
CudaCuts: Fast Graph Cuts on the GPU

Vibhav Vineet and P. J. Narayanan
Centre for Visual Information Technology

International Institute of Information Technology
Hyderabad, 500032. India

{vibhavvinet@students.,pjn@}iiit.ac.in

Abstract

Graph Cuts has become a powerful and popular opti-
mization tool for energies defined over an MRF and has
found applications in image segmentation, stereo vision,
image restoration etc. The maxflow/mincut algorithm to
compute graph cuts is computationally expensive. The best
reported implementation of it takes over 140 milliseconds
even on images of size640×480 for two labels and cannot
be used for real time applications.

The commodity Graphics Processor Unit (GPU) has
emerged as an economical and fast parallel co-processor
recently. In this paper, we present an implementation of
the push-relabel algorithm for graph cuts on the GPU. We
show our results on some benchmark dataset and some syn-
thetic images. We can perform over 25 graph cuts per sec-
ond on640×480 size benchmark images and over 35 graph
cuts per second on1K × 1K size synthetic images on an
Nvidia GTX 280. The time for each complete graph-cut is
few milliseconds when only a few edge weights change from
the previous graphs, as on dynamic graphs. The CUDA
code with a well-defined interface can be downloaded from
http://cvit.iiit.ac.in/index.php?page=resources .

1. Introduction

Graph cuts have been used as a method to find the op-
timal MAP estimation of various Computer Vision prob-
lems defined over an MRF. Though the mincut/maxflow al-
gorithm was introduced into Computer Vision early [17],
their potential was exploited only after the work of Boykov
et al. [5, 6] and their characterization of functions that can
be optimized using graph cuts [25]. Graph-cuts have since
then been applied to several Computer Vision problems like
image and video segmentation [29, 27], stereo and motion
[5, 31], multi-camera scene reconstruction [24, 20], etc.

Various algorithms and strategies have been proposed to
improve the computational performance of maxflow/mincut

algorithm. Boykov and Kolmogorov [4] reused the
search trees towards improving the computational effi-
ciency. MRFs can be initialized to the solution com-
puted for the MRF instance in the previous frame, in a
video, to converge to the solution quickly. Dynamic graph-
cut [22, 23] and Active graph-cuts [21] use similar strate-
gies. All the proposed implementations cannot be used for
any real-time application.

The contemporary graphics processor unit (GPU) has
huge computation power and can be very efficient on many
data-parallel tasks. They have recently been used for
non-graphics applications [16] and many in Computer Vi-
sion, e.g., OpenVidia [13], feature based tracker [30], Sift-
GPU [32]. The GPU, however, has had a difficult program-
ming model that followed the traditional graphics pipeline.
This made it difficult to implement general graph algo-
rithms on them. The Compute Unified Device Architecture
(CUDA) from Nvidia [9] and the Close-To-Metal (CTM)
from ATI/AMD [8] are such interfaces for modern GPUs.
These enable the acceleration of algorithms on irregular
graphs [18] and other application involving graphs.

In this technical report, we present a fast implementation
of the push-relabel algorithm for mincut/maxflow algorithm
for graph-cuts using CUDA. We use the global memory and
the shared memory on the GPU for efficient computation.
We use the atomic functions operating on the global mem-
ory only availabel for devices of compute capability 1.1 or
above. We also propose stochastic cuts which improves the
performance of push-relabel algorithm by factors for differ-
ent problems on the GPU.

Our implementation of the basic graph-cut can perform
over 30 graph-cuts per second on synthetic images of size
1024×1024 and benchmark images of size640×480 on
an Nvidia GTX 280. Each graph cut can be computed in
few millisecond on images on dynamic graphs arising from
videos. A shader based early implementation of graph cuts
on the GPU was even slower than the CPU implementation
[10]. Hussein et al. [19] report an implementation of the
push-relabel algorithm on CUDA. They achieve a speedup



of only 2-4.5 over the CPU implementation with a running
time of 100 milliseconds per frames with a million pixels,
as opposed to 33 milliseconds by our implementation. Sec-
tion 2 describes the the GPU implementation of the basic
push-relabel algorithm for graph cuts. Different strategies
to optimize the graph cuts on CUDA is described in sec-
tion 3. Section 4 presents the experimental results. Some
concluding remarks and directions for future work are given
in Section 5.
2. Graph Cuts on GPU

The mincut/maxflow algorithm tries to find the minimum
cut in a graph that separates two designated nodes, namely,
the sources and the targett. The mincut minimizes the
energy of an MRF defined over the image lattice when a
discontinuity preserving energy function is used [25]. The
energy function used has the following form:

E(f) =
∑

p,q∈N

Vp,q(fp, fq) +
∑

p∈P

Dp(fp), (1)

where,Dp is the data energy,Vp,q is the smoothness energy,
N the neighbourhood in the MRF,fp is the label assigned
to the pixelp, andP are all pixels of the lattice.

Two algorithms are popular to compute the min-
cut/maxflow on graphs. The first one, due to Ford and Fulk-
erson [12] and modified by Edmonds and Karp [11], repeat-
edly computes augmenting paths from sources to targett in
the graph through which flow is pushed until no augment-
ing path can be found. The second algorithm, by Goldberg
and Tarjan [15], works by pushing flow froms to t with-
out violating the edge capacities. Rather than examining
the entire residual network to find an augmenting path, the
push-relabel algorithm works locally, looking at each ver-
tex’s neighbors in the residual network. There are two basic
operations in a push-relabel algorithm: pushing excess flow
from a vertex to one of its neighbors and relabelling a vertex
to its distance to the sink. The algorithm is sped up in prac-
tice by periodically relabelling the vertices using a global
relabelling procedure or a gap relabelling procedure [7].

The sequential implementation of graph cuts by Boykov
and others follow the Edmonds-Karp algorithm which re-
peatedly finds the shortest path from the source to the target
using a breadth-first search (BFS) step, which is not eas-
ily parallelizable. The push-relabel algorithm was paral-
lellized by Anderson and Setubal [2]. Bader and Sachdeva
later produced a cache-aware optimization of it [3]. The tar-
get architecture is a cluster of symmetric multi-processors
(SMPs) having from 2 to over 100 processors per node. Al-
izadeh and Goldberg [1] present a parallel implementation
on a massively parallel Connection Machine CM-2. Two
attempts to implement this algorithm on the GPU have also
been reported [10, 19]. We implement the push-relabel al-
gorithm on the GPU using CUDA.

2.1. Push-Relabel Algorithm

Let G = (V, E) be the graph ands, t be the source
and target nodes. The push-relabel algorithm constructs and
maintains a residual graph at all times. The residual graph
Gf of the graphG has the same topology, but consists of
the edges which can admit more flow. The residual capac-
ity cf (u, v) = c(u, v)− f(u, v) is the amount of additional
flow which can be sent fromu to v after pushingf(u, v),
wherec(u, v) is the capacity of the edge(u, v). The push-
relabel algorithm maintains two quantities: the excess flow
e(v) at every vertex and the heighth(v) for all vertexes
V

′

= V ∪ {s, t} with h(s) = n andh(t) = 0. The excess
flow e(v) ≥ 0 is the difference between the total incoming
and outgoing flows at nodev through its edges. The height
h(v), is a conservative estimate of the distance of vertexv

from the targett. Initially all the vertexes have a height of
0 except for the sources which has a heightn = |V |, the
number of nodes in the graph.

Computation proceeds in terms of two operations. The
push operation can be applied at a vertexu if e(u) > 0 and
its heighth(u) is equal toh(v) + 1 for at least one neigh-
bour (u, v) ∈ Ef . After the push, either vertexu is satu-
rated (i.e.,e(u) = 0) or the edge(u, v) is saturated (i.e.,
cf (u, v) = 0). The relabel operation is applied at a vertex
u if it has positive excess flow but no push is possible to
any neighbour due to height mismatch. The height ofu is
increased in the relabelling step by setting it to one more
than the minimum height of its neighbouring nodes. Global
relabelling needs a breadth first search to correctly assign
the distances to the target. Gap relabelling needs to find
any gaps in the height values in the entire graph. Both are
expensive operations and are performed only infrequently.
The algorithm stops when neither push nor relabelling can
be applied. The excess flows in the nodes are then pushed
back to the source and the saturated nodes of the final resid-
ual graph gives the mincut.

2.2. Graph construction on CUDA architecture

Our graph-construction exploits the grid-structure that
arises for MRFs defined over images. There are two popu-
lar method for constructing the graphs for the MRFs defined
over images. Kolmogorov et.al. [25] constructs the graph
which does not introduce any auxiliary vertices, which is
in contrast to the graph construction of Boykov et.al. [6],
which introduces auxiliary vertices. We adapt the graph
construction of Kolmogorov et.al. [25], which maintains
the the grid structure, suitable for the GPU/CUDA archi-
tecture. We constructs the grid-graph such that each pixel
represents a non-terminal vertex in the graph. We assume
fixed connectivity which could be 4 or 8 neighbors for each
node. Consequently, 4 or 8 two-dimensional arrays store the
weights along the n-edges. Two other arrays hold the excess



flow and the edge capacity to the target node for each node.
Graph construction on GPU is very fast as shown in Table 1.
An array to hold the heights and a mask array to hold the
status of each node complete the representation. This rep-
resentation can easily be extended to 3D grids for 3D graph
cuts and other fixed connectivity patterns. Different strate-
gies will have to be adopted for general graphs represented
using adjacency list or adjacency matrix.

Image Size GPU Time(ms) CPU Time(ms)
Sponge 640X480 0.151 61
Person 600X450 0.15 60
Flower 600X450 0.15 60

Table 1. Timings for constructing graphs from energy functions on
different dataset on GTX 280 and CPU.

2.3. Push-Relabel Algorithm on CUDA

The CUDA environment exposes the SIMD architecture
of the GPUs by enabling the operation of programkernels
on datagrids, divided into multipleblocksconsisting of sev-
eralthreads. The highest performance is achieved when the
threads avoid divergence and perform the same operation on
their data elements. The GPU has high computation power
but low memory bandwidth. The GPU architecture cannot
lock memory; synchronization is limited to the threads of
a block. This places restrictions on how modifications by
one thread can be seen by other threads. However, later ver-
sions of CUDA provide the facility of atomic functions. An
atomic function performs a read-modify-write atomic op-
eration on one 32-bit or 64-bit word residing in global or
shared memory. For example, atomicAdd() reads a 32-bit
word at some address in global or shared memory, adds an
integer to it, and writes the result back to the same address.
The operation is atomic in the sense that it is guaranteed to
be performed without interference from other threads. In
other words, no other thread can access this address until
the operation is complete. Atomic functions can only be
used in device functions and are only available for devices
of compute capability 1.1 and above. Atomic functions op-
erating on shared memory and atomic functions operating
on 64-bit words are only available for devices of compute
capability 1.2 and above.

The basic implementation of the push-relabel algorithm
requires three phases. ThePushphase pushes excess flow
at each node to its neighbours and thePull phase updates
the net excess flow at each node. TheLocal Relabelphase
applies a local relabelling operation to adjust the heights
as stipulated by the algorithm. These three basic phases
use two kernels. ThePushphase requires one kernel. The
Pull phase andLocal Relabelphase require another kernel.
The heights of the nodes can also be adjusted by applying

breadth first search starting from the sink. The breadth first
search step is very slow and slows the computation overall.

Our implementation exploits the structure of the grid-
graph that arise for MRFs over images, where each pixel
corresponds to a node and the connectivity is fixed to its
4-neighbours. The grid has the dimensions of the image.
We organize them into a two-dimensional grid of geome-
try Bx × By, whereBx andBy are the number of thread
blocks in x and y directions. Blocks are further divided
into Dx×Dy threads. The maximum efficiency is achieved
whenBx andBy are multiple ofDx andDy respectively.
In our case, Each thread block is of size 32×8. To achieve
maximum efficiency, we pad the rows and columns to make
them multiples of 32×8. Each thread handles a single node
or pixel and a block handlesDx×Dy pixels. It needs to
access data from a(Dx + 2)× (Dy + 2) section of the
image. Each node has the following data: its excess flow
e(u), heighth(u), an active statusflag(u) and the resid-
ual edge capacities to its neighbours. These are stored as
appropriate-sized arrays in the global(or device) memory of
the GPU, which is accessible to all threads.

There are multiple blocks running in parallel on the
GPU. We organize them into a two-dimensional grid of ge-
ometryBx×By, whereBx andBy are the number of thread
blocks in x and y directions. Blocks are further divided
into Dx×Dy threads. The maximum efficiency is achieved
whenBx andBy are multiple ofDx andDy respectively.
We represent an image as a two dimensional grid. Each
thread block is of size 32×8. To achieve maximum effi-
ciency, we pad the rows and columns to make them multi-
ples of 32×8.

A node can be active, passive, or inactive. Active nodes
have the excess flowe(u) > 0 andh(u) = h(v) + 1 for
at least one neighbourv. Passive nodes do not satisfy the
height condition, but may do so after relabeling. If a node
has no excess flow or has no neighbour in the residual graph
Gf , it becomes inactive. The kernel first copies theh(u)
values of all nodes in a thread-block to the shared memory
of the GPU’s multiprocessor. Since these values are needed
by all neighbour threads, storing them in the shared memory
speeds up the operation overall.

Push is a local operation with each node sending flow
to its neighbours and reducing own excess flow. A node
can receive flow from its neighbours also. Thus, the net
excess flow cannot be updated in one step due to the read-
after-write data consistency issues. To maitain the preflow
conditions without the read-after-write data consistency, we
divide the operation into two kernels: Push Kernel and
Pull kernel. However, atomic functions can perform read-
modify-write atomic operations on 32-bit or 64-bit word re-
siding in global or shared memory. So, we can combine
push phase and pull phase without any inconsistency. Sec-
tion 2.3.1 describes the implementation on hardware with



atomic capabilites and Section 2.3.2 describes the imple-
mentation on hardware without atomic capabilities.

2.3.1 CudaCuts on hardware with atomic capabilities

PushPull Kernel: The kernel updates the edge-weights
of the edges(u, v) and(v, u) and the excess flowse(u) and
e(v) of the vertices,u andv in the residual graphEf .

PushPullKernel (nodeu)
1. Loadh(u) from the global memory to the shared mem-

ory of the block.
2. Synchronize threads to ensure completion of load.
3. Push flow to eligible neighbours atomically without vi-

olating the preflow conditions.
4. Update the edge-weights of(u, v) and (v, u) atomi-

cally in the residual graphEf .
5. Update the excess flows ofe(u) ande(v) atomically in

the residual graphEf .

Atomic writes to the global memory ensure synchronza-
tion across the blocks of the grid.

Local Relabel Kernel: The local relabelling step replaces
the height of a vertex with 1 more than the minimum of the
heights of its neighbours. This operation reads the heights
of neighbouring vertices from the global memory and writes
the new height value to the global memory. After the relabel
operation, many passive vertices become active. The thread
for nodeu of the kernel does the following.

RelabelKernel (nodeu)
1. Loadh(u) from the global memory to the shared mem-

ory of the block.
2. Synchronize threads to ensure completion of load.
3. Compute the minimum height of neighbours ofu in

the residual graphEf .
4. Write the new height to global memoryh(u).

2.3.2 CudaCuts on hardware without atomic capabili-
ties

Atomic functions are not available on such devices, so push
and pull phases can not be combined into one. The syn-
chronization is limited to the threads of a block. The border
pixels of a block may not get the exact flow value. So, we
perform the push operation in one kernel and pull and rela-
bel operation in another kernel.

Push Kernel: The push kernel updates the edge-weights
of the possible edges(u, v) and the excess flow ofe(u) in
residual graph.

PushKernel (nodeu)

1. Loadh(u) from the global memory to the shared mem-
ory of the block.

2. Synchronize threads to ensure completion of load.
3. Push flow to the eligible neighbours without violating

the preflow conditions.
4. Update the residual capcities of edges(u, v) in residual

graph.
5. Update the excess flowe(u) of the vertex.
6. Store the flow pushed to each edge in a special global

memory arrayF .

PullRelabel Kernel: The kernel updates the excess flow
e(u) and edge-weightse(u, v) residual graph.

PullRelabelKernel (nodeu)
1. Loadh(u) from the global memory to the shared mem-

ory of the block.
2. Synchronize threads to ensure completion of load.
3. Update the excess flowe(u) of each vertex and the

residual capacities of edges(u, v) in the residual graph
Ef with the flows from global memory arrayF .

4. Synchronize threads to ensure completion of updation
of edge-weights and excess flow.

5. Compute the minimum height of neighbours ofu in
the residual graphEf .

6. Write the new height to global memoryh(u).

Figure 1 shows the effect of push and pull operations. It
shows an active vertex which pushes flow to all its neigh-
bours in the residual graph. Similarly, a vertex in the pull
phase updates its excess flow by receiving flows from its
neighbours and aggregating the net excess.

s

t
Figure 1. A4×4 grid graph. Push kernel pushes flow along edges
and pull kernel takes them into each node.



Overall Graph Cuts Algorithm: The overall algorithm
applies the above steps in sequence, as follows. The CUDA
grid has the same dimensions as the image, say,M×N . The
CUDA block size isB1×B2 threads.

GPUGraphCuts ()
1. Compute energies and edge weights from the underly-

ing image.
2. On hardware with atomic capabilities: PerformPush-

PullKernel followed byRelabelKernel()on the whole
grid untill convergence.

3. On hardware with non-atomic capabilities: Perform
PushKernelfollowed by PullRelabelKernel()on the
whole grid untill convergence.

Estimating the energies and weights can also be per-
formed in parallel on the GPU. This can reduce the com-
putation time on large image that use complex energy func-
tions.
2.3.3 Stochastic Cut

We notice that most of the pixels get their actual label aftera
few iterations on all datasets. Figure 6 shows the labels after
different numbers of iterations on sponge image. After 10
iterations only 643 pixels are labelled incorrectly for sponge
image. Figure 2 and Figure 3 gives an estimate of error
(pixels getting incorrect lebels) and energy, respectively, as
the computation of graph cuts progresses. Only a few pix-
els exchange flow with their neighbours later. Processing
nodes which are unlikely to exchange any flow with their
neighbors results in inefficient utilization of the resources.
We also explore the number of blocks that are active after
each iteration. An active block has at-least one pixel which
has exchanged flow in the previous iteration. The activity
is determined based on the change inn edge-weights and
t edge-weights in the previous iteration. The kernel marks
whether each block is active. Based on the active bit, the
kernel executes the other parts of the program. Figure 4
gives an illustration of the grid when some blocks are ac-
tive and some are inactive. It is observed that after a few
iterations, only 5-10% of the blocks are active, as shown in
Figure 5. We delay the processing of a block based on its
activity bit. A better model is to delay the processing of a
block based on the likelihood and prior information, but we
settle for a fixed delay for inactive blocks. We check the
activity of a block after each 10 iterations. A block is pro-
cessed for next 10 iterations if its active otherwise the block
is not processed.

StochasticCut (nodeu)
1. Check the active bit of the block.
2. Perform step2 or 3 of GPUGraphCuts()every it-

eration on all above blocks and every Kth iteration on
inactive blocks.
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Figure 2. The plot shows the error(pixels) with iterations for
Sponge image.
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Figure 3. The plot shows the energy vs. iterations and time vs.
iterations plot for Sponge image. It gives an estimate of energy
drop as the graph cuts computation progresses.

3. Different Levels of Optimizations

As the GPU has lower memory bandwidth, reducing
global memory access is critical to performance. We ex-
plored the impact on the running time of different compact
representaion. The compact versions have to be split into
constituent terms after reading. The active flag takes val-
ues:0, 1 or 2 and2 bits are sufficient to store them. We can
compact16 active bits in one word. In practice, heights can
be represented using 16 bits or even 8 bits and edge weights
using 32 bits or 16 bits. We also explored combining the
flag bits along with the edge weights and heights. Some
instances of data structure at a node are shown in Figure 7.

Table 2 and Table 3 show the different parameters (inco-



Figure 4. Active Vs Inactive Blocks as in Stochastic Cuts
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Figure 5. It shows the number of active blocks with the numberof
iterations of the graph cuts for sponge image.

Figure 6. First two images are the sponge image and the segmented
image. The other images shows the errors after 10, 20, 40, 80,90,
100 iterations of graph cuts for Sponge Image.

herency, occupancy, shared memory uses, register counts)
which effects the performance on the GPU. Table 5 shows
the effect of compact representation. These tables show
interesting results on 8800 and GTX 280, as far as global
reads and global writes are considered. The Table 2 shows
that there are almost 14% incoherent reads and 23% inco-
herent writes forNon-Atomic CudaCutson 8800. However,
there is no incoherent reads and writes on GTX 280. There
is always a tradeoff between the shared memory used per
block and the register count per thread. These two factors
decide the occupancy. As we try to compact more data in
a 32 bit word, the efficiecy decreases. When heights are in
8 bits and edgeweights are in 16 bits, we get the worst per-
formance. Compacting the data reduces the global memory
accesses at the cost of higher number of computations due

Figure 7. Data Structure at a node: Each node has height, maskand
edge-weights. Each height value can be stored in 32 bits, 30 bits, 8
bits. Each mask can take 32 bits or 2 bits. Edge-weights are stored
in 32 bits or 16 bits. Case 1: Height, mask and edge-weights are
stored in 32 bits. Case 2: Height and mask are compressed in a sin-
gle 32 bits word with height taking 30 bits and mask taking 2 bits.
Edge-weights are stored in 16 bits. Case 3: Four height values are
stored in a single 32 bits word with each taking 8 bits. Similarly,
16 masks are compressed in 32 bits with each mask taking 2 bits.
Each edge-weight is stored in 16 bits.

to the shifting of the data. The register count per thread is
also increased, which reduces the occupancy and so the ef-
ficiency. When height, edge-weights and mask all use 32
bits word, we get the best performance on GTX 280. Ta-
ble 5 shows timings of two different implementations dis-
cussed in the previous section on the sponge image of size
640 × 480 on GTX 280.

Efficiency Considerations: The regular connectivity of
the grid graphs results in efficient memory access patterns
from the global memory as well as from the shared mem-
ory. The use of shared memory in different kernels speeds
up the operations by over 20%. Heights can be stored in
one-dimensional or two-dimensional shared memory block.
Storing heights in one-dimensional block is efficient. We
use a logical OR of the active bit of each node to check
the termination condition. Logical OR is evaluated by all
active nodes writing a1 to a common global memory loca-
tion. Though CUDA model doesn’t guarantee an order of
execution, OR can be computed quickly.

The push-relabel algorithm can be modified to perform
m push operations before each relabel operations. The ex-
perimental results show if relabeling is done every other it-
eration, the speed increases. However, that does not extend
to the higher values ofm. The multiple push operations be-
fore each relabel operation exhausts excess flow quickly. In
this way, the algorithm converges in fewer number of itera-
tions. When there is bias towards data term, higher values
of m will get efficient performance. Otherwise, value ofm

should be kept lower. The cuda cuts on flower image con-
verges in 90 iterations whenm = 1 and in 65 iterations
whenm = 2. Table 6 shows the effect of varyingm on
timings and number of iteration for convergence of the al-
gorithm on flower image.



Kernel Occupancy Incoh(%) Coh(%) Incoh(%) Coh(%) Shared(Bytes) Registers
Load Load Store Store Memory Used Used

8800Push 1 23.3 76.7 72.5 27.53 1448 9
280 Push 1 0 100 0 100 1448 9

8800PullRelabel 0.67 0 100 0 100 1532 16
280 PullRelabel 1 0 100 0 100 1532 16

Table 2. Non-atomic: heights, edgeweights, masks are stored in a word. Push and Pull operations are in separate Kernel.

Kernel Occupancy Incoh(%) Coh(%) Incoh(%) Coh(%) Shared Registers
Load Load Store Store Memory Used Used

280 PushPull 1 0 100 0 100 1532 10
280 Relabel 1 0 100 0 100 1532 9

Table 3. Atomic: heights, edgeweights, masks are stored in aword. Push and Pull Kernels are combined.

Image Size Non-Atomic Atomic
Sponge Image 640 × 480 61 49
Flower Image 608 × 456 73 51
Person Image 608 × 456 81 77

Table 4. The timings on standard images and synthetic image on GTX 280. Each push is followed by a relabel operation.

No. Of bit Occupancy Shared Memory Registers Time(in ms)
(ht/edgeweights/mask) Used Used (m = 1)

32/32/32 1/1 1360/1360 13/10 49
32/32/2 1/1 2384/1360 13/10 51
30/32/2 1/1 2384/1360 13/10 54
30/16/2 0.75/1 2384/1360 20/10 56
8/32/32 1/1 1360/1360 13/10 56
32/16/32 0.75/1 1360/1360 20/11 52
16/16/32 0.75/1 1360/1360 20/11 67
8/16/32 0.75/1 1360/1360 20/11 67
8/16/2 0.5/1 2384/1360 23/11 73

Table 5. The table evaluates different parameters which determine the efficiency of implementation on the sponge image on GTX 280. First
column gives the different possible combinations of heights, edgeweights and masks in one word. The second, third and forth columns give
the occupancy, shared memory used and register used per thread respectively, for PushPull kernel and Relabel kernel as in Atomic case.

Figure 8. The graph updation and reparameterization schemefor change in weights as in dynamic graph cuts.

When using atomic CUDA Cuts, performing2 pushes
before each relabel performs the best. However, starting
with m = 1 and increasing it to2 after about40 iterations

performs the best on non-atomic CUDA Cuts. Table 7 gives
timings after these optimizations.



m Number of iteration Time (ms)
1 231 77
2 187 64

Table 6. Comparison of running times of CUDA Atomic imple-
mentation without stochastic operations on GTX 280 when value
of m is changed on person image.

3.1. Dynamic Graph Cuts

Repeated application of graph cuts on graphs for which
only a few edges change weights is common in applications
like segmenting frames of a video. Kohli and Torr describe
a reparametrization of the graph that maintains the flow
properties even after updating the weights of a few edges
[23]. The resulting graph is close to the final residual graph
and its mincut can be computed in a small number of itera-
tions.

The final graph of the push-relabel method and the final
residual graph of the Ford-Fulkerson’s method are same.
So, we adapt the reparametrization scheme to the leftover
flow that remains after the push-relabel algorithm. Updation
and reparameterization are two basic operations involved
in the dynamic graph cuts (Figure 8). These operations
assign new weights/capacities as a modification of the fi-
nal graph without violating any constraints. The frame-to-
frame change in weights is computed for each edge first and
the final graph from the previous iteration is reparametrized
using the changes. It finds the pixels which change their
labels with respect to the previous frame. This operation is
performed in kernels in parallel. The two basic operations,
updation and reparameterizations, are performed by these
kernel. So, the maxflow algorithm terminates quickly on
them, giving a running time of few milliseconds per frame.
The running time depends on the percentage of weights that
changed.

4. Experimental Results

The CUDA Cuts algorithm was tested on several stan-
dard and synthetic images. The running time also depends
on the number of threads per block as it determines the level
of parallelism. We experimented with different numbers of
threads per block. A block size of32×8 threads gives the
best results with 256 threads per block.

We tested our implementations on various real and syn-
thetic images. Figure 9 shows the results of image segmen-
tation on the Person image, Sponge image and the Flower
image. The energy terms used are the same as those given
in the Middlebury MRF page [31]. It also shows the results
of image segmentation on a noisy synthetic image. The run-
ning times for these are tabulated in Table 7 along with the
time for Boykov’s sequential implementation of graph cuts.
The reported times of the GPU algorithm does not include
the time to compute the edge weights. Figure 11 plots the

running times on a noisy synthetic image of CUDA Cuts
and the sequential graph cuts for different image sizes.

Figure 10. The plot compares the performance of different meth-
ods for Sponge image as graph cuts computation progresses on
GTX280.

The figure 10 evaluates different optimization methods
on GTX280 on sponge image. The stochastic cuts performs
the best whenm = 2.

Figure 12 shows the results of independent segmentation
of the frames of a video using our implementation of dy-
namic graph cuts. The frame-to-frame change in weights
is computed for each edge first and the final graph from
the previous iteration is reparametrized using the changes.
The CUDA implementation of the dynamic graph cuts is
efficient and fast. It finds the pixels which change their
labels with respect to the previous frame. This operation
is performed in kernel in parallel. The two basic opera-
tions, updation and reparameterizations, are performed by
this kernel. So, the maxflow algorithm terminates quickly
on them, giving a running time of 4 milliseconds per frame.
The running time depends on the percentage of weights that
changed.

5. Conclusions and Future Work

In this paper, we presented an implementation of graph-
cuts on GPU using CUDA architecture. We used the push-
relabel algorithm for mincut/maxflow as it is more paral-
lelizable. We carefully divide the task among the multipro-
cessors of the GPU and exploit its shared memory for high
performance. We perform over 90 graph cuts per second on
640×480 images. This is 10-12 times faster than the best
sequential algorithm reported. More importantly, since a
graph cut takes only 30 to 40 milliseconds, it can be applied
multiple times on each image if necessary, without violat-



Figure 9. Binary Image Segmentation: Person, Sponge, Flower, and Synthetic images

Image GC Time(ms) GC Time(ms) GC Time(ms) GC Time(ms) Graph Construct TotalTime
BK Non-atomic Atomic Stochastic CPU/GPU Time(ms) CPU/GPU (ms)

Flower 188 73 51 37 60/0.15 248/37.15
Sponge 142 61 49 44 61/0.151 203/44.15
Person 140 81 64 61 60/0.15 201/61.15

Synthetic 480 39 37 33 170/1.2 650/34.2
Table 7. Comparison of running times of CUDA implementations on GTX 280 with that of Boykov on different images. Non-atomic: Pull
and Relabel kernels are combined into one kernel. Atomic: Push and Pull kernels are combined into one. Stochastic: Atomic functions are
applied along with the stochastic operations.
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Figure 11. Comparing the running times of graph cuts on the GPU
and the CPU for synthetic images.

ing real-time performance. The code is available from our
webpage and other relevant resources for download and use
by other researchers. We are currently working on imple-
menting multilabel graph cuts onto the GPU using a similar
strategy.

Figure 12. Segmenting frames of a video using dynamic graphs
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