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Abstract

Current denoising techniques use the classical orthonor-

mal wavelets for decomposition of an image corrupted with

additive white Gaussian noise, upon which various thresh-

olding strategies are built. The use of available biorthogo-

nal wavelets in image denoising is less common because of

their poor performance. In this paper, we present a method

to design image-matched biorthogonal wavelet bases and

report on their potential for denoising. We have con-

ducted experiments on various image datasets namely Nat-

ural, Satellite and Medical with the designed wavelets us-

ing two existing thresholding strategies. Test results from

comparing the performance of matched and fixed biorthog-

onal wavelets show an average improvement of 35% in MSE

for low SNR values (0 to 18db) in every dataset. This im-

provement was also seen in the PSNR and visual compar-

isons. This points to the importance of matching when using

wavelet-based denoising.

1. Introduction

The wavelet transform has been a powerful and widely

used tool in image denoising because of its energy com-

paction and multiresolution properties. Denoising an image

corrupted with additive white Gaussian noise was initially

proposed in [4] by thresholding the wavelet coefficients.

Subsequently, various decomposition strategies and thresh-

olding schemes have been proposed [1], [8], [7]. However,

most of these use classical orthogonal wavelets which are

independent of the image and noise characteristics and fo-

cus on finding the best threshold.

Unlike the Fourier transform with its complex exponen-

tial basis, the wavelet transforms do not have a unique ba-

sis. Noting this point several attempts at designing matched

wavelets have been made with the goal of match varying

from match to a signal [2] and energy compaction [9] to

maximizing the signal energy in the scaling sub-space [5].

The matched wavelets have been applied to feature extrac-

tion and compression problems. But as per our knowledge,

no such work has been reported in particular for the image

denoising problem.

Our work explores the utility of matched wavelets for

denoising. In this paper, we report on a design methodology

based on biorthogonal wavelets. We assume the noise to

be additive white Gaussian and use the statistical properties

of noise in the design. Specifically, we propose a design

that will generate a biorthogonal wavelet bases for a given

corrupted image which can be used for its denoising.

The paper is organized as follows: the design of adap-

tive biorthogonal wavelet bases is presented in section 2 fol-

lowed by an algorithm for image denoising using matched

wavelets and a brief review of thresholding strategies used,

in section 3. In section 4 we present the obtained results and

the corresponding discussion; we finally close with some

conclusions and future work in section 5.

2. Image matched biorthogonal wavelets

We use the concept of separable kernel proposed by

Mallat [6] in our design of matched wavelets for images.

Hence, two sets of 1D matched wavelets are designed for

two 1-D signals generated from the given image, obtained

by row and column orderings instead of designing the two-

dimensional matched wavelets. We have opted for sepa-

rable kernel mainly for simplicity of the design procedure.

Now the problem of finding image-matched biorthogonal

wavelets is essentially one of designing 2-channel 1D FIR

perfect reconstruction filter bank for each of the two 1-D

signals satisfying some necessary and sufficient conditions.

The design of FIR filters makes the obtained wavelets to be

compactly supported.

Our criterion for matching is based on maximizing the

projection of signal characteristics into the scaling subspace

rather than the wavelet subspace, based on a knowledge of

the noise characteristics. Such a matching criteria will lead

to a higher SNR in the coarsest approximation subspace

when a noisy signal is decomposed with the matched as op-

posed to a fixed wavelet. Thus a thresholding process which
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passes the coarsest approximation sub-band and attenuates

the rest of the sub-bands should decrease the amount of

residual noise in the overall signal after the denoising pro-

cess. A similar approach was proposed by Gupta et al. [5]

for designing wavelets for signal and image compression.

However, their wavelets would not work for the denoising

applications as they are matched directly to the input image

which is a noisy image in denoising applications i.e their

technique would maximize the projection of noisy image

features into the scaling subspace and not the clean image

features. Next, we present our design in detail.

2.1. Design of two-channel 1D PR filter
bank

a0(k) â0(k)
h̄0(k)

h̄1(k)

a
−1(k)

d
−1(k)

f0(k)

f1(k)2 ↓

2 ↓

2 ↑

2 ↑

Figure 1. Two channel 1D maximally deci-
mated PR filter bank:

bar on analysis filters denotes time reversal

Fig.1 shows a 1D two-channel maximally decimated fil-

ter bank. Given a noisy image we obtain two 1D noisy sig-

nals, one by row and the other by column ordering. Now we

design a two channel 1D perfect reconstruction filter bank

for each of these 1D noisy signals using our matching cri-

teria. In our approach, the analysis high pass filter h1(k) is
designed first and the bi-orthogonal relations are then used

to design the remaining filters of the filter bank.

Design of analysis high pass filter

Given a 1D noisy signal, we design the analysis high pass

filter using the matching criteria, that projects most of the

pure signal energy from the noisy one into the scaling sub-

space and less into the wavelet subspace. The design is de-

scribed below.

Consider the two channel filter bank shown in Fig.1. Let

a0(k) be the discrete noisy signal of length L obtained from
the noisy image and consider its values to be the coefficients

of expansion in the scaling subspace V0. Now the signals

a
−1(k) and d−1(k) can be considered as the coefficients of
expansion in the lower scaling subspace V

−1 and wavelet

subspaceW
−1 respectively. Let N be length of the filters.

Hence we have,

a
−1(k) =

N−1
∑

n=0

h0(−n)a0(2k − n) (1)

d
−1(k) =

N−1
∑

n=0

h1(−n)a0(2k − n) (2)

Let φ(t) and ψ(t) be the scaling and wavelet functions
respectively. The signal reconstructed from initial scaling

spaceV0 is

z(t) =

L−1
∑

k=0

a0(k)φ(t− k) (3)

and the signal reconstructed using only the lower wavelet

subspaceW
−
1 be

ẑ(t) =

L/2−1
∑

k=0

1√
2
d
−1(k)ψ(t/2 − k) (4)

The error energy between the signals z(t) and ẑ(t) can be
defined as

E =

∫

(z(t) − ẑ(t))2dt (5)

Now maximizing the signal energy projected into the

scaling subspace is equivalent to minimizing the projection

into wavelet subspace and this in turn is equivalent to max-

imizing the error energy defined in Eq.5.

The basic set of equations required for the simplification

of Eq.5 are given below.

φ(t) =

N−1
∑

n=0

√
2h0(n)φ(2t− n) (6)

ψ(t) =

N−1
∑

n=0

√
2h1(n)φ(2t − n) (7)

∫

φ(t)φ(t − p)dt = δ(p) (8)

∫

ψ(t/2 − p)φ(t −m)dt =
√

2h1(m− 2p) (9)

Substituting Eqs. 2, 3 and 4 into Eq. 5 and using the

above four equations in its simplification will give rise to

E =

L−1
∑

m=0

a0(m)2−
N−1
∑

p=0

L/2−1
∑

k=0

N−1
∑

q=0

h1(p)h1(q)a0(2k+p)a0(2k+q)

(10)

Now maximizing the simplified error energy w.r.t analy-

sis high pass filter h1(k)
1 will lead to [5]

1The full derivation is too long to fit here. It can be provided if needed.
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N−1
∑

p=0

h1(p)
[

L/2−1
∑

k=0

a0(2k + p)a0(2k + q)
]

= 0 (11)

for r=0,1, . . . ,N-1

The filter designed using the Eq. 11 will project most of

the input noisy signal energy into the scaling subspace but

not the pure signal energy. Hence to match our criteria the

equation 11 is modified accordingly as

N−1
∑

p=0

h1(p)
[

L/2−1
∑

k=0

x(2k + p)x(2k + r)
]

= 0 (12)

where x(k) is assumed to be the pure signal and n(k) be

AWGN with zero mean and σ2 variance added to x(k) to

get a0(k). Substituting x(k)=a(k)-n(k) in Eq.12 and using
the i.i.d properties of n(k) we get

N−1
∑

p=0

h1(p)

[

[

L/2−1
∑

k=0

a0(2k+p)a0(2k+r)
]

−Γ·δ[p−r]
]

= 0

(13)

where Γ is given by

Γ =
2

L

L/2−1
∑

k=0

n2(2k + r) (14)

The above equation can be linearly solved for h1(k) by es-
timating the autocorrelation of noise.

Estimation of noise statistics In the additive white Gaus-

sian noise setting, the autocorrelation of noise is approxi-

mately equal to the noise variance σ2. There are two scenar-

ios to obtain this: either we have apriori information about

the noise variance or it can be estimated from the given

noisy image using a robust median estimator [4].

Design of the other three filters

The remaining three filters in Fig.1 are obtained from h1(n)
using the biorthogonal relations and perfect reconstruction

conditions [10], [3]. That is, compute f0(n) as

f0(n) = (−1)n+1h1(M − n) (15)

where M is any odd delay.

Next, h0(n) can be calculated using two biorthogonal rela-
tions below

N−1
∑

n=0

h0(n)f0(n− 2l) = δ(l) ∀l ∈ Z (16)

N−1
∑

n=0

h0(n)h1(n) = 0 (17)

Additionally, we impose p vanishing moments on f1(n) as
follows. These moments are

m1(k) =

N−1
∑

n=0

nkf1(n) = 0 fork = 0, 1, . . . , p. (18)

They can be transferred to h0(n) as

N−1
∑

n=0

(−n)kh0(n) = 0 fork = 0, 1, . . . , p (19)

Equations 16, 17 and 19 can be solved simultaneously to

get h0(n) with p vanishing moments.
Finally, f1(n) can be determined using

f1(n) = (−1)nh0(M − n) (20)

Thus, all the four filters of the matched biorthogonal filter

bank are derived as explained above.

3. Overall denoising algorithm

The overall filter design and denoising processes are

summarized in the algorithm shown below.

Algorithm 1 Image Denoising using Matched Wavelets

1: Denote signals obtained by row and column ordering of

noisy image as a0x and a0y respectively

2: Use a0x as input to two channel filter bank

shown in 1 and denote the filters thus designed as

h0x, h1x, f0x, f1x

3: Now use a0y as input and denote the filters thus de-

signed as h0y, h1y, f0y, f1y

4: Obtain the 2D DWT of given noisy image using the

1D decomposition filters h0x, h1x, h0y, h1y by separa-

ble kernel upto desired number of levels.

5: Threshold the detail subbands at each level using the

chosen thresholding strategy and leave the coarsest ap-

proximation subband unthresholded.

6: Now obtain the reconstructed image from above

coefficents using the 1D reconstruction filters

f0x, f1x, f0y, f1y by separable kernel.

The first level decomposition and reconstruction process

using matched wavelets is shown in Fig.2. As the designed

filters are one-dimensional we use the separable kernel [6]

to compute the forward and reverse wavelet transforms. In

the figure, LL are the first level approximation coefficients

and LH, HL and HH are the first level detail coefficients.

The first level approximation coefficients can be applied as
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â0(n1, n2)a0(n1, n2)

h̄0x
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LL

LH

HL

HH

Figure 2. First level decomposition and reconstruction using separable kernel and matched filters;

The bars on filters denote time reversal

the input to Fig.2 to get the second level coefficients and so

on.

For the thresholding stage of the algorithm we have

used two strategies namely BayesShrink proposed in [1]

and BiShrink proposed in [8]. Since there are no threshold-

ing strategies specially designed for biorthogonal wavelets,

we have used the above strategies although they were orig-

inally designed for orthogonal wavelets. And since our

main goal here is to compare the denoising performance

of our matched biorthogonal wavelets with the fixed (CDF)

biorthogonal wavelets, these strategies serve our purpose.

We briefly describe them here for making our paper self-

contained and clear.

BayesShrink - Let the observation model be Y = X+V ,
where Y, X and V are wavelet coefficients of noisy, original

and noise images respectively with X and V independent of

each other, hence

σ2
Y = σ2

X + σ2

where σ2
Y is the variance of Y. Since Y is modeled as zero

mean, σ2
Y can be found empirically by

σ̂2
Y =

1

n2

n
∑

i,j=1

Y 2
ij

where n×n is the size of the subband under consideration.
The variance of noise can be estimated using a robust

median estimator presented in [4] as

σ̂ =
Median(|Yij|)

0.6745
, Yij ∈ subbandHH1.

whereHH1 is the subband containing finest level diagonal

details.

Now the threshold value is given by

T̂ =
σ̂2

σ̂X
(21)

where

σ̂X =
√

max(σ̂2
Y − σ̂2, 0).

In the case that σ̂2 ≥ σ̂2
Y , σ̂X is taken to be 0. That is, T̂

is∞, or, in practice, T̂ = max(|Yij |), and all coefficients
are set to 0. This happens at times when σ is large.
To summarize, BayesShrink is the denoising strategy

which performs soft-thresholding [4], with the data-driven,

subband-dependent threshold given by Eq. 21.

BiShrink - Let w2 represent the parent of w1 (w2 is the

wavelet coefficient at the same spatial position as w1, but at

the next coarser scale). Then

y1 = w1 + n1 and y2 = w2 + n2

where y1 and y2 are noisy observations of w1 and w2, and

n1 and n2 are noise samples. We can write

y = w + n

wherew = (w1,w2), y = (y1,y2) and n = (n1,n2).

The threshold value is given by

T̂ =

√
3σ̂2

n

σ̂w
(22)

where σ̂2
n and σ̂

2
w are estimates of noise and signal variances

respectively which can be obtained as in the BayesShrink

strategy.
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Figure 3. BayesShrink - From left to right: Original, Noisy peppers (σ = 30), Denoised using bior3.5,
Denoised using matched wavelets

The bivariate shrinkage or thresholding function used in

this strategy is

ŵ1 =
(
√

y2
1

+ y2
2
− T̂ )+

√

y2
1 + y2

2

.y1. (23)

Here (g)+ is defined as

(g)+ =

{

0 if g < 0
0 otherwise

To summarize, BiShrink is the denoising strategy which

performs bivariate shrinkage given by Eq. 23, with the data-

driven, subband-dependent threshold given by Eq. 22.

4. Experimental results and discussion

The denoising performance of our matched wavelet was

tested on set of standard 8-bit grayscale images such as

Peppers, Elaine, Barbara, Baboon, and Goldhill etc., and

two other datasets namely Satellite and Medical(HRA) for

various noise-levels. It is compared against existing fixed

biorthogonal wavelets and orthogonal wavelets. We have

used 4-level wavelet decomposition, and the coarsest ap-

proximation coefficients were not thresholded. We have

tested the performance of our matched wavelets with two

types of thresholding strategies: BayesShrink proposed in

[1] and BiShrink proposed in [8] and described in the previ-

ous section.

In order to study the performance of matched wavelets

w.r.t the frequency content of the image, the test images

were also classified by their frequency distribution. For do-

ing so, the PSD of the given image is calculated in three

intervals of full spectrum such as i)0 to π/3, ii)π/3 to 2π/3
and iii)2π/3 to π. Now the images were classified as low
pass, band pass and high pass when PSD is maximum in

interval1, interval2 and interval3 respectively. The experi-

ments were carried on the set of low pass and high pass im-
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Figure 4. BayesShrink- Percentage im-

provement in MSE over fixed biorthogonal
wavelets for image ’Lena’

ages only, because they are the ones which are found more

often in general and in our datasets.

4.1. Comparison against fixed biorthogonal
wavelets

BayesShrink - The visual comparison of performances

between matched and biorthogonal (bior3.5) wavelets is

shown in Fig.3. This image is classified as low pass from the

computed PSD values. The results show a visible improve-

ment in the image quality in terms of noise content albeit

with some smoothing. The PSNR comparisons against the

fixed biorthogonal wavelets are shown in Table. 1. It shows

the results for four natural images namely Lena, Goldhill,

Baboon and Barbara. It can be seen from the table that for
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Figure 5. BiShrink - From left to right: Original, Noisy elaine (σ = 20), Denoised using bior3.1, De-
noised using matched wavelets

higher values of noise standard deviation (>10) the matched
wavelets are performing better than the fixed wavelets. On

an average the PSNR improvement was found be approxi-

mately 2dB. The percentage improvement in MSE (α) ob-
tained with matched wavelets is shown in Fig. 4 and is cal-

culated as

α = 100 ∗ MSEfixed −MSEmatched

MSEfixed

BiShrink - Now we tested the performance of our

matched wavelet with the BiShrink threshold. The visual

results can be seen in Fig 5. The results are shown on a

different image of the low pass set compared to image used

for BayesShrink results. This is done to show the robustness

of matched wavelets for various images as long as they are

from the same frequency set. The percentage improvement

in MSE with this threshold is shown in Fig 6. We observe

that the improvement in MSE performance with BiShrink

threshold is more or less same as with BayesShrink thresh-

old. This indicates the robustness of matched wavelets w.r.t

thresholding method. The PSNR comparisons against the

fixed biorthogonal wavelets obtained with this method are

shown in Table.2

The visual results for the satellite and medical images

are shown in Fig 4.2. The results show the comparisons

with the bior2.4 and bior2.2 wavelets for the noise stan-

dard deviations of 20 and 30 respectively. The thresholding

technique used here is the BiShrink, as it was seen to out-

perform BayesShrink in most of the cases. Clearly it can

be observed from the figure that matched wavelets are well

suited for these kinds of application specific datasets also

apart from the natural images.

From the computed percentage improvement values in

Fig. 4 and Fig. 6 we can see that denoising with matched

wavelets results in an improvement of 35% percent on aver-

age for lower SNR (0-18db) with this performance decreas-

ing at higher SNR (>18db). The improvement in denoising
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Figure 6. BiShrink- Percentage improvement

in MSE over fixed biorthogonal wavelets for

image ’Lena’

at low SNR cases is very much attractive. Hence we suggest

this approach in lower SNR cases where there is the actual

need of matching.

The decrease in the performance improvement at higher

SNRs can be explained as follows. As the matched wavelets

are adaptive to the noise conditions they perform equally

well for full SNR range. But at higher SNR since the noise

energy corrupting the image is low, the fixed wavelets per-

form better compared to their own performance at lower

SNRs. And hence MSE improvement plot shows per-

formance decrease as the SNR level increases. Anyway

this behavior need not be of much concern because SNR

(>18db) generally leads to a noise standard deviation (<10)
which is very low and at such noise levels denoising itself

is insignificant.
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Table 1. BayesShrink - PSNR COMPARISON OF MATCHED WAVELET AND FIXED BIORTHOGONAL
WAVELETS

σ 5 10 20 30 50 5 10 20 30 50

input PSNR 34.14 28.13 22.10 18.57 14.16 34.14 28.13 22.10 18.57 14.16

Wavelet Lena 512 X 512 Goldhill 512 X 512

Bior3.5 35.77 30.61 24.92 21.47 17.10 35.22 30.27 24.74 21.35 17.03

Bior2.2 36.22 31.65 26.52 23.36 19.32 35.38 31.02 26.28 23.19 19.15

Bior2.6 36.26 31.75 26.69 23.54 19.31 35.46 31.08 26.31 23.34 19.24

Matched 31.15 29.69 26.74 24.57 21.73 30.75 28.46 26.67 24.13 21.54

Wavelet Baboon 512 X 512 Barbara 512 X 512

Bior3.5 32.66 28.36 23.87 20.87 16.77 34.81 29.47 24.36 21.14 16.92

Bior2.2 32.57 28.47 24.46 21.85 18.39 35.19 29.93 25.30 22.46 18.72

Bior2.6 32.83 28.62 24.55 21.92 18.47 35.28 30.01 25.43 22.53 18.84

Matched 27.43 26.01 24.72 22.83 20.99 30.34 27.62 25.81 23.50 20.02

Table 2. BiShrink - PSNR COMPARISON OF MATCHED WAVELET AND FIXED BIORTHOGONAL
WAVELETS

σ 5 10 20 30 50 5 10 20 30 50

input PSNR 34.14 28.13 22.10 18.57 14.16 34.14 28.13 22.10 18.57 14.16

Wavelet Lena 512 X 512 Goldhill 512 X 512

Bior3.5 36.23 31.12 25.46 21.89 17.56 35.72 30.74 25.13 21.77 17.48

Bior2.2 36.71 32.16 27.09 23.80 19.73 35.83 31.52 26.74 23.61 19.59

Bior2.6 36.74 32.25 27.21 23.94 19.76 35.94 31.59 26.80 23.70 19.62

Matched 31.85 31.09 27.34 25.07 22.23 31.15 29.16 27.27 25.43 22.94

Wavelet Baboon 512 X 512 Barbara 512 X 512

Bior3.5 33.16 28.86 24.31 21.24 17.16 35.33 29.97 24.89 21.56 17.32

Bior2.2 33.07 28.98 24.96 22.25 18.79 35.69 30.43 25.80 22.87 19.13

Bior2.6 33.33 29.12 25.06 22.33 18.87 35.78 30.52 25.94 22.95 19.28

Matched 29.03 26.66 25.42 23.34 21.49 30.94 28.22 26.43 24.01 21.54

4.2. Comparison against fixed orthogonal
wavelets

The performance of proposed biorthogonal wavelets was

also compared with fixed orthogonal wavelets just for com-

pleteness. It was found that there was no improvement

in denoising performance in this case. The reasons for

this can be explained as follows. Firstly, in all our com-

parisons we used the thresholding techniques proposed in

[1] and [8] which were originally designed for orthog-

onal wavelet decomposition and hence they can be ex-

pected to be sub-optimal for denoising with biorthogonal

wavelets. However, we chose them as they are sub-band

adaptive and in order to test the merit of matching in gen-

eral. Notwithstanding this fact, the better performance of

the matched wavelet against fixed biorthogonal and not or-

thogonal wavelet suggests that improved denoising is pos-

sible even with biorthogonal wavelet provided it is matched

to the clean image. Secondly, the noise distribution across

sub-bands is taken to be uniform (as per orthogonal decom-

position) in the threshold derivation in [1]. Our investiga-

tions showed this assumption to be not true with biorthogo-

nal decomposition.

5. Conclusions

In this paper, we have explored the utility of using

image-matched biorthogonal filters for denoising. Our de-

sign of image-matched biorthogonal wavelet bases uses the

constraint that most of the energy of clean image is pro-

jected into scaling subspace rather than the wavelet sub-

space. We have compared denoising performance of our

matched wavelets with CDF biorthogonal wavelets with

two well-known thresholding strategies for various im-

age datasets. The results show that adapted biorthogonal
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(a) Satellite: Original (b) Satellite: Noisy(σ = 20) (c) Satellite: Denoised Bior2.4 (d) Satellite: Denoised Matched

(e) Medical: Original (f) Medical: Noisy(σ = 30) (g) Medical: Denoised Bior2.2 (h) Denoised Matched

Figure 7. Visual Comparisons for Satellite and Medical Images

wavelets performed much better denoising than the avail-

able biorthogonal wavelets for low SNR i.e where the actual

need for adaptation arises. Also the results show that these

matched wavelets can be used for denoising of variety of

image datasets such as Satellite and Medical and also show

their robustness w.r.t thresholding technique. Developing a

thresholding technique specifically suited for biorthogonal

wavelets needs investigation as it may improve the denois-

ing of matched wavelets against fixed orthogonal wavelets

also. The design of matched orthogonal wavelets is another

line that is presently under investigation.
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