
Real-time Rendering and Manipulation of Large Terrains

Shiben Bhattacharjee
shiben@research.iiit.ac.in

Suryakant Patidar
skp@research.iiit.ac.in

P. J. Narayanan
pjn@iiit.ac.in

Center for Visual Information Technology
International Institute of Information Technology, Hyderabad

Abstract

Terrains are challenging geometric objects for real-time
rendering and interactive manipulation. State-of-the-art
terrain rendering systems use custom, multiresolution, rep-
resentations like geometry clipmaps for fast rendering on
the GPU. In this paper, we present a system that exploits
the power and flexibility of the modern GPUs to store, ren-
der, and manipulate terrains with minimal CPU involve-
ment. The central idea is to use a regular-grid represen-
tation and fixed size blocks/tiles that change in resolution.
The potentially visible portion of the terrain is cached at
the highest necessary resolution and is rendered from the
GPU. The CPU sends a light geometry template which is
expanded by the Geometry Shader to the triangles, using
the heights stored in the GPU Cache. The CPU performs
a coarse culling of the tiles with the GPU performing fine
culling. The GPU cache is updated continuously as the
viewpoint changes. Our system enables the terrain to be
modified procedurally or edited interactively on the GPU
with no CPU involvement. The terrain can also interact
with a large number of external objects in real-time entirely
within the GPU. We achieve a consistent rendering rate of
100 frames per second with terrain modification and inter-
actions as well as a triangle rate of upto 350 million per
second on an Nvidia 8800 GTX GPU for large terrains, with
a CPU load below 10%.

1. Introduction

Terrains are of great interest in flight simulators, geo-
graphic information systems, games, etc. A regular grid
of heights is a natural representation for them. Rendering
a height-map is straightforward with an O(n2) rendering
load for an n×n terrain. Natural terrains contain many flat
regions which can be converted to a triangulated irregular
network representation. The irregular representations con-
tain fewer triangles but more complex to represent and ma-

nipulate. Such irregular representations have recently been
giving way to a regular grid representation, especially after
the availability of fast graphics hardware.

Terrain rendering is a well-studied problem. Triangu-
lated irregular networks are created from regular grids with
connectivity typically decided using a triangulation process
such as Delaunay’s [4, 10, 3, 7, 6]. They provide render-
ing efficiency at the cost of ease of performing other opera-
tions. Terrains have been partitioned into fixed size square
patches of different resolutions. The tiled structures pro-
vide compact representation and easy rendering. The block
boundaries can show artifacts which are taken care of using
special zero-area triangles and stitching [13, 12, 5]. The
fixed size blocks also limit the range of resolutions sup-
ported when a tile is reduced to a single height.

Losasso and Hoppe introduced a multiresolution, fixed
memory size scheme for efficient representation and ren-
dering of large terrains, called the geometry clipmaps [12].
They use a square region around the viewer as a geometry
clipmap with high resolution at the centre and lower res-
olutions on the outer rings. The fixed memory structure
involves constant rendering load. The geometry clipmap
were stored in the GPU and rendered from there [1]. Ge-
ometry clipmaps provide good rendering performance, but
the representation does not lend itself to editing or modi-
fication of the terrain, which is possible especially on to-
day’s GPUs. Terrains are traditionally considered static and
fixed. Deforming and editing are performed rarely during
visualization. Earlier work on terrain modification include
multiresolution detail patches by He et al. [9] and modelling
soil slippage by Li and Moshell [11]. The height-maps are
amenable to quick editing, unlike the irregular representa-
tions. Atlan and Garland edit the terrain in real-time using a
few editing strokes for applications such as geological sim-
ulations [2], using a wavelet-based representation. They use
a two-step approach to recover the terrain and to edit it. Our
evolution and editing method is similar, but achieves better
performance by performing it completely on the GPU, with
support for real-time, simultaneous editing and rendering.

In this paper, we present a scheme to render terrains, de-

Sixth Indian Conference on Computer Vision, Graphics & Image Processing

978-0-7695-3476-3/08 $25.00 © 2008 IEEE

DOI 10.1109/ICVGIP.2008.85

551

Sixth Indian Conference on Computer Vision, Graphics & Image Processing

978-0-7695-3476-3/08 $25.00 © 2008 IEEE

DOI 10.1109/ICVGIP.2008.85

551

Sixth Indian Conference on Computer Vision, Graphics & Image Processing

978-0-7695-3476-3/08 $25.00 © 2008 IEEE

DOI 10.1109/ICVGIP.2008.85

551

form them, edit them, and perform physics involving them
at real-time rates. We use a representation that combines
the fixed-size structure of geometry clipmaps and the reg-
ularity of tiled blocks. The terrain is cached on the GPU
using fixed-size rectangular blocks. The resolution of the
blocks depends on the view and changes with height of the
camera. A blocked, tiled, height-map representation resides
at the GPU cache at all times for fast rendering and real
time modification. The cache is kept updated in extent and
resolution by sending data when needed.

The main contributions of this paper are: (a) A terrain
rendering system that achieves a rendering speed of 100
frames per second on arbitrarily large terrains without the
CPU, the GPU, or the bandwidth between them being the
bottleneck.(b) A way to interactively modify and interact
with the terrain simultaneously with rendering, performed
entirely in the GPU at real-time rates. This enables ter-
rain deformations, interactive editing and the computation
of simple physics of external objects interacting with the
terrain. The following innovations make the above possi-
ble. (i) A terrain representation that uses fixed-size blocks
of grids and GPU caching that enables fast rendering and
correct editing and manipulation. (ii) A scheme of sending
light geometry templates from the CPU to the GPU, which
are expanded into the actual geometry. This keeps the CPU
free to do other tasks while the GPU performs the bulk of
the rendering work. (iii) A two-level culling scheme with
the CPU culling in units of large tiles and the GPU culling in
units of smaller tilelets for high rendering performance. The
rendering rate doubles with this. (iv) Clever interleaving of
data transfer from the CPU to the GPU to keep the cache up-
dated correctly without affecting the rendering rates. This
guarantees 100 fps rendering of arbitrarily large terrains. (v)
Fast, interactive and procedural manipulation and editing
of GPU-resident terrains using the fragment shader. The
highly parallel GPU resources are employed profitably to
do this, improving the system performance.

We demonstrate the performance of our system using an
Nvidia 8800GTX GPU. We can achieve a fixed framerate of
100 on a 1M×1M terrain which uses 2 TB for the heights1.
Our system renders upto 350 million triangles per second
on parts of a flight path and achieves an average rate of 160
million triangles per second. The frame rate of 100 can be
maintained even while half the terrain is deforming or is
being edited or when 256K balls are bouncing on it. We
exploit the advanced SM4 (Shader Model 4.0) features of
the GPU to achieve the high performance. The terrain rep-
resentation and rendering are explained in Sections 2 and 3
respectively. The caching system is explained in Section 4.

1The large terrain is a periodic extension of the 16K × 16K Puget
Sound terrain. The terrain system is unaware of the replication. The CPU
module that loads the terrain is aware of the fact and returns pointers to
existing data when going beyond

Terrain manipulation schemes are presented in Section 5.
Section 6 presents experimental results. Some concluding
remarks are given in Section 7.

2. Terrain Representation

We represent the terrain as a regular 2D grid of heights
with a fixed post distance in X and Y directions. Fixed-
size blocks are used as the base units of storage and transfer
from the CPU to the GPU. A block consists of tiles, which
are the basic rendering units. Tiles extend in the ground XY
plane and take part in view frustum culling. Tiles are further
divided into smaller tilelets (Figure 1(b)).

Figure 1. (a) An terrain with highest resolu-
tion stored in 4×4 blocks, next in 2×2 blocks
and so on, using fixed size blocks. (b) A
block with 4 × 4 tiles each with 4 × 4 tilelets

CPU Representation: The terrain is stored in main
memory and sent to GPU as blocks. We use blocks of size
1024 × 1024. The CPU also stores all lower resolutions
of the terrain as blocks of the same size to facilitate quick
transfer of any resolution to the GPU (Figure 1(a)) at the
cost of a maximum of 1/3 more memory. View frustum
culling takes place in terms of tiles. Tile size should balance
the culling and rendering loads. We use larger tiles in our
system, currently 256 × 256, since geometry is discarded
also at the GPU as explained later. Different parts of the

V

E
D

Figure 2. The GPU Cache (shown shaded) is
a section of the terrain on the GPU at a res-
olution determined by the elevation E of the
viewpoint V . Rendering resolution depends
on the distance D.

552552552

terrains need to be rendered at different levels of detail or
resolutions. The level-of-detail (LoD) at which a tile is ren-
dered depends on two factors: the elevation of the viewpoint
and the distance from the viewpoint. The rendering resolu-
tion reduces as the elevation E or the distance D increases
(Figure 2). Resolution is changed in discrete steps by dou-
bling or halving the post-distance. Merge level denotes the
LoD of the whole terrain determined by the elevation and
distance level denotes the LoD of an individual tile due to
its distance from the viewpoint. Both take discrete integral
values. Level 0 represents the terrain at the highest detail;
level i + 1 represents the terrain at half the resolution of
level i. The LoD is expressed as the number of level shifts
from the highest resolution available. The rendering LoD
of a tile is the sum of merge and distance levels.

Post distance is doubled with each reduction in resolu-
tion. Transition distance of LoD of terrain depends on post
distance and also doubles with resolution decrease. Farther
tiles render with low detail (higher LoD number). Resolu-
tion reduction is achieved easily on our representation by
dropping alternate rows and columns. Thus, an LoD level
l has a post distance that is 2l times the post distance at
level 0. Thus a higher resolution block contains all lower
resolution ones, which can be generated by sub-sampling.
We choose sub-sampling instead of filtering for creating low
resolutions because it preserves height values whereas filter-
ing changes the heights in lower resolutions. Sub-sampling
is also fast but produces no artifacts when combined with
our blending scheme explained in the next section.

Figure 3. A 16 layer array texture (GPU Cache)
with a 4 × 4 pointer texture storing layer IDs.

GPU Representation: The GPU Cache holds a contigu-
ous 2D grid of blocks at the merge-level resolution around
the point of reference determined by the camera location.
The resolution depends on the view elevation E (Figure
2) and is the highest resolution needed for rendering from
that elevation. Tiles are further divided into 2 × 2 tilelets
by the GPU and used for the finer two-level of culling ex-
plained later. The GPU Cache is updated when the merge
level changes due to elevation or the region changes due to
change in camera location. It is to be noted that the extent
on the ground of the blocks and tiles change with the merge

level as they have fixed memory sizes.
Implementation Details: The GPU Cache is stored as

an array texture, introduced in SM4.0. The cache can be at-
tached to a single texture unit and a height can be accessed
on the fly by the GPU.Heights are accessed using three co-
ordinates: l to select the block (also called a layer) and x, y
to fetch the post from that layer. Each layer of the array tex-
ture can be updated randomly. We use a separate pointer-
texture to store the layer IDs (Figure 3). The pointer-texture
is a 2D array of layer IDs and presents the GPU Cache as a
contiguous 2D array of blocks. The l coordinate is fetched
using the 2D indices of the block. The pointer-texture is
updated with new layer numbers when the GPU cache is
updated. The unified architecture of SM4.0 provides fast
access to the texture for all shader units.

The merge and distance levels provide a unified LoD
scheme with nearly constant triangle count on the screen
for all elevations of the camera. The amount of data to be
rendered also is nearly constant at all elevations due to the
shift in resolution. Our system also supports mapping of
real texture images to the terrain. These textures are kept
in a parallel cache on the video memory with a matching
block of texture for each block in the GPU cache.

3. Terrain Rendering

The GPU performs most of the rendering under CPU’s
coordination. The CPU culls every tile in the GPU cache to
the view frustum. It then sends the geometry template, con-
sisting of a VBO (vertex buffer object) of points, for each
tile to the GPU. This keeps the CPU load and communica-
tions to the GPU very low. The GPU discards tilelets of the
geometry that lie outside frustum and expands the rest into
the triangles.

3.1. Stage 1: CPU

The 2D grid scheme makes it easy to compute the ex-
tents of tiles, blocks, and tilelets using simple calculations.
Each tile has an index in the grid of tiles. The CPU elimi-
nates tiles outside the view frustum and computes the LoD
level for the rest of the tiles. It then sends the corresponding
geometry templates to the GPU.

View Frustum Culling: The orthogonal footprint of the
view frustum and its bounding box are estimated in the grid
of tiles first, as shown in Figure 4. The bounding sphere of
each tile is tested against the six planes of the view frustum
and those lying outside are discarded. Tiles that intersect
a frustum wall are tagged specially boundary tags as their
tilelets will undergo a second level of culling in the GPU.

Level of Detail (distance-level): The GPU cache holds
the terrain at the current merge-level. The distance-level of
each tile denotes the drop in resolution from the data stored

553553553

Figure 4. Tiles outside view frustum (marked
red) are discarded by the CPU. Intersecting
tiles (gray) will go through a second level of
culling by the GPU. Interior tiles (yellow) are
rendered directly. Rendering LoDs of tiles is
a function of distance from the viewpoint.

in the GPU cache. Farther tiles are rendered with lower
detail and proximate tiles with high detail (Figure 4). The
detail factor dl is computed as log1.5(1 + d

t), where d is the
distance E of the mid point of the tile from camera (Figure
2) and t is the current diagonal length of the tile. The term
d/t will give linear LoD bands and the logarithm will ensure
exponential thickness for equi-detail bands. This results in
near-uniform distribution of tile-detail on the screen. The
base of the logarithm affects the width of the LoD bands.
A value of 1.5 gives acceptable triangle count and quality
in our experience and ensures a minimum LoD band thick-
ness of one tile. Thus, adjacent tiles will not differ by more
than one level which is necessary for seamless stitching as
explained later. The integer part �dl� of the detail factor is
used as the distance-level ld and the fractional part is used
as the morphing factor α for the entire tile. Morphing of
different LoDs is necessary to avoid popping artifacts as ex-
plained later.

Rendering: The CPU sends each tile to the GPU along
with ld, the morphing factor, and the boundary flag. To re-
duce CPU load, a geometry template as a VBO of point
primitives is sent for each tile. Each point of the template
represents a tilelet to be rendered. We currently use 2×2
tilelets. A 128×128 VBO is used for the full 256×256 tile.
Smaller VBOs are used if the distance-level is greater than
0 (low detail). The same template can be used for all tiles
at a particular distance-level. This process is explained in
detail in Section 3.2.

Adjacent tiles can have different resolutions which
causes visual inconsistencies at the joints. We use a stitch-
ing process for border rows and columns to avoid this. Each

Figure 5. (a) The CPU renders each tile (E.g.
size 9×9) as points using two geometry tem-
plates, one for the interior (blue) and the
other for the boundary (red/yellow/green) of
the tile. (b) Tilelet used in the interior of the
tiles. In the eastern border (green), tilelet (c)
is used when the neighbor has a higher LoD
and (d) is used if lower. In the northern bor-
der (red), tilelet (e) is used when neighbor
has a higher LoD and (f) is used if lower. Yel-
low region gets handled automatically.

tile stitches with its northern and eastern neighbors as ex-
plained later. Stitching requires an extra row and column of
indices of the neighbor to be available to each tile. Thus, the
actual tile size used is 257×257 with its last row and col-
umn being the first row and columns of the adjacent tiles.
CPU sends separate stitch templates to effect correct stitch-
ing (Figure 5(a)).

3.2. Stage 2: GPU

Tilelet Generation and Culling: The GPU receives the
index, the LoD number, the morphing factor, and geometry
template for each tile (Figure 5(a)). The index is mapped
to the block index of the pointer texture and the layer and
tile ID of the GPU Cache. The coordinates of the incoming
point primitive of the template represents the top-left cor-
ner of the corresponding tilelet and the LoD can be used
to compute the other corners. The heights of the corners
are fetched from the GPU cache. These four points are
tested against the view frustum by the vertex shader. The
tilelet is tagged as outside if all four points are outside be-
fore sending down the pipeline. In practice, conservative
testing is performed to counter possible error introduced by
the quadrilateral approximation of the tilelet. This process
of second level culling is performed only on the tiles that in-
tersect the view frustum walls as tagged by the CPU. Other
points are passed down the pipeline without testing.

The geometry shader of the GPUs can discard primitives
from the pipeline or add primitives to it. The tilelets that
are tagged by the vertex shader are discarded. This second
level culling accomplishes accurate culling with no load to

554554554

Figure 6. Tilelets after VFC. Farther tiles need
fewer tilelets. The red tilelets are discarded
by the second level culling on the GPU.

the CPU with performance doubled (Figure 7) We experi-
mented with different tilelet sizes. The smallest tilelet with
stitching capability has a size of 3×3. This performs the
best due to the deterioration in performance of the geom-
etry shader as the amount of data it outputs increases [8].
The geometry shader generates triangles for the remaining
tilelets. The coordinates of the top left point and the LoD
number are used to access the 3×3 grid points. The post
distance at level l is 2l times the post distance at level 0.
Triangles of the tilelet, as shown in Figure 5(b-f), are sent
down the pipeline.

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 100 200 300 400 500 600 700 800 900

F
ra

m
es

 p
er

 S
ec

on
d

Time

With Second Level Culling
Without Second Level Culling

Figure 7. Framerates for a typical flight over
the terrain with (red) and without (green) the
second level of culling.

Figure 7 shows the performance of the system over a typ-
ical flight over the terrain with and without the second level

culling. The second level culling improves the system per-
formance by a factor of 2 overall. The camera is looking
approximately down between frames 250 to 450. The tiles
nearer to the camera contain more tilelets as seen in Fig-
ure 6. The second level culling is most effective on them as
a result.

3.3. Tile Stitching and Blending

Figure 8. A tile of size 9×9 with a northern
neighbor of lower resolution and an eastern
one of higher resolution. The tilelets shown
in Figure 5 are used for correct stitching.

Stitching is necessary when the northern or eastern
neighbor tile has a different LoD. Gaps in the terrain may be
visible otherwise. Zero area triangles have been used to al-
leviate this problem in the literature [12], but is an inelegant
and incorrect solution. We use a special L-shaped geome-
try template with indices of only the northern and eastern
borders of a generic tile for stitching (Figure 5(a)).

The stitching templates use the same vertex shader. Their
geometry shader selects one of the tilelets in the border ar-
eas (Figures 5(b-f)) based on the LoD numbers. Tilelets
of the eastern border can be rendered with equal LoD to the
parent tile (Figure 5(b)), lower LoD than the parent tile (Fig-
ure 5(d)), or higher LoD than the parent tile (Figure 5(c)).
The same goes for the tilelets along northern border (Figure
5(b, f, e)). The geometry shader can recognize and ren-
der these tessellation styles using the available information
(E.g. Figure 8). Our stitching scheme maintains coherence
at the borders of tiles with no abrupt changes or gaps. It also
requires less number of triangles compared to schemes like
zero area triangles and introduce no extraneous geometry.

The morphing factor is used to smoothen the change
in LoD to avoiding popping of geometry. The morph-
ing factor α has a range [0, 1) and is used to interpolate

555555555

Figure 9. A tile at LoD = l (left) blends its al-
ternate heights (shown in red) with its lower
LoD (middle) using α. When the tile shifts its
LoD, the change is not noticeable. This pro-
cess is valid in reverse as well.

between the heights of the current LoD level and of one
lower level. Thus, the final height used for rendering is
h = αhl + (1 − α)hl+1 where l is the LoD of the tile (Fig-
ure 9). When a tile moves from far to near, α changes from
0 to 1 smoothly and improve the shape of the tile. For the
corner heights, the morphing factor for the adjacent tile is
used, as the neighbouring tile will change its LOD indepen-
dently.

4. Caching

The GPU Cache contains N×N blocks at the merge-level
resolution, which is the maximum resolution of the terrain
needed at the elevation of the camera. The size N depends
on the maximum visibility required at the highest resolu-
tion. The visibility doubles as the merge-level increases.
We use N = 8 for most of our experiments, needing stor-
age for 64 blocks on the GPU.We try to keep the GPU cache
symmetric with respect to a reference point, which is the
centre of the orthographic projection of the view frustum
onto the ground (Figure 10).

4.1. Lateral Motion of Viewpoint

Lateral motion, pan, and tilt at a constant elevation bring
in new data to the GPU cache at the same resolution. We
use the position of the reference point in the cached terrain
to trigger the data transfer. If the reference point goes out-
side the central 2×2 block of the GPU cache the cache is
re-centered by bringing another row or column of blocks at
the current merge level, (Figure 10) discarding blocks on the
other side of the cache. We load the new blocks by overwrit-
ing the discardable blocks. The data from the CPU is loaded
to selected layers of the array texture and the pointer texture
is updated to rearrange the layer IDs on the GPU. For an
8 × 8 GPU Cache with each block taking 2MB of memory
(1024× 1024, 16-bit height values), a lateral motion cache
update needs 16MB of data to be uploaded to the GPU. The
data transfer time is controlled using a job-queuing scheme
explained later.

4.2. Vertical Motion

When the camera goes up, the extent of the visible ter-
rain increases and the resolution decreases. Similarly when
the camera comes down, the terrain extent decreases and
the detail increases. For this, we change the merge level or
the base resolution of the GPU Cache. This process keeps
the memory footprint constant without compromising the
requirements for rendering.

Ascending Motion: The merge level increases and the
resolution halves when the viewpoint moves up. A quarter
of the GPU cache can be filled by sub-sampling and merg-
ing the current contents of the cache (Figure 10). New data
has to be brought to the remaining space. The merging is
performed on the GPU using a separate fragment shader
pass that sub-samples and copies heights from 2× 2 blocks
into a single unused block. This is achieved by the bind-
ing the target and source blocks as frame buffer objects or
textures and drawing a block-sized quad. At the end of the
merging process 75% of the blocks will be free (Figure 10).
New data is brought to them from the CPU in the proximity
order from the reference point and stored in unused layers.
The data transfer is triggered before the new area is needed
and can complete over a few frames. For an 8 × 8 GPU
Cache, we merge 64 blocks into 16 blocks in the GPU us-
ing 16 merge operations. After that, 48 blocks or 96MB are
uploaded from the CPU to the GPU.

If the original terrain is one million square, we can get
log2 1024 = 10 global LoDs. We reduce the resolution in
factors of 2 until the entire terrain fits into the GPU Cache.
Thus the number of merge-levels depend on the cache size
and the total size of the terrain. We use a GPU Cache
size of 8 × 8 of 1K×1K sized blocks for the 16K×16K
Puget Sound data. It contains 14 LoD levels and only one
(= log2 16384 − log2 8192) merge-level before the GPU
cache is filled. A 1M×1M data with the same cache can
use 7 (= log2 1M−log2 8192) merge levels. The data trans-
fer time is controlled using a job-queuing scheme explained
later.

Descending Motion: When the resolution increases due
to a reduction in elevation, the blocks of the cache are re-
placed by higher resolution blocks, and the total extent of
the terrain reduces. This is data intensive as the entire GPU
Cache needs to be replaced. A quarter of the GPU Cache
that will remain in the view are first identified. The physi-
cal area of each block is to be replaced by four high reso-
lution blocks (Figure 10). The increase in resolution is also
anticipated ahead of time to avoid visible update changes.
For a 8 × 8 blocks, we have to bring the 128 MB into the
GPU memory to increase the merge level resolution. The
data transfer time is controlled using a job-queuing scheme
explained next.

556556556

Moving up

Moving downLateral motion

Figure 10. Lateral motion and pan/tilt (left) involve discarding an L-shaped region and bringing in
new blocks (yellow) from the CPU. When the viewpoint comes down, the merge level decreases
(middle). The extents of GPU cache are halved and data at a higher resolution is brought in from
the CPU. When the viewpoint goes up, the extents of the cache are doubled and the existing data is
compressed into one quadrant. New data is brought in from the CPU.

4.3. Job Queuing Scheme

Our primary goal is to maintain a steady frame-rate. We
treat the data transfer and merge operations as “jobs” and
queue them to be executed when the rendering process has
time. Running all the operations at the same frame can
freeze the rendering at times and affect the quality of visu-
alization. We execute as many jobs as possible to keep the
total frame time Tt, safely within the fps constraints. The
total frame time is, Tt = Tr + Tu where Tr is time for ren-
dering and Tu is the total time taken by the jobs in the cache
updating process. For 100 fps rendering, Tt is 10 ms and we
are left with Tu ≤ 10−Tr ms for updating. We steal cycles
for the update process when Tr < 10ms without affecting
the fps.

The transfer of a block of 2MB from the main memory
to the GPU takes 2 ms on the current GPUs. A merge op-
eration takes less than 0.5 ms. The number of jobs to be
performed is calculated as n = (10 − Tr)/K where K is
a constant denoting the worst case time for the job. For ex-
ample if Tr = 5 ms, and K = 2 ms for a layer update, then
n = 2 jobs can be performed per frame. If n < 1, we do
half jobs, by uploading half of a block. Over some number
of frames, all operations are completed. This adaptive job-
queuing ensures a frame-rate of 100 in practice without any
hiccups.

When the merge-level changes, the GPU cache gets up-
dated completely over a finite time. Until then, artifacts can
appear since the cache is mixed with old and new layers.
We use dirty texture flags to handle this. As soon as the
merge-level changes, all the blocks are marked dirty. When
marked dirty, the renderer uses the lower resolution, as with
the old merge-level. As soon as the new layers get updated
and older layers are made unused, new blocks are marked
clean. This way the rendering remains free of artifacts.

5. Terrain Deformation and Manipulation

Terrains are traditionally used only as static geometric
entities. The rectangular grid representation makes it easy
to manipulate them interactively or procedurally as well as
to simulate interactions of other objects with it.

Figure 11. (a) The mouse motion over the
screen triggers interactive editing of the ter-
rain. (b) A terrain of 2 × 2 block (left) and
the results of editing it (right). Editing can in-
volve multiple blocks at boundaries (marked)

Interactive and Procedural Manipulation: The GPU
representation of the terrain that we use lends itself to in-
teractive and procedural manipulation easily, exploit the
computing power and architecture of the modern GPUs. A
fragment shader can operate on each height value indepen-
dently or in relation to its neighborhood. The parameters
for the deformation process should be given to the shader.
This includes the user inputs like the mouse path for in-
teractive editing and relevant parameters for procedural de-
formation. A deformation pass is triggered on each block
by drawing a block-sized quad after setting up the param-
eters. Deformation passes are sandwiched between render-
ing passes. This simulates terrain dynamics in regular frame
intervals. Interactive editing of the terrains can also be per-
formed with the user guiding the change in heights (Figure

557557557

Figure 12. A view of Mt Rainier, a terrain with real texture, realtime physics with balls, realtime
physics with a deforming terrain.

11(a)). The screen point is back projected to world point
and transformed to the the terrain coordinates to get a point
of impact. Heights are modified based on the distance from
the point using user selected radius and intensity of impact.
Figure 11(a) shows how a channel can be cut on the ter-
rain by dragging the mouse. Multiple blocks may need to
be edited, based on the point of impact (Figure 11(b)). For
procedural dynamism based on time and distance, each de-
formation pass makes incremental changes to the terrain,
between rendering passes.A deformation pass takes about
250 microseconds per block. We see no drop in framerates
when only a few blocks are modified in each frame. With
rendering time mostly around 5ms, around 20 blocks can be
deformed per frame for 100fps performance. We start a si-
multaneous process on the CPU to effect the same changes
on the base terrain. This is similar to write-through of mem-
ory caches. The CPU can keep up with the GPU for user-
guided editing since the CPU load is low. For procedural
deformations, only the last state needs to be created on the
CPU. This can be performed as the CPU is lightly loaded.
The GPU cache is a single array texture. It can be bound as
a single FBO and modified in place using a fragment shader.
Layered rendering of the current GPUs enables independent
editing of multiple blocks in single deformation step. The
modified terrain can be rendered immediately as the GPU
Cache itself is updated in place.

Real-Time Object-Terrain Interaction: Terrains can
be used as the base to simulate several interactions with
external objects like a bouncing ball. Though the exact
physics involved could be quite complex, effective simula-
tion and visualization can be achieved with moderate com-
putation power. We take the example of multiple balls
bouncing over the terrain. The positions and velocities of
balls are stored as two textures in the GPU memory with
one pixel representing one ball. The positions will be up-
dated by a fragment shader using the velocity and time dif-
ference in an update pass that takes place between render-
ing passes. The fragment shader has access to the textures
through an FBO for the update pass. The update pass will
also implement the physics such as collision with the ter-

rain. The velocity may change as a result of the physics.
The terrain height has to be looked up for a given 3D po-
sition of the ball to check for collision. This is done by
converting the xy location to the GPU cache block and grid
coordinates, looking up the layer ID from the block number
using the pointer texture, and accessing the height. If balls
are present, a rendering pass renders them at their current
locations. The vertex shader fetches the positions of a ball,
checks for visibility in the frustum and renders it procedu-
rally as a front facing circle. A quarter of a million balls
can interact and be rendered with the terrain at 100 fps. The
system can achieve 60 fps with 1 million balls2.

6. Results

We performed all our experiments on an Nvidia 8800
GTX using OpenGL and GLSL shaders on Linux with a
Pentium Core 2 Duo CPU running at 2.4 GHz. We use the
Puget Sound data, consisting of a 16384×16384 grid of 16-
bit heights covering a square region of length about 160 km,
for most experiments. We also use the 8192×4096 Blue-
Marble grid with earth texture and an 8192×4096 height
data with monochrome satellite image as texture. We sim-
ulated a very large terrain by first tiling 4 sets of Puget-
Sound, flipping it along the vertical and horizontal edges.
This 32K×32K terrain occupies 2 GB of space and can
be tiled along X and Y directions infinitely. We simulated a
1M×1M terrain by replicating it 32 times each in X and Y
directions. Replication was effected using modulo compu-
tation without additional memory. The data-access module
on the CPU was the only unit aware of the replication. The
terrain system was unaware of it.

Figure 13 shows the system performance on a flight over
the 1 trillion sample terrain. The camera moves laterally till
about frame 2000 with significant tilt. The thin peaks in up-
date time correspond to lateral cache updates. The camera

2Transform feedback is the recommended mode on SM4.0 GPUs to
generate positions and geometry on the fly. Updating the positions using
transform feedback is slow and achieves about 17 fps with 4K balls. Frag-
ment shaders are much faster

558558558

goes up and merge shifts occur near frame 2200. The tri-
angle rate falls when many distance-levels are used as the
terrain access doesn’t benefit from its caching scheme. The
camera starts to come down around frame 3200.

 0

 2

 4

 6

 8

 10

 12

 0 500 1000 1500 2000 2500 3000 3500

 80

 160

 240

 320

 400

T
im

e
in

 m
ill

is
ec

on
ds

T
ria

ng
le

 R
at

e
in

 m
ill

io
ns

/s
ec

Frames

Total Rendering Time
Update Time

Triangle Rate

Figure 13. Cache update time, total rendering
time, and the triangle rate for a typical flight
over the terrain.

The rendering time below 8 milliseconds per frame at all
times, with the average around 2.5 ms on the trillion sample
terrain under different viewer motions. The system can pro-
vide a guaranteed 100 fps rate without the CPU, the GPU,
or the bandwidth between them being a bottleneck. The
system achieves a rendering rate of upto 350 million tri-
angles per second and an average rate of over 160 MT/s.
This remarkable rates are made possible by exploiting the
power of the GPU. The CPU load stays between 5-10%
even when the viewpoint moves up/down. We ran exper-
iments on Puget Sound data using the geometry clipmap
demo provided by Hoppe [1] on the same GPU. Their sys-
tem renders an average of 300K triangles per frame and ob-
tain an average triangle rate of 100 million triangles per sec-
ond. Our system renders an average of 450K triangles per
frame with a peak triangle rate of 350 MT/s.

7. Conclusions

In this paper, we presented a system for real-time render-
ing, deformation, editing, and physics computation of large
terrains. The representation enables quick rendering and the
ability to manipulate the terrain on-line. The GPU plays the
key role in representation, rendering, and manipulation of
the terrain. The CPU load is kept very low using the geom-
etry template based rendering, second level culling, and ter-
rain manipulation using fragment shaders. We demonstrate
fairly sustained frame rates of over 100 fps and triangle rates
of upto 350 million.

The primary limitation of our system is the need for the
whole terrain to be present on the CPU memory. This lim-

its the size of the largest terrain that can be handled since
data cannot be accessed from disks at that rate. However,
the terrain on the CPU can be thought of as a cache at an
appropriate resolution of the terrain that resides on the disk
or over the network. A scheme very similar to what is used
for the GPU cache can then be used to manage the data on
the CPU at an appropriate resolution. Since the CPU cache
will need occasional updates, we can update it with a par-
allel low priority thread using today’s dual core processors.
The other limitation concerns the speed limit on the viewer
imposed by the GPU cache updating. This will improve as
the CPU to GPU bandwidth improves on future GPUs.

Acknowledgments: We gratefully acknowledge the par-
tial financial support of Microsoft Research’s Virtual Earth
Programme.

References

[1] A. Asirvatham and H. Hoppe. Terrain rendering using gpu-
based geometry clipmaps. GPU Gems 2, pages 46–53, 2005.

[2] S. Atlan and M. Garland. Interactive multiresolution editing
and display of large terrains. Computer Graphics Forum,
25(2):211–223, 2006.

[3] P. Cignoni, E. Puppo, and R. Scopigno. Representation and
visualization of terrain surfaces at variable resolution. The
Visual Computer, 13, 1997.

[4] D. Cohen-Or and Y. Levanoni. Temporal continuity of levels
of detail in delaunay triangulated terrain. In IEEE Visualiza-
tion, pages 37–42, 1996.

[5] S. Deb, S. Bhattacharjee, S. Patidar, and P. J. Narayanan.
Real-time streaming and rendering of terrains. In ICVGIP
’06, pages 276–288. LNCS 4338, 2006.

[6] J. El-Sana and A. Varshney. Generalized view-dependent
simplification. Comput. Graph. Forum, 18(3):83–94, 1999.

[7] L. D. Floriani, P. Magillo, and E. Puppo. Building and
traversing a surface at variable resolution. In IEEE Visu-
alization, pages 103–110, 1997.

[8] R. Geiss. Generating Complex Procedural Terrains Using
the GPU. Addison Wesley, 2007.

[9] Y. He, J. Cremer, and Y. E. Papelis. Real-time extendible-
resolution display of on-line dynamic terrain. In Graphics
Interface, 2002.

[10] H. Hoppe. Smooth view-dependent level-of-detail control
and its application to terrain rendering. In IEEE Visualiza-
tion, pages 35–42, 1998.

[11] X. Li and J. M. Moshell. Modeling soil: realtime dynamic
models for soil slippage and manipulation. In SIGGRAPH,
pages 361–368, 1993.

[12] F. Losasso and H. Hoppe. Geometry clipmaps: terrain
rendering using nested regular grids. ACM Trans. Graph.,
23(3):769–776, 2004.

[13] D. Wagner. Terrain geomorphing in the vertex shader.
ShaderX2, Shader Programming Tips and Tricks with Di-
rectX 9, Wordware Publishing, 2004.

559559559

