
Real Time L∞-based Solution to Multi-view
Problems with Application to Visual Servoing

A. H. Abdul Hafez
Automatic Control Lab.

Faculty of Electrical and Electronic Engineering
University of Aleppo, Syria

Email: hafez@research.iiit.ac.in

C. V. Jawahar
Center for Visual Information Technology

International institute of Information Technology
Gatchibowli, Hyderabad-500032, India

Email: jawahar@iiit.ac.in

Abstract—In this paper we present a novel real time algorithm
to sequentially solve a class of multi-view geometry problems. The
triangulation problem is considered as study case. The problem
concerns with the estimation of 3D point coordinates given its
images as well as the matrices of the concern cameras used in
the imaging process. The algorithm has direct application to
real time systems like virtual reality, visual SLAM, and visual
servoing. Application to visual servoing is considered in detail.
Experiments have been carried out for the general triangulation
problem as well as the application to visual servoing.

I. INTRODUCTION

Convex optimization has been widely accepted as a power-
ful tool to solve many engineering problems [1]. Its use has
been extensively explored for solving a family of geometric
reconstruction problems in computer vision. A wide variety
of computer vision problems can be reformulated as convex
optimization problems by some algebraic manipulations [2],
[3], [4], [5]. Convex optimization, most importantly, do not
have the pitfall of local minima assuring to achieve an optimal
solution. In addition, Jacobean estimation through building
a linearized model is not required in contrast to iterative
minimization methods like gradient and Newton methods. The
optimization is done here by replacing the L2 norm objective
function by the L∞ norm i.e., the maximum re-projection error
(image point distance) for a set of image points.

Hartley and Schaffalitzky have shown in [6] that most of
multi-view computer vision problems have a global minimum
by minimizing the L∞ norm. Soon after that Kahl in [4],
and Ke et al. [7] have independently shown that this L∞ is
a quasi-convex function. Thus, it can be efficiently solved as
a sequence of second order cone programs (SOCP) using the
well known bisection algorithm. In fact, The solution proposed
by Ke and Kanade [7] uses The mth smallest norm Lm instead
of L∞. This is due to the sensitivity of L∞ to noise and
outliers while the former one is robust. However, the solution
in [7] becomes a local solution by considering the Lm norm
as an objective function. Later, it was shown that another
robustness technique can be introduced to the minimization of
the L∞ norm while keeping the ability of producing a global
solution [8].

A wide variety of multi-view computer vision problems can
be solved efficiently by minimizing the L∞ norm using convex

optimization framework. These problems may include trian-
gulation, camera re-sectioning, plane to plane homography
construction, and estimation of camera motion with a given
rotation [3], [4]. However, the current framework is suitable
for problems like building a model of a given environment. For
example, given a video sequence with a calibrated camera, the
3D model of the scene can be efficiently built. This is usually
known in computer vision community by the batch processing
techniques. However, many computer vision problems need to
be processed on-line satisfying the real time constraints.

This paper demonstrates the adaption of triangulation prob-
lem to the real time situations. To adapt to the real time
requirements, we formulate the solution of the quasi-convex
problem using bisection algorithm as an on-line recursive
method. The real time solution has applications in many
problems like visual SLAM, structure from motion, virtual
reality, visual servoing. However, the adaptation to the real
time case can be applied to a wide variety of computer
vision problems solved by minimizing the L∞ using convex
optimization framework. The only sequential solution to the
minimization of L∞ norm has been recently proposed in [9].
The main difference between this work and ours is that the
solution in [9] assumed an initial solution of the problem is
available. This solution is obtained by running the full bisec-
tion algorithm which is usually time consuming. The algorithm
keeps tracking of the changes in the estimated variables by
updating the objective function and run only one or two
iterations of the bisection algorithm. The algorithm proposed
in this paper start from uniform distribution of the unknown
variable. At each iteration it updates the objective function
and gives an approximated estimate of the state variable. This
estimates are assumed to converge to the accurate solution
after a few iterations.

II. BACKGROUND AND PREVIOUS WORKS

A. Multi-views Problems in Computer Vision

1) The Triangulation Problem: The triangulation problem
is the estimation of the 3D coordinates of a scene points
given their image measurements from N views. It is assumed
that camera (or cameras) is fully calibrated. In other words,
the camera position and rotation are known. The problem is
reduced to estimate the 3D point coordinates M considering

that N images mi of a 3D point M are collected with Pi

cameras are available. In other words, mi = PiM . Here
i = 1, · · · , N and Pi is the ith camera matrix. Since the cam-
era matrices Pi are supposed to be estimated independently as
pose distribution, the problem is reduced to the estimation of
the 3D point M given its N images mi and N camera matrices
Pi. This problem has been formulated within quasi-convex
optimization framework [4]. Robust solutions with respect to
outliers are proposed in [7], [8]

2) Camera Re-sectioning Problem: The camera re-
sectioning problem is used in camera calibration and structure
from motion. The problem is formulated as the estimation
of the (3 × 4) camera matrices Pi where i = 1, · · · , N ,
given the 3D coordinates of a scene point M and their image
measurements mi using the N cameras. Since the perspective
projection model is given as mi = PiM , The problem is
to estimate the x ∈ R11 vector as a function of the image
measurements mi and 3D coordinates M of the scene point.

3) Homography Estimation Problem: Let us have a set of
3D planar points Mi where i = 1, · · · , N . These planar points
are related to its corresponding image points mi using any
camera matrices by a projective transformation H such as
mi = HMi. In addition, there is similar relation H12 between
any two image correspondences m1 and m2 of the same 3D
points in such a way that m1 = H12m2. This what is called the
inter-image homography. Homography has many applications
including structure from motion, layer extraction and visual
servoing.

4) Cameras Positions with Known Rotations: There are
many situations where the camera rotation is known in-
dependently on the translations or camera positions. These
situations may include the pure translation motion and the
case where the rotation is estimated using another, non-
vision, sensor such as inertial sensors. Modern gyroscopes
provide an accurate rotation measurements while positions
information from accelerometers is still noisy. Another case
is that some structure from motion methods estimate the
rotation in a first step [10]. However, the camera matrices
Pi are given as Pi = (Ri,−RiDi). The unknown variable
to be estimated here is the camera positions {Di} and the
3D points M simultaneously. This is with the availability of
image measurements from N view.

B. L2 and L∞ Norms of the image Re-projection Error

The discussion in this section and the extension to the real-
time focus on the triangulation problem but it is general and
can be applied to all the above problems.

Reconstruction algorithms usually minimize the image re-
projection error because it is geometrically meaningful com-
paring with the algebraic one that is geometrically meaning-
less. The image re-projection error is the distance between the
image measurement m̂ and its 3D corresponding point M .
More formally, let us assume that m̂i = PiM̂ are the images
of M using the camera matrices Pi. Considering the image
measurement m̂i, the norm Ln of the image re-projection error

is written as

Ln = ‖ m̂i − mi ‖n = ‖ m̂i − PiM ‖n . (1)

When the Euclidean distance is used, we have L2 norm. More
formally, we can write

L2 =

[
1
N

N∑
i=1

d2
i

]1/2

(2)

where

d2
i =

(
m̂1

i −
P 1

i M

P 3
i M

)2

+
(

m̂2
i −

P 2
i M

P 3
i M

)2

. (3)

Here, P j
i is the jth row of the ith camera matrix Pi. Similarly,

the L∞ norm is defined as

L∞ = max
i

di (4)

where d is the same as given in (3).
It was shown in [6] that the L2 is difficult to be minimized

since it contains many local minima. In contrast, it is easier to
minimize the norm L∞ as it has only one minimum. Thus any
local solution to the minimization of L∞ is a global solution.
Unfortunately, the L∞ norm is sensitive to outliers and it needs
additional processing step to increase the robustness of the
optimization process.

C. Convex and Quasi-convex Optimization

A function f : Rn → R is a convex function if its domain,
domf is convex and ∀x, y ∈ domf and 0 ≤ θ ≤ 1

f(θx + (1 − θ)y) ≤ θf(x) + (1 − θ)f(y) (5)

The above in-equation, called Jensen’s inequality, geometri-
cally means that the region bounded by the line segment
between (x, f(x)) and (y, f(y)) and the curve f lies above
the curve, see Fig 1. In fact, all linear functions are convex
while most of non-linear functions are not convex. A function
f : Rn → R is called quasi-convex function if its domain and
all its sub-level sets

{x ∈ domf | f(x) ≤ α} (6)

are convex ∀α ∈ R. It is clear from the above definitions that
all convex functions are quasi-convex, but the inverse is not
true. In other words, not all quasi-convex functions are convex.

The convex optimization problem is the one that minimizes
an objective function f0(x) subject to a set of constraints
functions fi(x); where i = 1, · · · , N , and the functions fi(x)
with i = 0, · · · , N are convex. More formally, the convex
optimization problem can be one of the form

minx f0(x) (7)

s.t. ,

fi(x) ≤ bi, i = 0, · · · , N.

Given the function f0(x) is quasi-convex and the constraint
function are convex functions, the problem is quasi-convex
optimization problem and can be efficiently solved for a global

solution by solving a set of convex feasibility problem using
the bisection algorithm.

For a quasi-convex function f0(x), the problem given in (7)
is quasi-convex problem. Given the parameter γ ∈ R and
optimal but unknown solution f∗

0 (x) ≤ γ to problem (7), the
following feasibility problem is feasible:

find x (8)

s.t. ,

f0(x) ≤ γ

fi(x) ≤ bi, i = 0, · · · , N.

If this problem is not feasible, then the solution f∗
0 of

problem (7) satisfies that f∗
0 (x) > γ.

The bisection algorithm proceed in the same way to solve
the quasi-convex problem. As illustrated in Algorithm 1, it
starts by a known lower and higher bounds

[
γl, γh

]
of the

unknown optimal solution f∗
0 . The first step is to solve the

feasibility problem given in (8) for the lower half of the range[
γl, γh

]
. If it is feasible for this lower half, update the higher

bound feasibility range as γh = (γl + γh)/2. If the problem
in (8) is not feasible, the optimal solution satisfies f∗

0 (x) >
γ. In this case the lower bound is updated as γl = (γl +
γh)/2. After certain number of iterations and solving a set
of feasibility problems, the range of the feasibility becomes
γh − γl ≤ ε and the produced solution is optimal.

Algorithm 1 Off-line Solution to the Quasi-convex Problem
via Bisection Algorithm

1: Input: Given N image measurements, the range
[
γl, γh

]
of the optimal value f∗

0 (M), and tolerance ε > 0.
2: Repeat

a) γ = (γl + γh)/2.
b) Solve the convex feasibility problem as in (11).
c) If feasible, γh = γ;

else, γl = γ.

3: Until γh − γl ≤ ε.

A Second Order Cone Programming (SOCP) problem is
also a convex optimization problem with a linear objective
function minimized over a set of affine and quadratic con-
straints. An SOCP problem with m in-equations will look as

minx fT x (9)

s.t. ,∥∥Ax − b
∥∥ <= cT x + d

where, x ∈ Rn, A, c ∈ Rm×n, b, d ∈ Rm,

An LP problem is a special case of an SOCP problem.
Quadratic Programming (QP) problems can be reformulated
to be solved as SOCP problems.

D. Triangulation by Convex Optimization given N Views

The triangulation problem can be formulated as quasi-
convex optimization problem with respect to the 3D coor-
dinates of the features (X,Y,Z). The model considers that

Fig. 1. The estimated 3D point coordinates over iterations.

N images of a 3D point M collected with Pi cameras are
available. Here i = 1, · · · , N and Pi is the ith camera matrix.
Since the camera matrices Pi are supposed to be estimated
independently as pose distribution, the problem is reduced to
the estimation of the 3D point M given its N images and
N camera matrices. This problem has been formulated within
quasi-convex optimization framework [4].

Kahl proposed in [4] to formulate the triangulation problem
as

minM maxi d(m̂i − PiM) (10)

subject to λi(M) > 0 i = 1, · · · , N.

The function d(m̂i − PiM)2 = f1(M)2+f2(M)2

λi(M)2 here is the
Euclidean distance between the image measurement m̂i and
the projection of the 3D point M to the image of the camera
Pi, and λi(M) is the depth of the point in image i. This
problem can be solved using the bisection algorithm via a
sequence of convex feasibility problems of the form

find M

subject to ‖ [
fi1(M)2, fi2(M)2

] ‖≤ γλi(M) (11)

λi(M) > 0 i = 1, · · · , N.

The convex feasibility problem tries to find out whether the
optimal solution f∗

0 (M) is less or more than a given value
γ. Thus, the quasi-convex function given in Eq. (10) can be
solved through a sequence of feasibility problems using the
bisection algorithm explained in Algorithm 1. The author in [4]
solve the problem given a set of N images of the 3D point M .
The bisection algorithm iterate over the measurement values
k times to reach with the objective function to a value such
that f∗

0 (M) ≤ ε. In fact, the k iterations, usually k is from 5
to 10, cannot be performed in the real time (the video rate).

In the following subsection, We propose an efficient sequen-
tial bisection algorithm that is able to work and satisfy the real
time constraints.

III. REAL TIME SOLUTION TO THE L∞ NORM

Let us assume a moving camera attached to frame F t

and has the camera matrix Pt at every time instance t. The
camera frame F 0 is assumed to be the reference frame. Let
us note that γ is set as an upper bound of the objective
function in problem (10). Consequently, we can say that

d(m̂i−PiM) < γ for i = 1, · · · , N . Assume that the optimal
value γ∗ is bounded between a known lower threshold γl

and higher one γh. Finally, the sequential bisection algorithm
works as described in Algorithm 2.

The algorithm starts as soon as two views N = 2 are
available. At each time instance t, the algorithm solves single
convex feasibility problem as one iteration of the quasi-convex
triangulation problem. Whenever new image measurements
are available in the next time instance, the objective function
maxi d(m̂i −PiM) and the bounding thresholds are updated
based on the new measurements. Then, new convex feasibility
problem is solved. The solution of the triangulation problem
is expected to converge within 5-10 frames.

Algorithm 2 On-line Sequential Solution to the Quasi-convex
Problem via Bisection Algorithm

1: Input: N = 2 image measurements, optimal value
f∗
0 (M) ∈ [

γl, γh
]

and tolerance ε. Initially, the time
parameter t is set to N .

2: Repeat

a) Collect the measurements from the N th image.
b) If d(m̂N − PNM) ≥ γ then,

γh = d(m̂N − PNM).
c) γ = (γl + γh)/2.
d) Solve the convex feasibility problem as in (11).
e) If feasible, γh = maxi d(m̂i − PiM),

else, γl = γ.
f) N = N + 1

3: Until γh − γl ≤ ε

A. Uncertainty Estimation of Estimated 3D point coordinates

The uncertainty in the 3D feature estimates by solving the
convex feasibility problem can be approximated as Gaussian.
The 3D feature will be initialized as M = [X, Y, Z]T

Recall that the on-line bisection algorithm solves one convex
feasibility problem at each time iteration and after reaching
a new image measurements. In addition, The solution returns
one arbitrary value for the 3D estimate that satisfy the set of
convex constraints which was set by the problem; and belong
to the 3D domain of M that is determined by the current two
bounds

[
γl, γh

]
.

Consider that the returned value by the convex feasibility
program at time t is Mt where t = 1, · · · , N , the mean of the
3D feature estimate is simply the sum M̄ = 1

N

∑N
t=1 Mt over

the set of all the N seen estimates. Similarly, the covariance
matrix QM = 1

N+1

∑N
t=1[M − M̄][M − M̄]T . One may note

that above mean and covariance can be updated recursively
without need to keep storing the previous estimates. The mean
3D coordinates at time instance t is given as

M̄t =
t − 1

t
M̄t−1 +

1
t
Mt,

while the covariance matrix is updated as

Qt =
1

t + 1
{
t Qt−1 + [Mt − M̄t][Mt − M̄t]T

}
.

This estimate is assumed to converge to Gaussian distribution
within a few iterations of the process of solving the convex
feasibility problem.

IV. APPLICATION TO VISUAL SERVOING

The problem of visual servoing is that of positioning the
end-effector of a robot arm such that a set of current features
S reaches a desired value S∗. In image-based visual servoing,
the set S can be composed of the coordinates of points that
belong to the target object. The main objective of the visual
servoing process is to minimize the error function given by

e(S) = S − S∗, (12)

where S is a vector represents the current set of features and
S∗ is the vector represents the desired set of features.

By differentiating this error function with respect to time,
with the desired features S∗ remaining constant, we get

de

dt
=

dS

dt
= (

∂S

∂P
)
dP

dt
= LSV, (13)

Assuming a perspective projection model with a unit focal
length, the interaction matrix LSi

for each point (u, v) is given
by:

LSi =

[−1
Z

0 u
Z

uv −(1 + u2) v
0 −1

Z
v
Z

1 + v2 −uv −u

]
. (14)

For a set of N points, the set of features is Si, i = 1, ..., N ,
the interaction matrix LS is

LS =
[

LS1 , . . . , LSN

]T
, (15)

where LS1 and LSN
are the interaction matrices given in (14)

and correspond to points 1 and N respectively.
For exponential convergence of the minimization process

and using a simple proportional control law, , we need de(S)
dt =

−λe(S). The required velocity of the camera can be shown
to be [11]

V = −λL+
S e(S), (16)

where e(S) is a (2N×1) error vector between the image coor-
dinates (u, v) of N points. The velocity V = dP

dt = (vT , ωT)T

is the camera velocity, v is translational velocity and ω is
rotational velocity. The pose vector P = (x, y, z, α, β, γ) is a
(6× 1) vector. The (2N × 6) matrix L+

S is called the pseudo-
inverse of the image Jacobian. Image Jacobian relates the
changes in the image space to the changes in the Cartesian
space [11].

By substituting in (13) where L+
S is the pseudo inverse of

the Jacobian matrix LS , and λ is a scale factor. The Jacobian
matrix can be written as

Ls =
1
Z

A(U, V) + B(U, V), (17)

where U and V are the image coordinate vector of all points.
One can note that image-based visual servoing a knowledge
or information about the depth of the target points.

It was assumed that a rough estimates of the depth is
enough for a stable control law in image-based visual servoing.
Recently in [12], it was shown that the stability range with

0 5 10 15 20 25
0.9

0.905

0.91

0.915

0.92
X coordinate

X

0 5 10 15 20 25
0.356

0.3565

0.357

0.3575

0.358

0.3585

0.359
Y Coordinate

Y

0 5 10 15 20 25
0.86

0.88

0.9

0.92

Z Coordinate

Z

Fig. 2. The estimated 3D point coordinates over iterations.

the depth estimation is not so much wide. Hafez has proposed
in [13] a particle filter based camera pose tracking algorithm
with application to visual servoing. The algorithm produce
the current estimate of the camera pose using the image
measurements and the velocity signal as an input. In other
words, the algorithm provides an estimate of the camera matrix
Pi at each iteration of the servoing process. The knowledge
about the scene is used to initialize the depth parameters Zi.
During the servoing process, the depth estimates are updated
on-line using the algorithm presented in Sec. III.

V. RESULTS AND APPLICATIONS

The illustrated experimets have carried out in a simulation
framework. We modify the original L∞ algorithm which was
built based on SeDuMi [14]. Firstly we show the results
of applying the algorithm on a randomly generated data.
Application to visual servoing is shown in the next section.

A. Preliminary Results

These preliminary results have been carried out by consid-
ering a synthetic scene [4]. This scene consists of randomly
generated camera matrices, a set of 3D points, and their
images. The camera matrices and the measurements of image
points are the input data to the algorithm. The process starts as
and when two images and two camera matrices are available.
The SuDeMi is called for the minimal number of iterations
over the bisection algorithm. This number of iterations is
enough to return a feasible solution as well as to enable the
whole system to run in the real time. This is repeated when
new image measurements and camera matrix are available as
described in Algorithm 2. Figure 2 shows the estimated 3D
coordinates over iterations.

B. Results from Visual Servoing

The sequential triangulation algorithm has been applied
to estimate the depth of image features for visual servoing

20 40 60 80 100 120 140
−0.24

−0.235

−0.23

−0.225

−0.22

−0.215

−0.21

−0.205

Iterations

Depth mean

(a)

20 40 60 80 100 120 140
0

0.005

0.01

0.015

0.02

0.025

0.03

Iterations

Depth variance

(b)

Fig. 3. The depth estimate over iterations expressed in the reference frame.
The mean is shown in (a) and the variance in (b).

system. The experiments have been carried out within a
simulation framework. As mentioned in the previous section,
we assume that a pose tracking algorithm is running to provide
a pose estimate independent on the 3D estimate of the concern
features. These pose estimates are used along with the image
measurements to estimate the 3D coordinates with respect to
a reference frame.

The estimated depth of a single point feature is represented
as mean and variance. Figure 3.(a) shows the mean depth
of a selected point. The variance of the depth is shown in
Fig. 3.(b). A comparison has been carried out between two
visual servoing process with the same initial and desired
configurations. The difference between the two process is
the depth distribution used in the control law. In the first
case, a depth distribution ith error about 25% of the actual
depth value. In the second case, we use the depth distribution
produced by our sequential triangulation algorithm. The image
trajectories in case of 25% depth error is shown in Fig. 4.(a).
It is clear that the system has converged to final state which
is different from the desired one. The desired positions of the
image features are marked by (+). The image trajectories in
case of using the depth estimate produced by our sequential
triangulation algorithm is illustarted in Fig. 4.(a). The velocity
of the camera for the two cases is shown in Fig. 6.

VI. CONCLUSION

We have presented a sequential algorithm for solving a set
of problems in multi-view geometry. The algorithm provides
an efficient solution to these problems in the real time.
The algorithm start from unknown estimate and its output

0 100 200 300 400 500

0

50

100

150

200

250

300

350

400

450

500

Pixels

P
ix

el
s

0 100 200 300 400 500

0

50

100

150

200

250

300

350

400

450

500

Pixels

P
ix

el
s

(a) (b)

Fig. 4. The image trajectories during the visual servoing process. In (a), the
trajectory is shown when there is 25% error in the depth distribution. In (b),
the trajectory is shown when the estimate of the depth by our algorithm is
used.

0 1 2 3 4 5 6
−200

−150

−100

−50

0

50

100

150

200

Sec (25 fps)

Pix
els

(a)

0 1 2 3 4 5 6
−200

−150

−100

−50

0

50

100

150

200

Sec (25 fps)

Pix
els

(b)

Fig. 5. The image coordinates error during the visual servoing process. In
(a), the error is shown when there is 25% error in the depth distribution. In
(b), the error is shown when the estimate of the depth by our algorithm is
used.

converges to the actual values within a few iterations. This
algorithm is used to estimate the depth of the image features
for visual servoing system. The visual servoing process has
converged properly by using the 3D estimates produced by
our algorithm.

REFERENCES

[1] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge
University Press, 2004.

[2] M. Salzmann, R. Hartley, and P. Fua, “Convex optimization for de-
formable surface 3-d tracking,” in Proceedings of the Tenth IEEE
International Conference on Computer Vision, ICCV’07, Rio de Janeiro,
Brasil, October 2007.

[3] R. Hartley and F. Kahl, “Optimal algorithms in multiview geometry,” in
Computer Vision – ACCV 2007, ser. LNCS, Y. Yagi, S. B. Kang, I. S.
Kweon, and H. Zha, Eds., vol. 4843. Springer, 2007, pp. 13–34.

[4] F. Kahl, “Multiple view geometry and the L∞ norm,” in Proceedings of
the Tenth IEEE International Conference on Computer Vision, ICCV’05,
Beijing, China, 2005, pp. 1002–1009.

[5] Q. Ke and T. Kanade, “Uncertainty models in quasiconvex optimization
for geometric reconstruction,” in Proceedings of the 2006 IEEE Com-
puter Society Conference on Computer Vision and Pattern Recognition,
CVPR’06, New York, NY, USA, 2006, pp. 1199–1205.

0 1 2 3 4 5 6
−2

−1

0

1

2

Sec (25 fps)

m
/se

c

vx
vy
vz

0 1 2 3 4 5 6
−0.5

0

0.5

1

1.5

Sec (25 fps)

ra
d/

se
c

wx
wy
wz

(a)

0 1 2 3 4 5 6
−2

−1

0

1

2

Sec (25 fps)

m
/se

c

vx
vy
vz

0 1 2 3 4 5 6
−0.5

0

0.5

1

Sec (25 fps)

ra
d/

se
c

wx
wy
wz

(b)

Fig. 6. The image coordinates error during the visual servoing process. In
(a), the error is shown when there is 25% error in the depth distribution. In
(b), the error is shown when the estimate of the depth by our algorithm is
used.

[6] R. Hartley and F. Schaffalitzky, “L∞ minimization in geometric re-
construction problems,” in IEEE Int. Conf. on Computer Vision and
Pattern Recognition, CVPR’04, vol. 01. Los Alamitos, CA, USA: IEEE
Computer Society, 2004, pp. 504–509.

[7] Q. Ke and T. Kanade, “Quasiconvex optimization for robust geometric
reconstruction,” in Proceedings of the Tenth IEEE International Confer-
ence on Computer Vision, ICCV ’05, Beijing, China, 2005, pp. 986–993.

[8] K. Sim and R. Hartley, “Removing outliers using the l∞ norm,”
in Proceedings of the 2006 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition, CVPR’06. Washington, DC,
USA: IEEE Computer Society, 2006, pp. 485–494.

[9] Y. Seo and R. Hartley, “Sequential l¡subscript¿ ∞ ¡/subscript¿ norm
minimization for triangulation,” in Computer Vision – ACCV 2007, ser.
LNCS, Y. Yagi, S. B. Kang, I. S. Kweon, and H. Zha, Eds., vol. 4844.
Springer, 2007, pp. 322–331.

[10] M. Uyttendaele, A. Criminisi, S. B. Kang, S. Winder, R. Szeliski, and
R. Hartley, “Image-based interactive exploration of real-world environ-
ments,” IEEE Computer Graphics and Applications, vol. 24, no. 3, pp.
52–63, 2004.

[11] S. Hutchinson, G. Hager, and Cork, “A tutorial on visual servo control,”
IEEE Transactions on Robotics and Automation, vol. 12, no. 5, pp. 651–
670, Oct 1996.

[12] E. Malis and P. Rives, “Robustness of image-based visual servoing with
respect to depth distribution errors,” in IEEE Int. Conf. on Robotics and
Automation, ICRA’03, vol. 1, Taipei, Taiwan, Sept. 2003, pp. 1056–1061.

[13] A. H. Abdul Hafez, “Enhancing hybrid visual servo control by proba-
bilistic techniques,” Ph.D. dissertation, Osmania University, Hyderabad,
India, May 2007.

[14] J. Sturm, “Using SeDuMi 1.02, a MATLAB toolbox for optimization
over symmetric cones,” Optimization Methods and Software, vol.
11–12, pp. 625–653, 1999, special issue on Interior Point
Methods (CD supplement with software). [Online]. Available:
citeseer.ist.psu.edu/sturm99using.html

