for the robot

differs mainly based on the kind of terrain it traverses

and the limits on its velocities vary according to these

surfaces. An algorithm capable of prior judgment of the

terrain provides the much needed time for the robot to

adapt its velocity planner and thus becomes a vital cog

in outdoor navigation systems.

Various methods have been proposed in literature

for the problem of terrain classification. In particular

Vibration-basedmethods [7, 12] ( which use accelerom-

eters, IMU etc., ) have been very successful. Yet, the

main drawback of those methods is that they classify

terrain only while the sensor attached to robot is travers-

ing the terrain and not beforehand.

Camera-based methods follow a canonical form of

using images from camera as training data along with

lasers or stereo-rig for obtaining ground truth. Among

the literature we surveyed, the work reported in [1], is

closest to our problem. However it partially relies on

time consuming texture features. Bradley et al. [2] uses

multi-spectral camera to detect chlorophyll content for

recognizing grass and trees. Recent work includes, Blas

et al. [9] employing pre-segmentation algorithm based

on clustering using Local binary patterns. Vernaza et

al. [10] uses Markov random fields framework. Pro-

copio et al. [8] adds memory to the machine learning

model by using ensemble of classifiers. They report an

accuracy of around 90% on their datasets, but almost

all of them detect only navigable region and does not

characterize the terrain.

While the problem can be approached by using com-

bination of various sensing modalities such as 2D and

3D lasers, multiple cameras etc., this paper explores

the extent of scene interpretation ability vested in a

single camera and is thus different. This investigation

is especially crucial since cameras are often less ex-

pensive, compact, and are not power hungry like laser

range finders. Unlike many previous approaches, which

deals with the problem of detection of navigable re-

gions, where the terrain characterization is neglected,

our goal is to detect and characterize the terrain ahead

into commonly observed terrains.

In this paper, we propose a new partition algorithm

and a temporal label transfer method that enhances the

performance of baseline classifiers. The novel parti-

tion algorithm partitions the image into various regions.

A patch in an image thus belongs to various partitions

based on the partitioning scheme. The patch is classi-

fied for each such partitioning scheme and the eventual

classified label for that patch is based on a majority rule

across such partitioning schemes. We show that such a

partitioning is indeed generic as it enhances the clas-

sifier accuracy of various classifiers such as Random

forests, SVMs and K-Nearest neighbours. The efficacy

of the proposed algorithm can be vindicated as we re-

port highly efficient terrain classification on our dataset

and other two datasets by Procopio et al. [8]. We show



that our partition algorithm inherently segments the im-

age smoothly. The temporal transfer method efficiently

uses temporal information from already predicted labels

of the previous frames. We also show that by using

temporal label transfer, we save considerable amount

of computation time per image.

2 Problem Parameters

Terrain classification was modeled as a classifica-

tion problem of pixels and smaller windows in the

past [4, 11], where the important parameters were fea-

tures, classifiers and datasets. In this section, we an-

alyze the relative importance of these parameters and

demonstrate that the problem can be solved upto greater

extent using state of the art features and classifiers.

Features. For any learning based method, selecting

meaningful features is very important. We use popular

RGB histogram [8, 11] and LBP histogram [9] as our

features considering the computational cost and perfor-

mance. We use the optimal weighted combination of

these features that best suits the classifier.

Classifiers. Performance of selected features are

evaluated on a set of popular and promising classi-

fiers. The classifiers which we consider in our exper-

iments are Naı̈ve Bayes(NB), K-Nearest Neighbor(K-

NN), Artificial Neural Networks(ANN), Support vector

machines(SVMs) and Random Forests(RF) [6]. Ran-

dom forest is a classification algorithm that uses an en-

semble of unpruned decision trees, each of which is

built on a bootstrap sample of the training data using a

randomly selected subset of feature space dimensions.

Experimentswere conducted by changing important pa-

rameters like number of epochs and number of nodes in

the hidden layers in ANNs, number of trees and size

of node in RF. In case of SVMs, we conduct experi-

ments with linear SVM using 1 vs 1 multiclass classifier

(SVM-L) and non-linear SVM (SVM-K).

Data sets. We experiment with three datasets in this

study: our own dataset and two other datasets by Proco-

pio et al. [8]. For collecting our data, monocular camera

was mounted on the top of the vehicle, and videos were

recorded at 7.5 fps. We collected the data in and around

a radius of 10km navigating at various speeds ranging

from 0.2m/s to 4m/s. We observe that the data is chal-

lenging, as it contained wide variations in illumination.

We also observed that the data varied from unpaved or

damaged rural roads to paved urban roads. We collected

25 videos, each of 1 min. Figure 1 shows some of the

sample frames from the videos and their corresponding

ground truth images. Five distinctly different terrains

were identified in the data collection1.

1Data contains regions of road, muddy-road, rough-terrain, grass

(Note that the class grass contains only traversible grass or very small

Figure 1: Sample frames and their Ground truth

D NB ANN K-NN SL SK RF

O 43.6 35.6 28.3 29.0 28.7 25.5

A 18.9 32.3 33.8 31.2 38.4 18.2

B 13.7 26.2 17.8 27.9 39.8 18.9

Table 1: Base line error-rates on Our dataset(O)

and two datasets(A and B) of Procopio et al. [8].

Where D:Dataset, O:Our Dataset, A:DS3A, B:DS3B,

SL:SVM-L and SK:SVM-K.

Empirical evaluation. For the empirical studies, we

consider a part of our data set (200 images). We use

50% of the data for training and the rest for testing. We

extract multiple, non-overlapping, patches of size 16×
16 from these images. Thus we have around 2 ∗ 185000

patches2 for training and testing.

From Table 1, we observe that RF’s outperformed all

other classifiers because of its capability to handle large

number of input variables and data samples [6]. Ad-

ditionally RF classifiers are computationally efficient

for training and testing, compared to SVMs. We also

observed that with only training on our datasets, the

performance on other datasets were appreciable, which

clearly shows the superiority of our dataset. Since the

data sets and details of the earlier reports are not com-

pletely available, a direct comparison of results may not

be applicable. However, it may be noted that the quan-

titative results, which we report in Table 1, are compa-

rable to the results reported in literature [8, 10], which

use non-visual sensors and stereos along with appear-

ance clues. This advantage comes out of the fact that

monocular cameras that are currently in use provide

much richer sampling in space and dynamic range, and

are hence useful for such tasks.

3 Proposed Methodology and Results

In the last section, we have shown that the monoc-

ular camera based terrain characterization is a feasi-

plants, big plants and trees are considered obstacles. ) and obstacles

( which contains static objects like trees, rocks etc., and dynamic ob-

jects like moving vehicles ), which are labelled with colors black-grey,

orange, brown, green and black respectively.
2The number of patches in all the five classes are equal.
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Figure 2: Comparison of base-line classifiers with

Partition-based algorithm operated over them. Where

PM(K-NN),PM(SVM) and PM(RF) represents the error

rate of partition-based algorithm operated on classifiers

K-NN, SVM and RF respectively.

ble and promising paradigm for out door navigation.

We have observed that RF classifier is performing best

among several classifiers. In this section, we describe

two enhancements for terrain classification. Initially we

describe our partition based algorithm and several ex-

periments which indicate that, the algorithm is robust

and spatially smooth. Secondly we describe our label

transfer method along with experiments showing that,

it saves considerable amount of computation time.

3.1 Partition based algorithm

The proposed algorithm partitions the training im-

ages and trains different classifiers on different parts of

the image independently. This is repeated for partitions

of different sizes. Training different classifier from dif-

ferent part of the image handles the problem of per-

spectivity of the imaging process, i.e., it learns the fact

that near and far image patches show different textural

characteristics. Also learning from fixed partition over

several training images has two main advantages. The

first advantage is that it helps the classifier to learn new

facts about associativity of classes, such as occurrences

of grass along with mud is more probable than that of

grass along with tar road. The second advantage is that

it helps the algorithm to be dependent upon the position

of the partition of the image and thus learns the spatial

context. By training a classifier from larger sized parti-

tions, global properties of the class are learnt and as the

size of the partition decreases, more local properties are

learnt. Our algorithm is a generic framework that can

be operated on any classifier.

In training phase, as summarized in Algorithm 1 we

build N classifier-sets using all the training images, let

us call them S = {C1, C2, C3, ...CN}. Note that a
classifier-set Ci contains i2 classifiers. To characterize

the terrain of the given image, for each patch of the im-

age, we get N labels from each of the N classifier-sets in

S. From these N labels, most occurring label is declared

as the final label of the patch.

Algorithm 1 Partition based algorithm

– Training

1: Goal: To build N classifier-sets

2: Input:M Training images, S ← ∅
3: for k = 1 to N do

4: Partition training images into k2 parts, Ck ← ∅
5: for p = 1 to k2 do

6: Train a Classifier on pth partition over all

training images, call itKFp

7: Ck ← Ck ∪ {KFp}
8: end for{ Now Ck = {KF1, KF2, ...KFk2} }
9: S ← S ∪ {Ck}
10: end for{ Now S contains {C1, C2, ...CN} }

Experiment 1: Comparison with baseline classi-

fiers. Figure 2 shows the error-rates of our partition-

based algorithm operating on baseline classifiers K-NN,

SVM and Random Forests. We observe that our algo-

rithm always decreases the error-rates by approximately

10%, this is an appreciable decrease in the error rate.

This also shows that our algorithm is generic, i.e., it

improves the performance of classifier independent of

the classifier choosen. To show the superiority of our

algorithm across other databases, we conduct an exper-

iment in which our partition-based algorithm operating

over RF is tested on (i) Our dataset (ii) DS3A and (iii)

DS3B datasets of Procopio et al. [8]. We report the er-

ror rates in first and second column of Table 2, from the

table, we observe that our algorithm compared to base-

line RF classifier, decreases the error rate by approxi-

mately 10% on all three datasets. We also observe that

even without training on any of the images of DS3A or

DS3B datasets, we get error rates as low as 6.8%, the

superiority of our algorithm is thus clearly evident.

Experiment 2: Effect on number of Classifier-sets

(N). In this experiment, we check the effect of varying

number of classifier-sets(N) on the algorithm. N is a

parameter which controls both efficacy and speed. We

D RF PM RF PM AVG Err

O 26.8 17.2 08.7 01.0 35.5 05.6

A 18.2 07.9 06.9 00.6 42.3 04.3

B 18.9 06.8 05.2 00.4 45.1 04.3

Table 2: 1
st and 2

nd column represents error-rates

of RandomForest(RF) and our partition based algo-

rithm(PM). 3rd and 4
th column represents smoothness-

error rates, which corresponds to experiment-3. 5
th

and 6
th column represents the percentage of images,

that were labelled just by using Temporal-label-transfer

method in Section 3.2, where AVG: Average of percent-

ages of portion of labels that are transferred over se-

quence of 100 images and Err: Error in label transfer.



observe that as N increases, the speed of the algorithm

decreases, the error-rate decreases and then slowly in-

creases. From our experiments we found that, the opti-

mal choice for N is 5, which has high efficacy without

compromising speed.

Experiment 3: Spatial smoothness test. In Ta-

ble 2, third and fourth column show the smoothness-

errors of RF and PM operated on RF, on three datasets.

Smoothness-error is the difference between error rates

before and after applying smoothing algorithmmodeled

by MRF [14] on the classifier predictions. We observe

that our algorithm has a negligible smoothness-error

compared to RF classifier, which clearly shows that PM

itself is capable of characterizing the image smoothly in

spatial context.

3.2 From Image to Video

Temporal label transfer. Most of the previous meth-

ods in literature deal with single image. They do not use

the fact that they are dealing with a sequence of contin-

uous video stream. When robot navigates through ter-

rain, the camera captures sequence of frames, any two

consecutive frames have lot of common image regions

i.e., they look visually much similar. Inorder to char-

acterize the terrain of the image using traditional ma-

chine learning based algorithm some kind of feature is

extracted from each patch. The feature vector is fed to

a classifier, which returns the label of the patch. Note

that in this process, feature extraction is computation-

ally expensive. In our case, when a new frame is cap-

tured by the camera, fast coarse optical flow [5] be-

tween the previously captured frame and current frame

is calculated, then for each patch, if there is flow present

in the current-frame-patch, we transfer the correspond-

ing patch-label from the previous frame to the current

frame. If there is no flow available for that patch, fea-

ture is extracted from the patch and fed to our partition-

based algorithm described in section 3.1. In this way

without even extracting features from the current frame,

we can label considerable portion of the frame.

We conduct an experiment to see, how much portion

of the image can be labelled by just using temporal la-

bel transfer. The average percentage of image that is

labelled using temporal label transfer over testing im-

ages and their corresponding error are reported in fifth

and sixth column of Table 2 respectively. We observed

that by just using temporal label transfer, we can label

approximately 40% of the image on three datasets with

very less error. This automatic transfer of label resulted

in considerable decrease in computation time. The de-

crease was to the tune of 40% on an average computed

over several experiments, which is crucial in real time

systems like mobile robots.

4 Conclusions and future work

This paper presented a novel partition-based algo-

rithm for classification of outdoor terrains using monoc-

ular camera. The proposed algorithm is generic and en-

hanced the error-rates of base-line classifiers by approx-

imately 10%. The algorithm was extensively tested on

our and on other publicly available datasets. The com-

putational time of the whole system is reduced by ap-

plying the partition-based algorithm to only those re-

gions of the image, where the temporal label transfer is

not applicable. The future scope of the work includes

much better processing of the video data using complex

temporal clues along with fusing geometric and appear-

ance clues in an optimization framework.
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