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ABSTRACT

General purpose programming on the graphics processing
units (GPGPU) has received a lot of attention in the parallel
computing community as it promises to offer the highest per-
formance per dollar. The GPUs have been used extensively
on regular problems that can be easily parallelized. In this
paper, we describe two implementations of List Ranking, a
traditional irregular algorithm that is difficult to parallelize
on such massively multi-threaded hardware. We first present
an implementation of Wyllie’s algorithm based on pointer
jumping. This technique does not scale well to large lists
due to the suboptimal work done. We then present a GPU-
optimized, Recursive Helman-JáJá (RHJ) algorithm. Our
RHJ implementation can rank a random list of 32 million
elements in about a second and achieves a speedup of about
8-9 over a CPU implementation as well as a speedup of 3-4
over the best reported implementation on the Cell Broad-
band engine. We also discuss the practical issues relating
to the implementation of irregular algorithms on massively
multi-threaded architectures like that of the GPU. Regular
or coalesced memory accesses pattern and balanced load are
critical to achieve good performance on the GPU.
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1. INTRODUCTION
Commodity graphics hardware has evolved into highly

parallel and fully programmable architectures. The latest
GPUs like NVIDIA’s GTX280 GPU and AMD’s HD4870
contain several hundreds of processing cores and provides a
theoretical performance of 1 TFLOP. While the traditional
GPGPU approach used the graphics API to perform general
purpose computations, programming models and drivers to
exploit the computing power using a general purpose stream
programming interface has made it easier to develop applica-
tions on the GPUs. The Compute Unified Device Architec-
ture (CUDA) exposes an alternate programming model on
NVIDIA GPUs that is close to the traditional PRAM model
[16]. The recent adoption of the OpenCL[15] as an open,
multi-vendor, standard API for high-performance comput-
ing has the potential to bring these devices to the main-
stream of computing due to portability across GPUs, multi-
core CPUs, and other accelerators.
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(a) Ordered list.
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(b) Random list.

Figure 1: Linked lists and their corresponding ranks.

The GPU architecture fits the data parallel computing
model best, with a single processing kernel applied to a large
data grid. The cores of the GPU execute in a Single Instruc-
tion, Multiple Data (SIMD) mode at the lowest level. Many
data parallel applications have been developed on the GPU
in the recent years [6], including FFT [9] and other scien-
tific applications [10]. Primitives that are useful in building
larger data parallel applications have also been developed
on the GPUs. These include parallel prefix sum (scan), re-
duction, and sorting [19]. Regular memory access and high
arithmetic intensity are key to extracting peak performance
on the GPUs. Problems that require irregular or random
memory accesses or sequential compute dependencies are
not ideally suited to the GPU. The list ranking problem [7,
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17, 13] is a typical problem that has irregular memory access
patterns and sequential dependencies.

List ranking and other computations on linked lists are
fundamental to the handling of general structures such as
graphs on parallel machines. The importance of list ranking
to parallel computations is identified by Wyllie [21]. While
it is easy to solve in the sequential setting, algorithms in the
parallel setting are quite non-trivial and differ significantly
from known sequential algorithms. The range of techniques
deployed to arrive at efficient parallel list ranking algorithms
include independent sets, ruling sets, and deterministic sym-
metry breaking among others.

Wyllie [21] gave a simple algorithm that can be used for
list ranking. However, the algorithm is not work-optimal
[13], which means that the algorithm performs more than
O(n) operations for a list of n elements. The first optimal
algorithm is given by Cole and Vishkin [7]. Anderson and
Miller [1] proposed another optimal algorithm using ideas
from independent sets. Their algorithm, while being deter-
ministic, is however not easy to implement. A simpler ran-
domized algorithm is proposed by Hellman and JáJá [12] us-
ing ideas of sparse ruling sets from Reid-Miller [17]. The al-
gorithm of Hellman and JáJá [12] is worst-case work-optimal
for a small number of processors. Another implementation
for distributed systems using a divide-and-conquer approach
is reported by Sibeyn [20].

List ranking is a basic step of algorithms such as Euler
tour [13], load balancing, tree contraction and expression
evaluation [5], connected components [4], planar graph em-
bedding etc. [14]. The non-contiguous structure of the list
and irregular access of shared data by concurrent thread-
s/processes make list ranking tricky to parallelize. Unlike
the prefix sum or scan operation, there is no obvious way to
divide a random list into even, disjoint, continuous sublists
without first computing the rank of each node. Concurrent
tasks may also visit the same node by different paths, re-
quiring synchronization to ensure correctness.

We explore the list ranking problem on the GPU using the
CUDA computation model in this paper. We first present
an implementation of the pointer jumping algorithm on the
GPU. The requirements of atomic operations for concurrent
updates result in the GPU algorithm being faster only on
lists of half a million or more elements. We then present a

recursive formulation of the Helman-JáJá algorithm which
outperforms the CPU algorithm on lists of 32K or more el-
ements. We obtain significant speedups on larger lists com-
pared to the CPU implementation and the implementation
on the Cell BE[3] and SMP[2] machines. We also analyze
the factors that contribute to the performance on the GPUs.
This analysis is relevant to implementing other irregular al-
gorithms on the GPUs. Our main contributions are summa-
rized as follows:

1. We present an implementation of Wyllie’s Algorithm
which is suboptimal due to its memory operations on
the GPU and workload and does not scale well to large
lists.

2. We present a fast and scalable recursive implementa-
tion of Hellman and Jáá’s list ranking algorithm on
massively multi-threaded architectures, which outper-
forms all previous reported implementations on simi-
lar architectures. On a random list of 8 million nodes,
our implementation is about 3-4 times over the best
reported implementation on the Cell Broadband En-
gine.

3. We conduct an empirical study on the effects of load-
balancing and coalescing of memory accesses for ir-
regular algorithms on the GPU. This study can be of
independent interest when one implements such algo-
rithms on the GPU.

4. We conclude that the major issues that dictate perfor-
mance while implementing similar algorithms on the
GPU include: exploitation of massive parallelism, effi-
cient use of global memory, and load balancing among
threads.

2. GPU COMPUTATION MODEL
The GPU is a massively multi-threaded architecture con-

taining hundreds of processing elements or cores. Each core
comes with a four stage pipeline. Eight cores are grouped in
SIMD fashion into a symmetric multiprocessor (SM), hence
all cores in an SM execute the same instruction. The GTX280
has 30 of these SMs, which makes for a total of 240 process-
ing cores.
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The CUDA API allows a user to create a large number
of threads to execute code on the GPU. Threads are also
grouped into blocks and multiple blocks are grouped into
grids. Blocks are serially assigned for execution on each
SM. The blocks themselves are divided into SIMD groups
called warps, each containing 32 threads. An SM executes
one warp at a time. CUDA has zero overhead scheduling
which enables warps that are stalled on a memory fetch to be
swapped for another warp. For this purpose, NVIDIA rec-
ommends 1024 threads (across multiple blocks) be assigned
to an SM to keep it fully occupied. The various resources
and configuration limits of the GTX 280 GPU under CUDA
is shown in Table 1.

The GPU also has different types of memory at each level
(Figure 2(a)). A set of 32-bit registers is evenly divided
among the threads in each SM. Scratchpad memory of 16
KB, known as shared memory, is present at every SM and
can act as a user-managed cache. This is shared among all
the blocks scheduled on an SM. The GTX 280 also comes
with 1 GB of off-chip global memory which can be accessed
by all the threads in the grid, but incurs hundreds of cycles
of latency for each fetch/store. Global memory can also be
accessed through two read-only caches known as the con-
stant memory and texture memory for efficient access for
each thread of a warp. The general, read-write access of
the global memory is not cached. Thus, locality of memory
access over time by a thread provides no advantages. Si-
multaneous memory accesses by multiple adjacent threads,
however, are coalesced into a single transaction if they are
adjacent.

Computations that are to be performed on the GPU are
specified in the code as explicit kernels. Each kernel executes
a grid. Prior to launching a kernel, all the data required for
the computation must be transferred from the host (CPU)
memory to the GPU (global) memory. A kernel invocation
will hand over the control to the GPU, and the specified
GPU code will be executed on this data (Figure 2(b)). Bar-
rier synchronization for all threads in a block can be defined
by the user in the kernel code. Apart from this, all threads
launched in a grid are independent and their execution or
ordering cannot be controlled by the user. Global synchro-
nization of all threads can only be preformed across separate
kernel launches.

The irregularity of the list ranking problem’s memory ac-
cesses make it very difficult to apply conventional GPU op-
timizations provided by CUDA. Since the memory access
pattern is not known in advance and there is no significant
data reuse in each phase of the algorithm, we cannot take
advantage of the faster shared memory.

Resource or Configuration Parameter Limit
No of Cores 240

Cores per SM 8
Threads per SM 1,024 threads

Thread Blocks per SM 8 blocks
32-bit Registers per SM 16,384 registers
Active Warps per SM 32 warps

Table 1: Constraints of GTX 280 on CUDA.

3. LIST RANKING ON THE GPU
The traditional approach to implementing a data-parallel

algorithm in CUDA is to launch a CUDA kernel for each

task. It is advisable to stick to this model as far as possible,
even if it means doing a bit of extra work in each thread, as
it is a massively parallel architecture.

3.1 Wyllie’s Algorithm
Wyllie’s algorithm[21] involves repeated pointer jumping.

The successor pointer of each element in the list is repeatedly
updated so that it jumps over its successor until we reach
the end of the list. As each processor traverses and contracts
the successor of a list, the ranks are updated for each jump.
Once all the processors have contracted all the way to the
end of the list, the algorithm ends. Wyllie’s algorithm also
provides an opportunity to present an implementation of a
pointer-jumping implementation on the GPU which will be
useful to various other parallel algorithms that use this as a
primitive [13].

Algorithm 1 Wyllie’s Algorithm

Input: An array S, containing successors of n nodes and
array R with ranks initialized to 1
Output: Array R with ranks of each element of the list
with respect to the head of the list

1: for each element in S do in parallel
2: while S[i] and S[S[i]] are not the end of list do
3: R[i] = R[i] + R[S[i]]
4: S[i] = S[S[i]]
5: end while
6: end for

Given a list of size n, the implementation of this algorithm
(Algorithm 1) is to assign a process/thread per element of
the list. Each thread performs O(log n) steps, thereby mak-
ing the total work complexity O(n log n). By the end of the
algorithm, all ranks would have been updated correctly. It is
important to note that the rank, successor and finished bit
writing step (step 10) in the algorithm must be performed
concurrently for each thread. If a process updates either the
rank or successor value of an element in between the update
operation of another process, the algorithm will fail.

CUDA does not have any explicit user management of
threads or memory synchronization locks. Hence, for this
implementation in CUDA, we need to pack two single pre-
cision words (elements Ri and Si) into a double word and
perform a 64 bit write operation(Figure 3). It must be noted
that 64-bit operations are more expensive on the GPU. Hence
for lists of size ≤ 216, the two 16-bit integers (representing
R[i] and S[i]) can be packed into a 32-bit integer and use a
32-bit write operation. This can result in time savings of up
to 40% on such lists.

Figure 3: Packing two 32-bit values into a double
word.

This algorithm is further modified for the GPU to load the
various data elements from the global memory only when
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they are needed, as global memory read operations are ex-
pensive. The CUDA Kernel implementation of this algo-
rithm is in Listing 1. The current element, LIST[index],
is first read in node. The successor node is also loaded in
next. Using bitwise operations, the rank and successor are
read from these variables and updated as required. Finally
after packing the new values in temp, the new node is written
back to LIST[index]. We synchronize all the threads in a
block using __syncthreads to force all the eligible threads
to read/write in a coalesced manner [16]. These operations
are looped until all the nodes have set their successors to −1
(which denotes the end of the list).

Listing 1: Wyllie’s Algorithm implemented as a
GPU Kernel in CUDA

__global__ void ListRank
(long long int *LIST , int size)
{

int block =( blockIdx.y*gridDim.x)+blockIdx.x;
int index=block*blockDim.x+threadIdx.x;

if(index <size)
{

while (1)
{

long long int node = LIST[index ];
if (node >>32 == -1) return;
__syncthreads ();

int mask=0 xFFFFFFFF;
long long int temp =0;
long long int next = LIST[node >>32];

if (next >>32 == -1) return;

temp = (int) node & mask;
temp += (int) next & mask;
temp += (next >>32) <<32;

__syncthreads ();

LIST[index ]=temp;
}

}

3.2 Helman and JáJá Algorithm and its
Recursive Variant

Helman and JáJá’s algorithm was originally designed for
symmetric multiprocessors (SMP) [12]. The parallel algo-
rithm for a machine with p processors is as follows:

Figure 4 illustrates the working of the algorithm on a small
list. This algorithm (Algorithm 2) splits a random list into
s sublists in the splitting phase (Figure 4(a)). The rank
of each node with respect to the “head“ of each sublist is
computed by traversing the successor array until we reach
another sublist (local ranking phase - Figure 4(b)). This is
done in parallel for s sublists. The length of each sublist
is used as the prefix value for the next sublist. A new list
containing the prefixes is ranked sequentially (global ranking
phase - Figure 4(c)) and then subsequently matched and
added to each local rank in the final phase (recombination
phase). Helman and JáJá proved that for a small constant,

when p is small, the worst case run time is O
“

log n + n

p

”

with O(n) work [12].

Algorithm 2 Helman and JáJá List Ranking Algorithm

Input: An array L, containing input list. Each element of
L has two fields rank and successor, and n = |L|
Output: Array R with ranks of each element of the list
with respect to the head of the list

1: Partition L into n

p
sublists by choosing a splitter at reg-

ular indices separated by p.
2: Processor pi traverses each sublist, computing the local

(with respect to the start of the sublist) ranks of each
element and store in R[i].

3: Rank the array of sublists S sequentially on processor
p0

4: Use each processor to add n

p
elements with their corre-

sponding splitter prefix in S and store the final rank in
R[i]

0 1 2 3 4 5 6 7 8 9

4 8 1 3 7 - 6

2 9 5
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Local Ranks

New List

Successor Array

Global Ranks

Rank

Local Ranks
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After Ranking

(a)

(b)

(c)

(d)

Add 2

Figure 4: A sample run of the Helman and JáJá list
ranking algorithm.

Bader presented implementations of this algorithm on var-
ious architectures such as the Cray MTA-2 and Sun enter-
prise servers [2], and recently with the IBM Cell processor
[3], a hybrid multi-core architecture which is often compared
to GPUs.

3.2.1 Recursive Helman JáJá Algorithm (RHJ)

The algorithm, as described by Helman and JáJá [12] re-
duces a list of size n to s and then uses one processing node
to calculate the prefix of each node of this new list. It would
be unwise to apply the same technique to the GPU, as this
will leave most of the hardware underutilized after the first
step. Instead, we modify the ranking step of the original
algorithm to reduce the list recursively until we reach a list
that is small enough to be tackled efficiently by the GPU or
by handing over to either the CPU for sequential processing
or to Wylie’s algorithm on the GPU.

Algorithm 3 lists the recursive version of the Helman JáJá.
Each element of array L contains both a successor and rank
field. In step 4 of the algorithm, we select p splitter elements
from L. These p elements will denote the start of a new sub-
list and each sublist will be represented by a single element
in L1. The record of splitters is kept in the newly created
array L1. Once all the splitters are marked, each sublist is
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Algorithm 3 Recursive Helman-JáJá RHJ(L,R,n,limit)

Input: Array L, containing the successors of each list ele-
ment and n = |L|
Output: Array R containing the rank of each element in L

1: if n <= limit then
2: Rank the final list L sequentially
3: else
4: Choose p splitters at intervals of n

p

5: Define the sublists on L,
6: Copy these splitter elements to L1

7: Perform local ranking on each sublist of L
8: Save the local ranks of each element of L in R.
9: Set successor pointers for L1

10: Write sublist lengths in R1

11: Call Procedure RHJ(L1,R1, p, limit)
12: end if
13: Each element in R adds the rank of its sublist from R1

to its local rank.

traversed sequentially by a processor from its assigned split-
ter until another sublist is encountered (as marked in the
previous step). During traversal, the local ranks of the ele-
ments are written in list R. Once sublist has been traversed,
the successor information, i.e the element (with respect to
indices in L1) that comes next is recorded in the successor
field of L1. It also writes the sum of local ranks calculated
during the sublist traversal to the rank field of the succeed-
ing element in L1.

Step 6 performs the recursive step. It performs the same
operations on the reduced list L1. Step 1 of the algorithm
determines when we have a list that is small enough to be
ranked sequentially, which is when the recursive call stops.

Finally, in step 8, we add the prefix values of the elements
in R1 to the corresponding elements in R. Upon comple-
tion of an iteration of RHJ, the List R will have the correct
rank information with respect to the level in the recursive
execution of the program.

The recursive Hellman-JáJá algorithm can be analyzed in
the PRAM model [13] as follows. For p = n/ log n sublists,
i.e., with p splitters, the expected length of each sublist is
O(n

p
). Hence, the expected runtime can be captured by the

recurrence relation T (n) = T (p) + O(n

p
), which has a solu-

tion of O
“

log2 n

log log n

”

. Similarly, the work performed by the

algorithm has the recurrence relation W (n) = W (p) + O(n)
which has a solution of O(n). So, our algorithm is work-
optimal and has an approximate runtime of O(log n). No-
tice however that the deviation from the expected runtime
for p = n/ log n could be O(log2 n), for random lists. The
correctness of the algorithm should be apparent from its
construction and PRAM style runtime.

4. RHJ IMPLEMENTATION ON THE GPU
Implementing the RHJ algorithm on the GPU is chal-

lenging for the following reasons: Programs executed on the
GPU are written as CUDA kernels. They have their own ad-
dress space on the GPU’s instruction memory, which is not
user-accessible. Hence CUDA does not support function re-
cursion. Also, each step of the algorithm requires complete
synchronization among all the threads before it can proceed.
These challenges are tackled in our implementation, which
is discussed in the next section.

4.1 Implementation in CUDA
All operations that are to be completed independently are

arranged in kernels. Global synchronization among threads
can be guaranteed only at kernel boundaries in CUDA. This
also ensures that all the data in the global memory is up-
dated before the next kernel is launched. Since each of the
4 phases of the algorithm require a global synchronization
across all threads (and not just of those within a block) we
implement each phase of the algorithm as a separate CUDA
kernel. Since we are relying purely on global memory for our
computation, CUDA blocks do not have any special signif-
icance here except for thread management and scheduling.
We follow NVIDIA’s guidelines to keep the block size as 512
threads per block to ensure maximum occupancy[18][16].

The first kernel is launched with p threads to select p
splitters and write to the new list L1. The second kernel also
launches p threads, each of which traverse its assigned sublist
sequentially, whilst updating the local ranks of each element
and finally writing the sublist rank in L1. The recursive step,
is implemented as the next iteration of these kernels, with
the CPU doing the book-keeping between recursive levels.
Finally we launch a thread for each element in L to add the
local rank with the appropriate global sublist rank.

A wrapper function that calls these GPU kernels is cre-
ated on the CPU. It takes care of the recursive step and the
recursion stack is maintained on the host memory. CUDA
also requires that all the GPU global memory be allocated
and all input data required by the kernels be copied to the
GPU beforehand. Once we obtain the list size, the required
memory image is created for the entire depth of recursion
before we enter the function.

The final sequential ranking step (which is determined by
the variable limit) can be achieved in a number of ways. It
can either be handed over to Wyllie’s algorithm, or be copied
to the CPU or be done by a single CUDA thread (provided
that the list is small enough). An appropriate value of limit
for each of these scenarios is discussed in the results section.

4.2 Choice of Splitters and Load Balancing
The runtime and work efficiency of this algorithm rests on

the proper choice of splitters from the random list. In the
crucial local ranking step of the algorithm, each thread will
traverse the nodes until it reaches another splitter. Our goal
is to make these splitters as equidistant as possible in the ac-
tual ranked list, in order to provide all threads equal amount
of work. Since we are working with random lists, we can-
not make an informed choice of splitters that can guarantee
perfect load-balancing among threads in our implementa-
tion. This problem is apparent in the multi-threaded Cell
implementation[3], but its scale is magnified when this algo-
rithm is implemented in the GPU with tens of thousands of
threads and on very large lists.

The original algorithm also calls for n

p log n
splitters to be

chosen at random from the list, where p is the number pro-
cessing elements. With p ≪ n for SMP architectures, Hel-
man et al.[12] went on to prove that with high probability,
the number of elements traversed by a processor is no more
than α(s)n

p
where α(s) ≥ 2.62.

The GTX280, however, requires a minimum of 1024 threads
per SM to keep all the cores occupied and offset memory
fetch latencies from global memory. For our implementa-
tion, the assumption that p ≪ n no longer holds good as
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we have large number of threads that are proportional the
list size. For this implementation to succeed we need a good
choice of the number of random splitters S such that we
are able to get evenly-sized sublists with high probability.
For a list of size n and number of sublists p, a few parame-
ters can help us here in deciding the uniformity of the size
the sublists: The number of singleton sublists, the standard
deviation and the frequency of various sublist sizes.

To understand the impact of these parameters on the run-
time, we implemented the RHJ algorithm on the GPU with
two choices of splitters: n

log n
and n

2 log2 n
. Observe that with

n

log n
splitters, the expected number of singleton sublists for

a list of 8 M elements is about 16,000. This means that
load is not properly balanced as some lists tend to be larger
than the others. With n

2 log2 n
splitters, the expected num-

ber of singletons is under 10. However, this has the effect
of increasing the number of elements in each sublist on the
average.

In a particular run on a list of 8 M elements, the largest
sublist size with n

log n
splitters is 350 while with n

2 log2 n
the

largest sublist has a size of around 10,000 elements. Simi-
larly, the deviation in the case of using n

log n
is higher com-

pared to the deviation with n

2 log2 n
splitters.

Guided by these observations, for large lists we used n

2 log2 n

splitters in the first iteration and used n

log n
splitters in the

remaining iterations (of the recursion). One hopes that this
would give good performance over n

log n
splitters consistently.

However, we observed that there are some inconsistencies.
This is likely due to the fact that if one splitter with a large
sublist to be ranked locally is in each warp then all the
threads in that warp are affected. Moreover, CUDA does
not allow user level thread management which means that
some of the optimization techniques fail to work in CUDA.
Hence, while the performance of RHJ on GPU with n

2 log2 n

splitters is in general good for lists of size 8 M and above,
we see small discrepancy for list of 64 M elements.

5. EXPERIMENTAL RESULTS AND

DISCUSSION
The various implementations discussed so far were tested

on a PC with Intel Core 2 Quad Q6600 at 2.4 GHz, 2 GB
RAM and a NVIDIA GTX 280 with 1 GB of on board
Graphics RAM. The host was running Fedora Core 9, with
NVIDIA Graphics Driver 177.67, and CUDA SDK/Toolkit
version 2.0. These algorithms are also compared to the stan-
dard O(n) sequential algorithm running on the same PC
(Q6600)- hereby referred to as the CPU Sequential Algo-
rithm. We test our implementation on both random and
ordered lists (as shown in Figure 1).

5.1 Comparison with Similar Architectures
In Figure 5, Wyllie’s algorithm shows an interesting pat-

tern. Due to the increased overhead of using 64 bit atomic
operations in the same algorithm, we can see that for small
lists, the curve is very close to the CPU sequential curve.
Unless the list size is at least 512K, Wyllie performs essen-
tially the same as CPU, after 512K, we notice some speedup.
However at around 16 M or higher, the performance of the
algorithm degrades and falls behind the CPU.

Using the RHJ algorithm on the other hand, shows a clear
speedup at about 32 K that increases as the list size in-

List Size Running Time (msec)
CPU GPU GPU RHJ
Seq. Wyllie log N 2 log2 N

1 K 0.010 0.050 0.158 0.273
2 K 0.016 0.053 0.185 0.383
4 K 0.033 0.060 0.227 0.493
8 K 0.087 0.084 0.289 0.678
16 K 0.187 0.133 0.340 0.867
32 K 0.607 0.243 0.384 1.11
64 K 1.25 0.441 0.50 1.57
128 K 2.60 1.16 0.86 2.23
256 K 6.57 2.96 1.68 3.50
512 K 19.59 6.68 3.48 4.73
1 M 76.87 19.06 7.27 7.49
2 M 209 41.91 15.29 13.80
4 M 483 89.22 32.23 26.22
8 M 1033 492 150 129
16 M 2139 1694 464 444
32 M 4442 4502 1093 1136
64 M 9572 11013 2555 2561

Table 2: Results of the various implementations on
the GPU vs. CPU averaged over multiple runs on
random lists.
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Figure 9: Effects of load balancing and memory coa-
lescing on list ranking for list of size 2 and 4 million
nodes

creases. As we recursively go down to a list of less than
32 K, it will be beneficial to handover the final sublist to
either Wylie or to CPU for final ranking. It should be
noted here that handing over the list to CPU will entail
some additional penalties of copying the final sublist data
between GPU memory to host memory, but when its suffi-
ciently small, it can be ignored.

The results of implementing RHJ on the GPU clearly
shows that dividing the input data into non-overlapping seg-
ments and introducing global synchronization (through mul-
tiple kernels) will clearly benefit performance as compared
to a single kernel that relies heavily on atomic operations to
implement critical sections.

In Figure 7, the running time of our algorithm is compared
to the following implementations:

1. Q6600: Sequential implementation on the Intel Core
2 Quad Q6600, 2.4 GHz with 8 MB Cache

2. Cell BE: IBM Blade Center QS20 - on 1 Cell BE
processor (3.2 GHz, 512 MB Cache) with 1 GB RAM,
Cell SDK 1.1 [3]

3. MTA-8: 8 x Cray MTA-2 220 MHz (No data cache)
processors working in parallel [2]

4. E4500 8 x Sun UltraSPARC 400 MHz processors in a
SMP System (Sun Enterprise Server E4500) [2]

GPU vs. Cell BE.
In Figure 8, we provide the performance comparison of the
GTX 280 vs. the Cell BE for random lists from 1 million
to 8 million nodes. We can see that we have a sustained
performance benefit of about 3-4x on these lists. The Cell
BE implementation is the most efficient till date and features
a latency hiding technique. Also, the Cell has user managed
threads and an efficient DMA engine. A fair comparison
of the various architectural parameters of Cell vs. GPU is
really not possible due to the fundamental difference in their
architectures.

5.2 Profile of RHJ on the GPU

List Time for First Iteration (µsec) Total Time
Size Split Local Rank Recombine (µsec)
1 M 11 5350 1094 7182
2 M 15 12273 922 13367
4 M 24 24851 1881 26927
8 M 46 124658 4256 129203

Table 3: Break-up of running time of RHJ on dif-
ferent lists. Total time is the runtime across all it-
erations.

To understand the reason for the observed runtime, we used
the CUDA profiler (provided by CUDA SDK) to breakup
the runtime into various phases of the algorithm. Table 3
shows the complete timing breakup required by the 3 phases
of the algorithm for the first iteration along with the total
runtime. Notice that a large fraction of the total time is
spent in the local ranking step of the first iteration. This
implies that optimizations to this step can further improve
the performance. In a particular run on a list of 8 M el-
ements, as reported in Section 4.2, the largest sublist had
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about 10000 elements, while the number of singleton sub-
lists was around 16000. Using the CUDA documentation
[16], the approximate runtime can be computed to be about
100 milliseconds, by taking the global memory access times
into account. Since the size of the list ranked in subsequent
iterations is very small compared to the size of the original
list, the combined runtime of all the subsequent iterations is
under 1% of the total.

5.3 RHJ on Ordered Lists
We compare our implementation of RHJ on ordered lists

with the CUDPP CUDA ordered scan algorithm by Harris
et al.[19] (Figure 6). Scan works well for ordered lists since
it has been heavily optimized and takes advantage of the
ordered structure to hide global access latencies through the
use of shared memory.

Ordered lists (Figure 1(a)) perform 5-10 times better than
random lists on RHJ itself due to perfect load balancing
among the threads and the high performance of the GPU of
coalesced memory accesses. Note that the algorithm does
not know that the lists are ordered. Scan performs about
8-10 times faster than RHJ on orderd lists. Scan operation,
however, works only on ordered lists and cannot be used on
random lists. A recent paper by Dotsenko et al.[8], claims
to be even faster than CUDPP scan.

5.4 Irregular Access and Load Balancing
Random lists perform significantly worse than ordered

lists using the RHJ algorithm primarily due to two reasons:
unbalanced load in the sequential ranking step and irregu-
lar memory access patterns due to the random list. On the
other hand, Scan [19] has regular and perfectly coalesced
memory access as well as even work loads. We studied the
impact of access pattern and load balance separately.

We create regular access patterns with unbalanced loads
by selecting random splitters on a sequential list. Each
thread accesses consecutive elements of the list. The GPU
does not use caching on global memory to take advantage of
this, however. It coalesces or groups proximage memory ac-
cesses from the threads of a half-warp (currently 16 consec-
utive threads) into a single memory transaction. Coalesced
global memory access [16] is a major factor that determines
the time taken to service a global memory request for a warp.
In the GTX 280, if all the threads of a half-warp access a
memory segment of less than 128 bytes, it is serviced with
a single memory transaction. In other words, a single mem-
ory transaction fetches an entire segment of memory, and a
memory transaction devoted to retrieving a single word will
lead to wasted memory bandwidth. Regular access pattern
can improve the coalescing performance, but not completely.

We create random access with balanced load using a ran-
dom list, but with splitters pre-selected that are equidistant
from each other. This ensures that all threads handle the
same number of elements in the sequential ranking step, but
the memory access pattern is totally random. The random
list is completely uncoalesced as well as load-imbalanced and
performs the worst.

Figure 9 shows the effects of load imbalance and irreg-
ular global memory access on the performance. Regular
memory access even with unbalanced load seems to perform
marginally better than irregular access with balanced load.
It should be noted that regular memory access pattern does
not guarantee full coalescing of memory transactions with-

out perfect splitter selection. Both are, however, much closer
to the performance on a random list than the performance
on a sequential list. Scan does much better and can be
thought of as selecting every other element as a splitter on
a sequential list and achieves high performance.

6. CONCLUSIONS AND FUTUREWORK
In this paper, we presented two implementations of list

ranking on the GPU. Wyllies algorithm gives good perfor-
mance on smaller lists but does not scale well onto larger
lists due to its work inefficiency. The Recursive Helman-
JáJá algorithm scales well onto larger lists and ranks a ran-
dom list of 32 million elements in about a second. It out-
performs other reported implementations of list ranking on
comparable architectures decisively. The RHJ algorithm is
best suited for large input lists, so that the massively multi-
threaded architecture of the GPU can be fully exploited.

We do run into performance issues with our implementa-
tions. The current bottlenecks in the implementations are:

1. In Wyllie’s algorithm, the memory operations affect
performance significantly, as the algorithm is not work-
optimal.

2. For RHJ, memory latency of uncoalesced global ac-
cesses and load-balancing are the primary reasons af-
fecting performance.

Our implementation of Wyllie’s algorithm implements pointer
jumping which may be a primitive useful to various prob-
lems. We hope our work will provide some important point-
ers for implementing other irregular algorithms on massively
multi-threaded architectures like the GPU. Some of the lessons
learned for implementing irregular algorithms here are:

1. Exploiting massive parallelism of the GPU is key to
maximizing performance.

2. Over-reliance on expensive synchronization should be
avoided.

3. Some effort in improving load-balancing through prob-
abilistic means of dividing the work among various
threads may be helpful in improving performance.

In the future, we hope to implement a hybrid solution
to the list ranking problem that distributes the processing
power among multiple GPUs and multi-core CPUs.
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