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Abstract— Image-based navigation paradigms have recently
emerged as an interesting alternative to conventional model-
based methods in mobile robotics. In this paper, we augment
the existing image-based navigation approaches by presenting
a novel image-based exploration algorithm. The algorithm
facilitates a mobile robot equipped only with a monocular
pan-tilt camera to autonomously explore a typical indoor
environment. The algorithm infers frontier information directly
from the images and displaces the robot towards regions that
are informative for navigation. The frontiers are detected using
a geometric context-based segmentation scheme that exploits
the natural scene structure in indoor environments. In the due
process, a topological graph of the workspace is built in terms
of images which can be subsequently utilised for the tasks of
localisation, path planning and navigation. Experimental results
on a mobile robot in an unmodified laboratory and corridor
environments demonstrate the validity of the approach.

I. VISION-BASED ROBOT NAVIGATION

Vision-based robot navigation [1] has long been a funda-
mental goal in both robotics and computer vision research.
While the problem is largely solved for robots equipped with
active range-finding devices, for a variety of reasons the
task still remains challenging for robots equipped only with
vision sensors. Cameras have evolved as attractive sensors
as they help in the design of economically viable systems
with simpler sensor limitations.

Several techniques have been proposed and extensively
studied in literature to address this problem. They can be
broadly classified into model-based and appearance-based
approaches [1]. Model-based approaches correspond to the
conventional algorithms employing a metric model of the
robot’s workspace [2]. Features are tracked in the images
and a 3D reconstruction of them is computed in an off-
line process. Localisation is performed by matching features
in the model with those observed in the current image and
the pose is computed from 3D-2D correspondences. The
accuracy of this approach is highly dependent on the features
used for tracking, robustness of the feature descriptor and
the method for image matching and view reconstruction. In
contrast, appearance-based (or view-based) algorithms [3],
[4], [5], [6], [7] avoid the need for a metric model by
working directly in the sensor space. The environment is
generally represented as a topological graph in which each
node represents a position in the workspace and stores the
sensor readings (i.e., images from the camera) observed at
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that pose. Pairs of nodes corresponding to positions with
a direct path between them are connected with an edge.
In this context, localisation reduces to an image-retrieval
problem that involves finding within the database the image
description that is most similar to its current view. A path
to follow is described by a set of images extracted from
the database. Control of the robot is either performed by
hardcoding the action required to move from one node to
another in the graph [4] or by employing a more robust
approach in the form of visual servoing [5]. This paradigm
is relatively new and is attracting active interest, as the
modelling of objects is substituted by the memorisation of
views, which is far easier than 3D modelling [3], [6], [7].

Though the appearance-based approaches developed until
now have helped us gain a state of maturity in this field,
there are certain aspects that need to be further addressed.
The proposed algorithms assume that an image database or
a topological graph of the workspace is already available to
the robot [3], [4], [5]. This information is acquired manually
during a training phase where a human-operator guides the
robot through the workspace [4]. This is a tedious process as
it involves human intervention every time a robot moves to a
new workspace, which is particularly difficult for very large
environments. This drawback severely limits the applicability
of such approaches. Further, the robotic system is restricted
to the limited amount of information that is acquired by
it during the training stage. As map building is done off-
line, it limits the robot workspace only to the explored
regions that are visualised during the training stage [3], [5].
It would be rather preferable to dynamically extend the robot
workspace into unseen regions in its surroundings. Although
a few methods have been developed to automatically organise
images of a workspace into a graph (representing the spatial
relationship between them) [3], [5], [7], they still demand
user intervention to obtain the images and to ensure sufficient
sampling of the entire workspace. It must be emphasised that
task of exploration is an important aspect of any mobile
robot navigation algorithm and forms the basis for the
design of several important algorithms (localisation, servoing
etc). Hence an autonomous efficient exploration algorithm is
very much critical for the overall success of the navigation
paradigm.

Rather than limiting image-based paradigms to a sim-
ple teach-and-replay scheme, they can be extended to au-
tonomously learn and navigate unknown environments. In
this paper, we present a method for systematically exploring
an unknown bounded indoor workspace for the first time. The
method is analogous to the popular frontier based exploration
strategy [8] but involving a robot equipped only with a
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Fig. 1. Inferring horizons using geometric context-based segmentation (a) Original Image (b) Segmented (super-pixeled) Image (c) HSV Image (d)
Edge-filtered Image (e) Output Image showing floor region (the boundary indicates the horizon) (f) Polar Plot (blue points indicate obstacle boundaries
relative to the robot (black circle))

monocular camera. Specifically, we describe a method to
extract frontier boundaries directly from a single image
by exploiting geometric context information (Sect. II-A).
Using the detected frontiers, the robot is navigated to the
unexplored regions (Sect. II-B). The mapping is performed
in terms of a topological graph (Sect. II-C). Based on this
exploration strategy, we subsequently describe algorithms for
localisation, planning and control (Sect. II-D) of a mobile
robot in the explored environment. Thus in principle it
enables the achievement of a holistic image-based navigation
framework.

II. PROPOSED IMAGE-BASED EXPLORATION APPROACH

Most image-based navigation techniques assume that a
sequence of images is acquired during a human-guided
training step that allows the robot to find paths for moving
from its initial position to a goal pose. To overcome this
limitation, for the first time, the problem of exploring an
unfamiliar environment using a single limited-field of view
camera is considered.

The purpose of exploration is to systematically discover
and memorise unknown regions of an environment so that a
robot can navigate reliably throughout the environment. This
topic has received considerable attention in the literature in
the context of range-based sensors, the most popular being
the frontier-based exploration strategy [8]. In general, all the
approaches have, in common, the concept of information
gain i.e., moving to the destinations in the world that are most
informative for mapping and for increasing the confidence
about its location. This problem has attracted recent interest
in the context of vision sensors, specifically in the domain
of visual SLAM [9]. These algorithms often involve the use
of metric maps and can be broadly classified into one of
two categories, online algorithms that incrementally update
a 3D map of the environment [6] and off-line algorithms
that process a large set of readings in a batch manner [10].
Further, these methods are dependent on human control or
active range sensing for planning and obstacle avoidance.
Our proposed strategy is different from the above approaches
in terms that exploration is performed autonomously and
the mapping is done directly using images, which makes
it particularly suited for image-based navigation paradigms.

Our basic approach is similar to the popular frontier-based
strategy where the central idea is to gain new information
about the world by moving the robot to the boundary between
open space and uncharted territory (i.e., the frontiers). The
focus here is to estimate the obstacle-free regions from
the images and drive the robot towards these navigable
regions for increasing its knowledge of the workspace. In

this context, the frontiers are more appropriately referred as
horizons. More precisely, the robots takes an image from
its current position and detects all possible horizons from
it. The detected horizons are maintained in an open list.
One of the frontiers is selected and the robot is moved
towards it. It then acquires images from its new position and
adds them to a topological map. By moving to successive
frontiers, the robot can constantly increase its knowledge of
the world and extend its map into new territories until the
entire environment has been explored.

A. Inferring Horizons

In this section, we describe the method to infer the hori-
zons directly from an image. To achieve this step, the natural
scene structure in regular man-made indoor environments
is exploited. In such environments, the floor in the entire
workspace is usually a level plane and obstacles when present
start at or near the floor level (assuming no overhanging
obstacles). Also the appearance of the floor is reasonably
different from that of the surrounding walls and the obstacles
present in the scene. The basic idea is to segment and identify
the ground plane region in the image from the obstacle-
occupied areas.

Methods for ground plane extraction typically exploit
the appearance or geometry of the ground region. In [11],
appearance-based models of outdoor scenes were used to
identify the ground plane, vertical structures and the sky
region from a single view and to build a rough 3D recon-
struction of a scene. In this paper, ground plane extraction
from a single image is performed using colour and texture
cues. The input image is first over-segmented into a number
of super-pixels i.e., contiguous regions with fairly uniform
colour and texture [12] (See Fig. 1(b)). Each super-pixel
is then labelled as belonging to the ground or non-ground
region using the colour and texture cues. The colour-based
segmenter assigns a score to every super-pixel representing
how likely it is to belong to the floor region based on the
colour of its constituent pixels. This is done using an adaptive
Hue-Saturation-Value (HSV) histogram approach that mod-
els the distribution of ground region pixel colours [13] (See
Fig. 1(c)). The membership score (X) of each segment Si is
calculated as

X(Si) =
1
|Si|

∑
pjεSi

U(H(pj)− T ), (1)

where U is a heavy-side function, H = f(h, s, v) is the
histogram probability of the bin corresponding to the hue,
saturation, value tuple and T is a threshold determined
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Fig. 2. Determining distance d and orientation θ to obstacles: (a) Profile
View (b) Top View of the robot

based on the entropy of the histogram. Super-pixels with
a score above a particular threshold are labelled as part of
the floor. When placed in a new environment, the HSV
histogram is initialised by assuming that a small region
directly in front of the robot is open space and that hence
a trapezoidal region near the bottom of the initial view can
be marked as a part of the ground plane. The texture-based
segmenter finds possible boundaries between the ground and
non-ground regions by identifying edges across which large
changes in image texture take place (using an Sobel operator)
as shown in Fig. 1(d). Texture information is measured
at regular intervals in small patches on both sides along
each edge. If there is a large difference in texture between
two patches, and one of the patches is in a super-pixel
marked as definitely floor and the second does not, then
the second super-pixel is labelled as non-floor. Texture here
primarily refers to the mean RGB value and the variance
of intensity. A new HSV histogram is then re-calculated
over all super-pixels in the floor region and is used to
assign labels to unlabelled super-pixels using (1). Thus by
combining candidate boundary hypothesis with ground plane
membership score of each super-pixel, the exact extent of the
floor plane can be estimated (See Fig. 1(e)). The boundary
pixels of the floor region in the image constitute the horizons.

B. Horizon Boundary Computation

Given the pixel information of the horizons in the image,
the polar plot of distance to them can be computed using
simple trigonometric relations. Fig. 2(a) shows the profile
view of the robot while Fig. 2(b) shows its top view. The
height h of the camera center from the ground plane and its
tilt angle β from the horizontal are fixed and assumed to be
known. Also the camera is assumed to be pre-calibrated i.e.,
internal parameters K of the camera (specifically the image
center c and the focal length f ) are already available.

K =

24 fx 0 cx

0 fy cy

0 0 1

35

Using the concept of similar triangles, angle φ can be
derived as φ = arctan(y−cy

fy
), where (cx, cy) is the camera

center and (fx, fy) is the focal length. The distance d to
the obstacle can then be determined as d = hcot(β + φ).
The orientation (or the bearing angle) can be computed
as θ = α + arctan(x−cx

fx
), where α is the camera pan

(a) (b)

Fig. 3. Two types of images are acquired by the robot. In each sub-figure,
the first image is captured with the camera tilted downwards to observe the
floor region (for use in the exploration process); while the second image,
taken with zero tilt, is utilised in building the topological graph for the
purpose of localisation and navigation.

angle. The polar plot is represented in the form of radial
distances d to the visible obstacles indexed by θ i.e., d(θ).
Fig. 1(f) displays the polar plot obtained for the considered
image view. It must be emphasised that the computation
of the polar plot is simplified by utilising the fact that
the ground level is planar and the height of the robot is fixed.

To infer the obstacle free regions, the resultant polar plot
is scanned through (radially) for detecting continuous free
interval regions, spanning at least c◦ and at a minimum
distance D away from the robot. The value of D is set
depending on the minimum distance the camera can view
while tilted downwards (here 25cm) and c is chosen based
on the minimum width for the robot to pass through (here
30◦). For the detected frontiers, their heading direction is
chosen to be the median angle (θ

′
) of the interval region and

the distance of the frontier from the current position is set
to d(θ

′
). If a continuous frontier spans more than 60◦, it is

split into two sub-frontiers and explored separately. In case
of multiple frontiers, the algorithm prefers the ones closer
to its heading direction. This biases the robot in favor of
moving directly forward rather than following zig-zagged
paths. However, it would be preferable to consider a more
formal notion of information gain for selecting the frontiers.

It should be noted that the computed polar plot is used
only for the purpose of finding suitable target locations to
explore and is not incorporated into the robot’s representation
of the workspace. Hence a highly accurate range plot is not
necessary.

C. Modelling as Topological Graphs

The visual memory of the robot is modelled as a topolog-
ical graph. Each node in the graph represents a position in
the robot workspace and stores the images acquired by the
robot at the pose. Note that the stored images are different
from the images used in the horizon computation step and
are acquired at a zero-tilt angle (See Fig. 3). The images
are acquired at equally spaced pan angles covering a full
360◦ panorama. These images are added along with their
SIFT feature points to the topological graph. Edges in the
graph connect navigable straight line paths between two
nodes i.e., two nodes are linked by an edge if the robot
moved directly from one to the other during the exploration
process. They are bidirectional as the robot could move back
and forth amongst the nodes. Further, the edges store local
geometric information between the adjacent nodes inferred
from the epipolar geometry. The epipolar geometry between



Fig. 4. An example showing four iterations of exploration. The robot is
shown in red, unexplored frontiers are marked with blue crosses, nodes and
edges in the graph are marked with grey dots and lines respectively. On the
last iteration, the robot backtracks to a previous node before travelling to
the frontier using the planning and servoing algorithms

two camera views, referred as the essential matrix E, is
calculated using the five-point relative pose algorithm [14].
The algorithm can successfully compute E matrix even in
cases when the two views contain a dominant plane (which
occur frequently in man-made environments), thus tackling
planar as well as non-planar scenes. The decomposition of
E yields the rotation matrix R and translation vector t (upto
scale) [15]. To disambiguate the scale, some prior knowledge
about the real world motion is required. The odometric
information is utilised for this purpose.

It must be emphasised that once the robot selects a par-
ticular frontier to visit, it stops at regular intervals along its
way to capture more images. This ensures that the sampling
of the workspace is sufficiently dense for the localisation
and navigation algorithms to work robustly. In case the
path from the current position to the destination frontier
is not a simple direct path, it employs the path planning
and servoing algorithms to navigate to the desired pose
(Sect. II-D). In Fig. 4(b), we observe that the robot detects
two frontiers at positions B and C relative to its current
pose. It first explores frontier B (and in the process detects
another new frontier at D). Next for exploring frontier C,
it backtracks to its previous position, using the planning
and servoing algorithm, and then proceeds towards C. The
overall exploration algorithm is summarised in Algo. 1.

1: frontiers← ∅;
2: initializeGraph( );
3: currentPose← initialize( );
4: repeat
5: I ← captureImages1(currentPose);
6: newFrontiers← getFrontiers(I);
7: frontiers← frontiers ∪ newFrontiers;
8: destination← nextUnexploredFrontier( );
9: while (currentPose 6= destination) do

10: servoRobot(destination);
11: I ′

= captureImages2(currentPose);
12: updateGraph(I ′

);
13: end while
14: frontiers← frontiers− {destination};
15: until frontiers = ∅;
16: storeGraph();

Algorithm 1: Image-based Exploration Algorithm

Thus using the proposed image-based exploration
algorithm, an autonomous robot can systematically
explore an unknown environment and build a topological

representation of it. The graph resulting out of this process
can be subsequently utilised for localising the robot in this
environment and navigating it to perform goal-oriented tasks.
In the following, the algorithms required for localisation,
planning and servoing using the output of the above
exploration approach are described.

Qualitative Localisation In image-based navigation
systems, localisation is performed by finding the node in the
graph whose image best matches that of the current view [3],
[4], [7]. Features typically used for matching include colour
histograms, Fourier signatures and local feature descriptors.
It must be emphasised that localisation is qualitative in
nature as the absolute robot pose with respect to a reference
frame is not determined; rather the retrieval process only
informs that the robotic system is in the vicinity of one of
the images from the database [6]. In this work, the image
matching is performed by comparing the locally invariant
SIFT features extracted from the images [16]. It must be
recalled the SIFT features of each image are already indexed
in the graph structure. The robot is localised to the image
with the largest number of SIFT matches to the current view.

Path Planning Planning of a path between the current robot
pose and a desired destination first requires the localisation
of the current and the desired image views. Once the two
nodes in the graph closest to the current position and the
destination are determined, a path through the graph that
links them is found. This path will take the form of a number
of intermediate image way-points that the robot must move
to in order to reach the destination. To find the shortest path
(in cases where more than one path is available), Dijkstra’s
algorithm is used. The edge weight wAB between any two
adjacent nodes A and B used for this path planning process
is given by wAB = α|θAB | + β||TAB ||, where θAB is the
rotation angle between the positions and TAB is the relative
displacement vector. α, β are constant scale factors chosen
such that wAB also becomes a measure of the time required
for the robot to move from node A to B. Hence the path
planner returns the fastest available path in the graph to the
destination pose.

D. Visual Servo Control

Once a path from the current position to a destination has
been determined by the path planner, a servoing algorithm
is required to move the robot towards its destination via the
intermediate way-points. One could either employ a feed-
forward or a feedback based strategy. In case of the former,
the meta information stored in the edges of the graph (i.e., the
relative displacement values) could be used to drive the robot
directly to the desired pose via the way-points. However, to
achieve an asymptotic regulation of the robot pose, visual
servo control strategies can be utilised as follows.

A look-and-move strategy is used to navigate the robot
from one way-point to the next. Wide baseline feature match-
ing [16] is performed to match the the image of the current
way-point and another neighboring image in the topological
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Fig. 5. Experimental testbed: (a) A differential drive robot with a pan-tilt
camera and an on-board laptop. (b) The upper right image shows a birds
eye view of the lab environment while the bottom displays the corridor
environment

graph that is separated by a baseline. The matched features
are triangulated using the pre-computed essential matrix
(see Sect. II-C) to obtain a coarse 3D reconstruction (upto
scale). Ambiguity in scale is resolved using the odometric
information (stored along the edges in the topological graph).
The features in the reconstructed model are matched to those
in the current view of the robot. The pose of the robot
(rotation R and translation t) with respect to the current
way-point is then estimated using the pose from three-points
algorithm [17]. The estimated rotation and translation are
applied to the robot to displace it to the next way-point. Due
to errors in the reconstruction, pose estimation and odometric
information, the robot may not converge exactly at the way-
point. However, perfect convergence to intermediate way-
points is not desired as these nodes only act as consecutive
checkpoints in the sensor space to reach the goal. Moreover,
the navigation errors do not accumulate from one way-point
to next as they are corrected at every step.

III. EXPERIMENTAL RESULTS AND ANALYSIS

Our experimental setup is comprised of an indigenously
designed and built differential drive robotic platform (with
kinematics similar to a unicycle) as displayed in Fig. 5(a).
The robot is equipped with encoder feedback, ultrasonic
range finders (only for collision detection) and an internally-
calibrated camera on a pan-tilt head. The camera used is a
Flea2 colour camera (from PointGrey) fitted with a 5mm
lens which gives a field of view (FOV) of approximately
50◦. The proposed algorithms were implemented in Linux
on a 1.6 GHz Dell Inspiron 640m laptop mounted on-board.
They were tested in indoor workspaces, including laboratory
and corridor environments (See Fig. 5(b)). Some of the
results are demonstrated in the accompanying video.

Small-scale Exploration First, the exploration algorithm
was tested in two of our laboratories which measured
approximately 11m × 6m. As the field of view of the
camera was around 50◦, eight images were taken by
panning the camera at each pose to acquire a complete 360◦

FOV (An omni-directional camera could be employed to
avoid this step). During the process of frontier detection,
the camera was tilted downwards by 30◦ to ensure the floor
region close to the robot was within its field of view (See
Fig. 3). The exploration algorithm stopped the robot every
50cm to take images of the workspace. Fig. 6 illustrates

(a)

(b)

(c) (d)

Fig. 7. Exploration in a ‘T’ shaped corridor environment. Fig.a shows
the frontal input images (left, center, right orientations) taken near one of
the corners in the corridor. Fig.b shows the corresponding output images
with segmented floor region. Fig.c shows the resultant polar plot computed
(using all the three images) overlaid on manually measured ground truth.
Fig.d displays the poses taken by the robot during the actual exploration
run (manually overlaid on a ground truth map).

the process of the frontier-detection method at few example
poses in the workspace. The final graph contained about
396 image nodes.

Medium-scale Exploration The exploration algorithm
was also tested around the intersection of two corridors.
The area marked for exploration measured approximately
15m × 12m. Fig. 7(a-c) show the frontier computation
process at a particular pose in the corridor. Fig. 7(d) displays
the final path traversed by the robot while exploring this
workspace. The maximum allowed depth of the graph
was limited to 20 steps (approx 10m) from the starting
position for this experiment. The map overlaid is the
manually-measured ground truth and the positions shown
are the actual positions at which the robot was, when it
added the node to the graph. It can be observed that there
is some backtracking performed by the robot for returning
to an unexplored frontier position near the junction of
the corridor. This was done using the path planning and
servoing algorithm. The final graph contained 520 image
nodes.

Localisation The effectiveness of the exploration algorithm
was evaluated by using the resulting topological graph for
localisation and navigation experiments. Localisation was
performed by matching SIFT features between the view
from the current robot pose and the images stored in the
topological graph [16]. Fig. 8 shows some query images
and the best matches found in the graph. It can be observed
that the retrieved images are very close to the query image.

Planning & Servoing Experiments were performed to eval-
uate the sufficiency of the built topological graph for the
purpose of navigation. The robot was placed randomly in
the explored workspace and was provided with different
destination images to reach. Using the paths selected by the
planning algorithm, images along these paths were retrieved
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Fig. 6. Horizon Inferencing algorithm on two sample images. The input (first) image is first segmented into super-pixels (second image). Super-pixels
belonging to the floor region are identified using a HSV histogram process (third image). This result is combined with the texture-based result computed
on the input image (fourth image). The final result (fifth image) displays the identified floor region using the result of both colour and texture cues. The
final image displays the computed polar plot.

(a) (b) (c) (d)

Fig. 8. Localisation result: For each sub-figure, left column shows the query image while the right column displays the retrieved image

and used in the servoing algorithm. Fig. 9 shows an instance
of the servoing algorithm in one of the lab environments. It
can be observed that the robot is effectively guided to its
goal using the retrieved image path.

Fig. 9. Navigation Result: The sequence of images (seen from the robots
view) while servoing from start pose (top left) to the goal pose (bottom
right).

IV. CONCLUSION

This paper described a novel image-based exploration
algorithm for the task of autonomous vision-based robot
navigation. The proposed algorithm detected the frontier
boundaries from the images captured by a monocular camera
and utilised them to explore the unknown regions of the
environment. A topological graph with images acting as
nodes was used for modelling the explored workspace. The
approach facilitated the robot to autonomously expand its
workspace and memorise newly discovered information. We

believe that this approach will be essential for mobile robots
to progress in the direction of increased applicability.
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