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Abstract

A standard solution for aligning scripts to movies is to use dynamic time warping with
the subtitles (Everingham ef al., BMVC 2006). We investigate the problem of aligning
scripts to TV video/movies in cases where subtitles are not available, e.g. in the case of
silent films or for film passages which are non-verbal.

To this end we identify a number of “modes of alignment” and train classifiers for
each of these. The modes include visual features, such as locations and face recognition,
and audio features such as speech. In each case the feature gives some alignment infor-
mation, but is too noisy when used independently. We show that combining the different
features into a single cost function and optimizing this using dynamic programming,
leads to a performance superior to each of the individual features.

The method is assessed on episodes from the situation comedy Seinfeld, and on Char-
lie Chaplin and Indian movies.

1 Introduction

Scripts aligned with videos offer a number of possibilities: they can provide supervisory
information for identifying characters [7] or learning actions [13]; they enable a scene level
organization of the video material [6]; and they enable text-based retrieval and search [16].
The typical method of aligning a script (or transcript) with TV or movie videos is dynamic
time warping with the subtitles/closed-captions, as introduced by Everingham et al. [7].

In this paper our objective is the visual alignment between TV/movie videos and their
scripts, without using subtitles. Achieving such an alignment increases the scope and ap-
plicability of script-based approaches to videos with little or no spoken dialogue, and to
situations where subtitles are unavailable, as is common in many non-European language
films or silent films. Therefore, it considerably increases the extent of video material that
is available for training visual classifiers, and is suitable for text based search. The chal-
lenge, however, is the comparison and matching of visual and audio information with the
script descriptions of the video. The description may be quite generic (a street, an office)
or quite specific (Jerry’s apartment), and may involve objects and actions for which visual
recognition is not yet mature.

Our approach is to combine several cues, both visual and audio, which by themselves
are not quite reliable, but when combined provide sufficiently strong constraints for a full
alignment. We pose the problem as one of multi-state labelling of a sequence of shots,
where the states for each shot correspond to the sentences of the script. In order to reduce the
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eating lunch 4 He is in a melancholy state. from Kramer hits the button

Figure 1: Examples of shots correctly annotated by their descriptions. The first two shots are from the episode
The Contest, the other two from The Pick. The annotations from scripts of Seinfeld episodes are aligned with the
video, without using the timing information from subtitles, but by using clues from recognition alone.

ambiguity we explore segmenting the video into scenes associated with locations. Figure 1
shows an example of the resulting alignment.

2 Data and Performance Measure

We use episodes from the popular TV situation comedy Seinfeld, from Charlie Chaplin and
Indian movies. Our dataset consists of episodes from Season 4 of Seinfeld: The Pitch and
The Ticket (training data), The Contest and The Pick (test data). The Charlie Chaplin movies
are excerpts from The Gold Rush and City Lights, and the Indian movie in consideration is
Agantuk. The videos are divided into shots by computing the difference between colour his-
tograms of consecutive frames. Whenever this difference is greater than a certain threshold,
a shot-cut is detected. A typical 20 minute episode of Seinfeld has around 310 shots. Scripts
for the Charlie Chaplin movies were obtained from [1], and for the Seinfeld shows from [4].
An excerpt from a script looks like:

[Setting: Monk’s Coffee shop]

(Jerry and Kramer are sitting opposite Elaine at a booth, eating lunch)
JERRY: (To Elaine) Let me ask you a question.

ELAINE: Mm-hm.

JERRY: You’re a hostage, captured by terrorists-

ELAINE: (Smiling, chewing) Who, me?

A typical script specifies the location of the scene (given as “Setting”), along with a brief
description of the scene. The rest of the script has two distinct elements. The first is the
detail about who is speaking and what, the other is a description of one or more of action
and expressions of the characters.

Performance measure: The problem of alignment is now defined as, given a video and
the script for the events occurring in the video, assign each segment of text to the appropriate
segment of the video. The segment of the text is chosen to be a sentence, and that of the
video to be a shot. The reason for this choice is that, in general, each sentence is “atomic”
to a shot. Meaning, a sentence is generally spoken within one shot. The descriptions of
actors’ action/expression are localised to a shot as well. We shall call the spoken sentences
Ss,s € [1,Ns], and localised descriptions as Dy, d € [1,Np], where Ng, Np are respectively the
number of such sentences. Thus, for each sentence in S; U Dy, the alignment tries to identify
the right shot 7;,¢ € [1, Nr]. The performance of the alignment is evaluated against manually
ground truthed sentence-shot correspondences (Figure 2), the accuracy given as the number
of sentences from S U D assigned to the right shot. We shall denote by §’, D', the sentences
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Fi gure 2: Example of a naive alignment scheme, shown over the first 40 sentences from the episode The Contest.
S; corresponds to sentences and 7; to shots. The blue lines correspond to the groundtruth alignment. The green
and red lines indicate the correct/incorrect correspondences from naive alignment. It can be seen that errors at the
beginning drastically affect the rest of the alignment.

aligned with the shot 7. The groundtruth is represented as Si;, D;. The performance measure

is defined as
LIS NS+ X 1D Dy
Ns+Np

If every sentence is aligned correctly, the intersection between the alignment and the groundtruth,
summed over all shots yields a numerator equal to the total number of sentences. The value

of p in this case would be one. Whenever the sentences are assigned to the wrong shot, the
numerator decreases, and hence the p. We also define pg, as the performance measure that
allows errors in assignment upto k shots per sentence.

For a correct alignment, each sentence should compete for the right shot to fall into.
The voting of a shot should depend on common features that can be extracted from both the
sentence and the shot. For example, let us suppose that we know from the script that a sen-
tence was spoken by Kramer while at the Monk’s Cafe. Such a sentence would more likely
occur at a shot known to belong to that location, in which Kramer can be visually recog-
nised. Additional clues from the speech domain,would provide further evidence in support
of such an assignment. Towards this end, we extract three clues from each shot/sentence:
< Location, Face,Speech >. We apply state-of-the-art techniques for each of these mod-
ules, and the results on their performance are reported in the following section.

3 Recognizing Visual-Audio Aspects
3.1 Location Recognition

Television series are characterised by repetitive locations and recurring characters. In the
case of Seinfeld, “Jerry’s Apartment” and “Monk’s Cafe” are the locations for a large number
of the scenes. The setting of these locations remains relatively similar throughout the series,
making them good candidates for scene recognition. In the case of sitcoms, each scene in
the video is preceded by a stock-shot of the location from an exterior view. An example
shown in Figure 3. The recognition of this stock-shot reliably identifies the starting shot for
that location. The stock-shot varies in viewpoint, illumination and scale, across different
occurrences. SIFT [14] features handle these variations well. We approach this problem
as a near-duplicate image matching, given a set of stock-shot exemplars. Exemplars for
stock-shot are identified from the training data. The SIFT features are vector-quantised into
K visual words, and each shot is then represented by a bag of visual words (BoW) [17].
The BoW for each shot is compared by the L;-Norm with the BoW representation of the
exemplars for the stock-shots. If the closest exemplar is less than a small threshold, the shot
is classified to the particular scene category. By this method, we are able to reliably identify
the beginning of scenes whose location is either Jerry’s apartment or Monk’s Cafe.
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Figure 3: Location recognition pipeline. Stock shots (above) are recognised to identify the beginning of Jerry’s
Apartment and Monk’s Cafe. Shots are then classified using an SVM into one of Jerry’s Apartment (blue), Monk’s
Cafe (red) and Other (green). Temporal scene segmentation is performed by combining the stock-shot and classifier
information.

Given the beginning of these scenes, the next step is to determine their extent. The
goal here is to classify the subsequent shots as belonging to that location or not. This is
a multi-class problem: the shot can belong to Jerry’s apartment or Monk’s cafe or ‘other’
(where ‘other’ covers all other locations). The classification proceeds in two steps: first
individual shots are classified using a Kernel-SVM over BoW representation for shots; then
a sliding window (on shots) is used to determine the scene boundary. The scene segmentation
procedure is depicted in Figure 3.

In detail, I-frames are extracted from each shot, over which Hessian-Affine [15] and
SIFT interest regions are obtained. These interest regions are represented using the SIFT
descriptor, and a BoW representation obtained for each shot. A Kernel-SVM classifier is
trained for each class, with the 2 kernel distance between two shots p, g given as

)2
K(p,q)=e (00 where,  x*(p,q) =Y. (pi—ai)”

N
= Pitai

i

Here, the parameter « is set to be the average x> distance between training shots. The shot
classification accuracy for the two classes with this method was about 67%.

To improve the location recognition accuracy, we experimented with excising humans
before classifying the shots so that the matching can concentrate on the backgrounds. How-
ever, we found that this decreased the performance from 67% to 50%. To elaborate, we
used the upper body detector provided by Ferrari et al. [10], to locate the humans and then
masked them out using a matte constructed by averaging a number of upperbody training
examples (i.e. the head and torso, not the entire ROI). All detected features within the mask
were then filtered out, and the BoW computed from the remainder. The lack of success of
this excising is possibly due to the camera focusing on the people, thereby defocusing the
background; also, removing features over people still results in the loss of some features
from the background.
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Temporal recognition refinement: The location recognition accuracy is improved by us-
ing the property that the location does not change with every shot, but only across scenes.
Errors in shot classifiers can be corrected with temporal filtering. The beginning of Jerry’s
Apartment and Monk’s Cafe are obtained from the stock-shot recognition. We now need
to identify where such scenes end and the ones from Other category begin. To identify the
scene-boundaries between location L; and L; 1, a sliding window of W shots is moved across

the video. At each shot s, an 0bjective7 function is computed as
K s+W /2

ES:oc1~{ Y (1-PLl)+ ¥ (1—P(Ll+1|i))}+062-{Dist(s,s+l)}7(a1+(xz:1)
i=s—W/2 i=s

The first term in E evaluates the cost of assigning the shots [s — W /2, s] to the location
Ly, and those from [s,W] to L,. P(L|i) is the score obtained from the shot classifier. The
second term penalizes scene-boundaries at similar looking adjacent shots. The Dist(s,s+ 1)
is obtained as the inverse of the L1-Norm difference between the shot’s BoWs. The scene-
boundary B; is obtained as the shot-boundary at which the objective function is minimum.
From the training data, we estimate the best performing ¢ and o to be 0.3 and 0.7 respec-
tively, using a window size of eight shots.

The scene boundary between adjacent scenes, both belonging to Other is estimated from
the number of sentences spoken in the given location. It is assumed that the scene duration
is proportional to the length of the speech. This estimate is refined by assigning the scene-
boundary to the closest shot with no faces or speech detected (see Sections 3.2 and 3.3).
Such a shot would typically represent a change in the scene. The final location recognition
accuracy is measured as the number of shots assigned to the correct location. The accuracy
for the training and test data is 96%. An example result is shown in Figure 3.

3.2 Face Recognition

Seinfeld consists of four main characters, namely Jerry, George, Elaine and Kramer. By
recognizing these characters, a large percentage of faces can be labeled in the video. We
use the face detection/tracking/recognition pipeline of Everingham et al. [7]. We add to
this a step of rejecting false face detections using skin pixel detection. The threshold for
skin/non-skin classification is chosen such that 75% of the false detections are removed,
while retaining about 95% of true detections. This removes typical false detections that
occur over windows, TV channel logos, clothing etc.

In the pipeline facial feature points are extracted from the corners of the eyes, nose and
mouth using the code provided by [7]. SIFT-like features are computed for each of 13 points,
which are concatenated to form a single vector for each face image. Faces are classified
against a set of hand picked exemplars for each character. We build a Kernel-SVM [9] for
face recognition. Here, the kernel is defined as the min-min distance between a given face
track and exemplar face tracks:

K(F;,Fj) = piegl?,fgﬂs(l’hpj)
where s(p;, pj) is computed as a RBF Kernel on the distance between the facial feature
vectors of p; and p;. We use a refuse-to-predict scheme of [7] where labels are given to
face tracks only if we are confident about such an assignment. The precision-recall curve
for the classifier is given in Figure 4 (left). Precision is the fraction of correctly labeled face
tracks, and recall is fraction of the tracks whose label is predicted. Our classifier achieves a
precision of 80% at 65% recall.
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Figure 4: (left) Precision-Recall curve of face recognition. (right) Performance metric p; across various values of
k, as evaluated over the test episodes; the weights for the {location, face, speech} costs are specified in the legend.

3.3 Speech Recognition

The audio track provides useful clues for aligning the spoken sentences. We explore the use
of speech recognition for our alignment procedure. The audio from each shot is isolated
and provided as input to standard speech recognition packages, namely CMU-Sphinx [3]
and Dragon Naturally Speaking (DNS) [2]. We do not perform either speaker or sentence
segmentation of the audio speech. The in-built speech/speaker models were directly used,
since training the speech models would require substantial training data for each speaker.
Recognition output for an example shot is given below:

Actual speech: “No, ma, I'm not gonna see a psychiatrist. N- I don’t care if you do pay
for it! No! Discussion over. Yeah, alright, I’ll see you later. Yes, of course I’'m gonna come
by. Alright. My mother wants me to see a psychiatrist now.”

Recognised speech (CMU Sphinx): “ooohh contest you psychiatrist now how difficult
re horrible now shuttle door s elaine guess what sound that and i a hair and the walls visiting
just now”

Recognised speech (Naturally Speaking): “home is an interest rate for no destruction
of the IIRC it would — of course I'm going to combine for a little as we see a psychiatrist”

The word psychiatrist was correctly recognised once in both systems, even though it
occurs twice in the conversation. Other recognised words were see a, going (DNS), now
(Sphinx). Matches over stopwords such as {a, the, and, I, it, ...} are not considered. The
recognition performance of speech recognition was understandably poor [5, 11], owing to the
fact that we provide the software with “wild” data: the audio files contain multiple speakers
in a single shot, laughter of the audience, varying speed of speech delivery, background
music etc., which are not trained for in generic speech recognition systems. We get a word
level recognition accuracy of 10%. The number of sentences in the training episodes with at
least one word recognised correctly by DNS was 21%. The same for the test episodes was
23%.

4 Aligning Videos with Scripts

As was seen in the previous section, the visual-audio recognition modules are not accurate
enough to align independently. However, additional characteristics of the problem can be
exploited for aligning the script to the video. We formulate the problem as one of multi-
state labelling of the shots, with the states of each shot corresponding to the sentences of
the script. We will illustrate the formulation using the spoken sentences S, though a similar
development can be given for the descriptions D. Let us denote by d(i, j), the local cost of
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the assignment S; < T, and Z(i, j) the global cost of assignment. We have the following
constraints in our formulation:

e Uniqueness constraint: Each sentence can be assigned to only one shot.

e Ordering constraint: The sentences and shots are ordered lists, hence implying a
sequence constraint to the sentences and shots. Therefore, if S; < T}, indicates that
the i sentence is assigned to the j shot, then Vi’ < i and S; < Ty =j <.

o Null-assignment: It is possible that certain shots do not have any sentences associated
with them. This could be because no character is speaking in the shot, or if it is a stock-
shot. Hence, the predecessor of S; < T; in the alignment could be s.t. S; | < T,k €
[1,7—1]. A penalty term is associated with each jump over a shot. There are no
null-assignments over sentences, i.e. every sentence is always assigned to a shot.

e Multiple assignment: Multiple (contiguous) sentences can be assigned to a single
shot. However, their combined word count should fit during the shot duration. The
local cost function is modified as d' (i, j) = d(i, j) + Y- distrengn (i,i — 1,...,i =k, J).
We estimate the average number of words that could be spoken in a shot, based on
its length. The disty.ng is the difference between the estimated word count and the
number of words in the sentences [i — k, i] assigned to the shot j.

Speech recognition costs. Speech recognition results are filtered by word length, only
words longer than four characters are considered. The similarity score is based upon the
number of words overlapping between the speech recognition output and the given sen-
tence. The maximum overlap was observed to be two. The speech based distance measure
Costgpeech 18 set to be 0 for two matching words, 0.5 for one match and 1 for no matches.

Face recognition costs. Three statistics over the training data are used in constructing
the face recognition costs: (i) the probability of the speaker being visible in the shot is 0.94;
(i) the probability that a non-speaker is present in the shot is 0.36; and (iii) the probability
that the speaker is visible, but not detected in the shot is 0.07. Accordingly, the Costrce is
defined as (1 —0.94) x (1 — classifier_score), if the speaker of a sentence is visible in the
given shot. In case the speaker is not visible, Costggece = (1 —0.07) xavgc(classifier_score),
C is the character in consideration. For each non-speaker recognised in the shot, the face cost
is incremented by 0.36 times the average classifier scores for those face tracks.

Location recognition costs. The location cost depends on the location for the sentence.
Since the accuracy of scene segmentation of Jerry’s Apartment or Monk’s Cafe is 96%, the
cost of a sentence being assigned to a shot recognised to be in these locations is set to be
0.04, and 0.96 otherwise.

The final local cost d(i, j) is computed from a weighted combination of the location,
faces and speech distances:

d(l,]) =0 - COStLocationOvj) +0n- COStFace(ivj) +03 'COStSpeech<i7j)7 o t+out+oz=1

This formulation lends itself to be solved using dynamic programming. Apart from the
global cost array &, an indicator array I is maintained, where I(i, j) points to the table entry
corresponding to the optimum subproblem solution of Z(i, j). By backtracking I, we recover
the alignment between the sentences and shots. The complexity of our algorithm is of the
order O((Ns + Np) - Nr).
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5 Results

Baseline alignment. A blind alignment scheme would uniformly spread the sentences
across the shots. Given Ns+ Np sentences and Ny shots, such a scheme would allot | (Ns +
Np)/Nr | sentences to each shot, sequentially. An example alignment using this scheme is
shown in Figure 2. This alignment performs poorly, since errors once committed are hard to
recover from, and such errors drastically effect the subsequent alignment. The performance
of this method, p, is only about 4%. From the groundtruth sentence-shot correspondences
(shown as blue lines), it can be seen that the uniform speech assumption is invalid. A stronger
hypothesis is required to assign a particular sentence to a given shot.

Subtitle alignment. Subtitle based alignment uses the timing information in subtitles
to assign the sentences to shots. However, the subtitles are designed such that they cover
multiple sentences, displayed over multiple shots. There are many instances where a single
shot would mark the end of a subtitle and the begin of the next. Such sentences are spread
across multiple shots using the naive alignment scheme. The p of this scheme was 91%.

Global alignment. Aligning the script with video can be performed using different com-
binations of the modalities. In the first instance of using speech alone, the sparse sentence-
shot correspondences obtained from speech are used to drive the dynamic programming.
With ideal speech recognition, this method would replicate subtitle-based alignment. How-
ever, given the insufficient speech matches for a bulk of shots in some of the scenes, the
p of this modality is about 47% on the training data. On the other hand, using the face
recognition results alone gives a p of 33%. Since we only recognise the faces (we do not
perform speaker detection), the sentences are matched across shots where the character is
present but is not speaking. Further, the errors in face recognition deteriorate the alignment
when the speaking character is not correctly recognised in the shot. These errors confuse the
alignment by providing false matches between sentence and shots.

The weights o for each modality are learnt using the training data. The weights for each
modality guide the alignment in cases where the clues do not agree with each other. If for
example, the location and speech clues conflict, the respective o determines which modality
takes precedence. Thus, with a higher weight for speech, errors due to location could be
overcome and vice-versa. The best performing parameters were found to be {0.2, 0.2, 0.6},
at which the p over training data was 71%, and over the test episodes was 67%.

Scene level alignment. Using the location recognition of Section 3.1, we restrict assign-
ing the sentences within a scene to the shots of a location video segment. The alignment
within scenes is carried out using the face and speech information. This procedure essen-
tially anchors the sentences and shots known to belong together, and identifies an alignment
between such anchors. With this procedure, we are able to improve results and we obtain a
p of 74%.

Example results from annotation are shown in Figure 1. We have analysed the errors in
the episode The Contest. The two main reasons for the alignment errors are mistakes in the
scene segmentation, and the lack of sufficient clues from speech to correct the location based
errors. Of the 15 scenes in the episode, 5 scenes have poor temporal segmentation and sparse
speech-based matches. These scenes account for about 71 erroneous sentence assignments.
The remaining 68 errors are distributed across the other 10 scenes.

In most error cases, the sentence is assigned within a few shots of the actual correspon-
dence. Over our test data, the maximum distance of an erroneous assignment was of five
shots, hence ps = 100%. This can be seen from the graph in Figure 4 (right). In a video
retrieval scenario, for a given textual query, we could provide a video segment consisting of
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multiple shots. By returning video segments consisting of about 11 shots, the precision of
retrieval would be 1, even though the precise alignment might be less accurate.

5.1 Aligning Scripts of Silent Movies and Indian Films

We apply the various cues discussed above, to align the silent movies of Charlie Chaplin
with their scripts. We apply our techniques to two scenes, one from The Gold Rush and
the other from City Lights. In Seinfeld videos, we have used the stock-shot information for
scene segmentation. In the case of Chaplin movies, scene changes are observed as a visual
fading to a blank screen. By detecting the blank screen, which can be reliably performed,
we find the scene boundaries. The scene segment of the text is identified from the mention
of Curtain. For example, the scene changes whenever the script indicates similar to “Curtain
lowered to denote lapse of time”

For the video clip from Gold Rush, the script only describes scenes occurring in the
setting of The Cabin. To detect this scene, we use a Kernel-SVM classifier over BoW rep-
resentation, similar to the one used in location recognition of Seinfeld. Shots are classified
as belonging to the Cabin, the scene with the most non-cabin shots was classified as the
un-scripted scene. Following this, the scenes in the text are correctly aligned with the cor-
responding video segment. Within a scene segment, the alignment of descriptions is carried
out using face recognition, with the method of Section 3.2 to label the characters Lonly, Old
Timer, Black Larsen. Sample annotations after alignment of the script with the video, are
shown in Figure 5 (left). The clip from City Lights has Intertitles, where the dialogue is writ-
ten on the video frame itself. These intertitles were detected and fed to a commercial OCR.
The recognised text provides us with additional constraints for the alignment. Resulting
annotations are shown in Figure 5 (right).

Lonly, is seen at stove stirring boil-
Tramp stands up and accepts a glass
ing pot. Old Timer is leaning over
from Millionaire
table groaning.

Lonly pokes fork in pot as if testing
*Here’s to our friendship —
tenderness of what he is cooking

. . L He pours glasses full. They both
Old Timer grimaces as he bites into

. " hold glasses above heads in toast
piece of upper.
fashion.

Figure 5: Examples of annotated scenes from (left) Gold Rush, (right) City Lights. The second shot
in the City Lights example is the Intertitle; the OCR output for this is shown alongside.

We further test the applicability of our approach in aligning scripts of films with no
subtitles, a common situation for Indian films. For this example, we choose a segment from
the movie Agantuk, the script for which was available in published form. We use the face
and speech modalities for the matching sentences and shots. Though much of the dialogue
is in the language of Bengali, it is interspersed with English words. By applying speech
recognition using the DNS engine, we could obtain about nine strong matches between the
recognised speech and the script. Using the speech and face clues, we achieved satisfactory
alignment results for this data. Some examples are shown in Figure 6.
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He springs up, snap- Prithwish loses his patience. He expresses his irritation freely,
o . . . . The domestic help comes in and clears
ping his fingers, and | sweeping out his pack of cigarettes and matchbox from his .
the table, taking away the tea tray.

breaks into song. pocket, and banking them down on the table

Figure 6: Examples of annotated scenes from the Bengali movie Agantuk. The movie DVD does not
provide subtitles, in spite of which we were able to align the video with the dialogues and descriptions
provided in the script.

6 Conclusions

We have presented an approach to enable visual alignment of movies with their scripts, with-
out using subtitles. Different features were recognised for this purpose, to provide clues of
the alignment. Though individual recognition modules performed poorly, their combination
in a multi-modal framework yielded satisfactory alignment. The use of these alignment re-
sults could enable text-based search over movie video collections, and to create training data
for various vision tasks.

We have presented a framework that can be extended as visual object recognition im-
proves [8] or recognition of actions/interactions improves [12, 13], so that more correspon-
dences can be found between nouns/verbs in the script and visual detections. Similarly, other
audio cues such as silence, speaker recognition etc. could be included.
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