
Point Based Representations for Hierarchical Environments∗

Kedarnath Thangudu, Lakshmi Gade, Jag Mohan Singh, P J Narayanan
Center for Visual Information Technology

International Institute of Information Technology, Hyderabad, India
{kedar@students., lakshmi g@students., jagmohan@research., pjn@} iiit.ac.in

Abstract

The advent of advanced graphics technologies and im-
proved hardware has enabled the generation of highly com-
plex models with huge number of triangles. Point-based
representations and rendering have emerged as viable rep-
resentations for high-quality models in this scenario. These
methods have been demonstrated only on high resolution,
compact objects so far. They have to be adapted to environ-
ments that extend over large areas to be considered serious
representations. In this paper, we present an adaptation of
the point-based representation to large, hierarchical envi-
ronments. We show how point-based data can be generated
by sampling polygon-based representations. We also show
the combination of an object hierarchy and multiresolution
point representations and develop rendering algorithms for
the same. The multiresolution representation is constructed
during the generation process. We then show a hybrid rep-
resentation in which the more complex portions of the envi-
ronment are represented using points and others using the
original polygon-based representation. This produces bet-
ter rendering performance by keeping large, flat regions as
triangles. We demonstrate the method on the model of the
Fatehpur Sikri which has 14000 objects with over 500,000
triangles.

1. Introduction

Along with the changing technologies and hardware,
graphics primitives have also been evolving over the years.
Various building blocks have been employed for the ef-
ficient rendering of different kinds of datasets. Many
complex primitives such as nurbs, polygon meshes, etc
have been in use. However, in the recent years, due to
the increase in the number and the complexity of prim-
itives required for high quality rendering and the over-
heads involved in handling these primitives, a new trend
has emerged towards exploring points as rendering primi-
tives [8]. Research has shown that point based rendering

∗This work was partially funded by the Naval Research Board. We
thank NCST/CDAC for the Fatehpur Sikri model.

is ideal for complex geometry. In this paper, we explore
the applicability of points as rendering primitives for large
environments.

1.1. Points as rendering primitives

In polygon-based graphics, linear interpolation of the
properties at the vertices results in approximation of the real
world object. But, in point based graphics, color, lighting
and other auxiliary properties are computed for each point,
hence giving a realistic appearance to the rendered object.
Also, for highly complex models, using algorithms with low
per-primitive computations (such as points) would be less
expensive and appropriate, while polygon-based represen-
tations sometimes map to areas smaller than a pixel, causing
redundant computations. Further, geometric subdivision ul-
timately leads to points and conceptually points would be
the smallest, simplest limiting primitives that can be used
for rendering. Moreover, 3-D acquisition techniques of real
world objects such as stereo capture, range scanning, etc
generate points as output. For the acquired data, triangu-
lation can be inaccurate and expensive while point repre-
sentations would be more natural. Also complications do
not arise due to the topology of the model as connectivity
information of surfaces is not maintained in point represen-
tations.

1.2. Point-based Graphics

Point-based geometry is equivalent to sampling a con-
tinuous surface to obtain various properties such as 3D po-
sitions, colors, normals etc. The main phases involved in
Point based Representations (PBRs) are Acquisition, Rep-
resentation, Rendering and Compression.

• Acquisition: There are various methods of acquiring
point data. By using laser range scanners [9], struc-
tured light based scanners etc, high resolution point
cloud can be obtained directly. Sampling 3-D poly-
gon based models is another efficient way of generat-
ing points. And, stereo capture can also be used to ac-

quire data with the help of the texture and the images
of the model from different views.

• Representation: The point cloud obtained from these
acquisition techniques is generally unordered and in-
dependent. In order to increase the rendering effi-
ciency and flexibility of the model, an ordering of these
points is required. To achieve this various hierarchical
representations such as Octree structures [3], QSplat
[12], BSP trees etc have been proposed.

• Rendering: Many optimizations applicable on TBRs
(Triangle-based representations) such as LoD selec-
tion, culling etc can also be performed with points
when appropriate representations are used. As op-
posed to triangles, rendering the model as points
may result in gaps between the neighboring point
samples. These gaps are filled by drawing a cir-
cle/square/ellipse, oriented in the normal direction, in-
stead of the point. These are called splats. Each of
these splats is associated with an appropriate size, large
enough to cover the gap between adjacent points.

2. Related Work

A lot of work has been done in the areas of hierarchical
representations for large environment models. Open scene
graph [1] provides one such representation which builds an
acyclic, directed graph of the model. This facilitates opera-
tions such as view-frustum culling, LoD selection etc.

Point rendering algorithms have been aiming at achiev-
ing view dependent LoD selection which involves rendering
optimal number of points for a view such that they are just
dense enough not to leave any holes and the projected size
of the splats on the screen remains constant.

QSplat [12] is one such algorithm which describes a
multi-resolution hierarchy based on bounding spheres. The
points are recursively subdivided according to their spatial
locations and are stored as leaves. Their properties are aver-
aged to obtain the values at the intermediate nodes allowing
continuous view dependent LoD selection.

Sequential Point Trees [4] is another data-structure based
on QSplat, which transforms the hierarchical rendering pro-
cess into a sequential process and transfers the load of se-
lection of the detail levels and rendering onto the GPU.
Chen and Nguyen [5] present hierarchical approaches that
smoothly replace the point clouds by the original triangles
for close ups.

3. Triangle to Point Based Representations

We are interested in studying point-based representations
(PBRs) for large environments. Captured data of such en-
vironments are not available and hence we discuss how

PBRs can be generated given triangle-based representations
(TBRs).

3.1. Generation

Very high resolution models can be converted into point
models by retaining the vertices as the points of the PBR.
But, if the size of the triangles is slightly bigger, the ver-
tices of the triangle would not be sufficient to represent the
whole model. In such cases, the intermediate points have
to be obtained by sampling the triangle-based model. The
following procedure describes how this can be achieved.

Rendering is equivalent to sampling the surface points.
Therefore, each triangle of the 3-D model, with its color,
texture and normals, is rendered to an orthographic camera
which is aligned normal to its surface. As the camera’s view
volume should include the whole triangle, its size is set to
the longest side of the triangle and the camera is centered
over the circumcenter of the triangle. Each pixel of the ren-
dered triangle is a point on its surface. Its color is read from
the frame buffer, and its world coordinates are obtained by
unprojecting its screen coordinates and the depth obtained
from the depth buffer. Normal at each point obtained is cal-
culated by interpolating the normals at the vertices of the
triangle.

The resolution of the point data obtained is determined
by the ratio of the viewport dimensions to the view-volume
dimensions. This ratio is maintained constant to generate
points with the same resolution for all the triangles.

Resolution = V iewport size
Frustum size

As the sampling resolution is constant, the radius of the
splats of all the points obtained is the same. This can be
obtained as

Radius = 1√
2∗Resolution

Constant sampling direction has to be maintained for all the
triangles in a plane. This is determined by direction of the
up-vector of the camera, which has to be maintained con-
stant for all the triangles in a given plane. OpenGL omits
points on the top and right edges while rendering filled poly-
gons. When two adjacent triangles are sampled such that
their common edge is not rendered while sampling either of
these triangles, holes are observed. On the other hand, if
the common edge is rendered while sampling both the tri-
angles, double points are obtained. Rendering the triangu-
lar mesh along with the filled triangle would prevent holes
from appearing in the point model. But this leads to double
points along all the edges of adjacent triangles. These dou-
ble points can be removed by a post-processing step during
which the points whose distance from their nearest neighbor
is less than a threshold.

Figure 1. Illustration of obtaining (a) even LoD
from an odd LoD, (b) odd LoD from an even
LoD.

3.2. Multi-Resolution Representation

There are various techniques to obtain multi-resolution
representation of point data. Some algorithms use a local
plane of support [7, 11] for this purpose. Point set surfaces
[6] use Moving Least Square (MLS), a projection operator
which can be used both for upsampling and downsampling
of the surface. Further a regular grid can be induced to the
points using a local plane and spectral processing can be
performed [10] on the point set. Optimal pairing of points
using local planes can be used for the decomposition of the
point cloud [14]. This is achieved [13] without using local
planes by recursive reordering of the point set.

We use the method described by [13] to compute the
point cloud without a local plane. Since the points are being
sampled from the triangle surfaces, the inherent adjacency
information can be exploited to obtain a multi-resolution
model, instead of resorting to complex algorithms for pair-
ing of points. The highest LoD is generated by sampling the
model with the required resolution and all the lower LoDs
are derived from it. The second LoD is derived from the
first by skipping alternate points in each row and the third
LoD can be derived from the second by skipping alternate
rows (Figure 1). The same procedure can be followed for
the subsequent detail levels.

If we consider a grid (i along x-axis, j along y-axis) over
the points (i.e. the pixel positions in the frame buffer to be
un-projected), the points which in the odd LoDs are present
when

(i % (2lod/2)=0) and (j% (2lod/2)=0)

and points in even LoDs are present when

(i - 2lod/2−1) % 2lod/2=0 and (j - 2lod/2−1) % 2lod/2=0
or

(i % (2lod/2)=0) and (j% (2lod/2)=0)

Since the points in a lower LoD are also present in the
higher LoDs, each of these detail levels need not be stored
individually. Progressively storing the lower LoDs, fol-
lowed by the additional points in the next higher LoD in
the same model would reduce storage space Figure 2.

Figure 2. Progressive storage of LoDs

3.3. Procedural Rendering of Points

Each point in the PBR is rendered as a splat. The conven-
tional splat rendering by texture mapping suffers from alias-
ing effects. Hence we propose to render circles on GPUs
procedurally to overcome this effect. Procedural rendering
is a method in which geometry is obtained by computing
a function rather than from primitives. In this context, we
had to draw a circle (x2 + y2=0). Conventional splatting
renders each point as a circle-texture mapped triangle, with
in-center as the splat position and in-radius equal to splat
radius in the plane perpendicular to the normal of the splat.
Here the same procedure is followed, but instead, the tri-
angle is drawn with just the texture coordinates without the
texture. Rasterization process interpolates these texture co-
ordinates at the vertices to the pixels on the surface. In the
pixel shader each pixel to be rendered is available with its
texture coordinate, which is the position of the pixel in the
texture space. So we render only the pixels which lie in
the in-circle and discard the rest. Rendering circles in this
procedure does not suffer from aliasing as, however big a
splat might be rendered, we will still draw all the pixels in
the circle, unlike the texture-mapping procedure where the
texture size is constant resulting in aliasing when scaled.

4. PBRs for Large Environments

Environments are generally represented as triangle-
based models. The challenge in handling large environ-
ments is the high variation in the resolution of the model in
different regions. As they extend over large areas, the small
objects which are far away, need not be drawn in full detail.
When rendered, the small triangles map to very small areas
and hence, using points in these regions would enhance per-
formance. But, converting the entire model into points does
not provide any tangible gain over other polygonal repre-
sentations. This is because there are many large, flat areas
in an environment and in order to have fine texture detail,
even the points from these areas are required to be gener-
ated with high resolution. This produces huge number of
points (Table 1) resulting in a considerable increase in the
size of the model and poor rendering rates. Moreover, insuf-
ficient sampling of the textured, flat regions gives a spotted
appearance to the model when zoomed in Figure 3.

Hence, we propose a hybrid representation for large en-

Figure 3. Complete point model

Figure 4. Hybrid Model

vironments which captures only the advantages of PBRs
while leaving out its drawbacks.

4.1. Hybrid Representation

In a hybrid representation, the geometry of large flat
regions is retained as triangles and only the smooth and
curved surfaces are converted to points (Figure 5). Large
environment models generally comprise of individual ob-
jects with a spatial hierarchy built over them, for example,
Octrees, Open Scene Graph etc. So, the hybrid representa-
tion is built keeping the hierarchy intact and changing only
the geometry of the objects as necessary. Each object is split
into two parts, complex and non-complex. The complexity
of the geometry could be estimated by various factors such
as average size of sides of the triangles, area of the triangle
etc. For example, the triangles of objects which have the
average side less than a threshold can be defined as com-
plex and the rest as non-complex. The complex part is con-
verted to point based multi-resolution model as described
above and the non-complex portion is retained as triangle
based model. As the large flat regions are rendered as tri-
angles, they retain their fine texture detail and the curved
regions are rendered with high detail with per-point normal
and lighting computation (Figure 4).

As only the complex part of the model is converted to
points, we get a compact model. The statistics of the com-
plete point model and hybrid model are given in Table 1.
Figure 6 depicts the distribution of points (blue) and trian-
gles (red) in the model in some regions.

4.2. Rendering the Hierarchy

The hierarchical model, which contains the geometry at the leaf
nodes and the spatial hierarchy over it, is loaded into a tree-based

Figure 5. Hybrid scenegraph with internal
nodes (green), TBRs (orange)& multiresolu-
tion PBRs (cyan).

data-structure. Each node in the tree could either be a leaf nodes
or an intermediate node. As a hybrid representation is being used,
the leaves could either be points-based models, or triangle-based
models.

Algorithm 1 TraverseHierarchy(node)
if node not visible then

Skip the branch
else if node is a leaf node then

if TBR then
Render Triangles

else if PBR then
Select LoD

Render point model (LoD)
end

else
for each child in children(node) do

TraverseHierarchy(node)
end

end

In each rendering pass, the hierarchy is traversed (Algorithm 1)
recursively, and the objects present in the view volume of the cam-
era are selected by performing visibility culling [2]. This is done

Figure 6. Distribution of points (blue) and triangles (red).

Mdl Total no. Complete Point Model Hybrid Model
No. of No. of R.Time No.of No. of Points R.Time

Triangles points (msecs) Triangles LoD1 LoD2 LoD3 LoD4 LoD5 (msecs)

1 509933 240237568 24050 116491 5967721 3041851 1732615 908521 574193 3000
2 187403 11583049 1200 13019 1771404 888982 454740 255008 172886 200
3 123619 14979628 1500 37939 1921202 956887 486566 263773 167562 250

Table 1. Statistics of points and triangles in complete point and hybrid models. R.Time is the
rendering time

by checking the intersection of the bounding box of the nodes with
the frustum and culling those nodes falling completely outside the
frustum, along with their subtrees.

Further, as the point-objects are represented using multiple dis-
crete LoDs, they are drawn with the appropriate LoD depending
upon the distance of the nearest point on the object from the cam-
era. This procedure increases the rendering speed and reduces re-
dundancies.

5. Conclusion

Points are an excellent choice for highly detailed models. But,
when used for large, flat areas, they do not provide any benefit
and further, they lower the performance. Thus, a combination of
points and triangles, chosen according to the size of the objects,
is an ideal way of rendering different graphics models. As large
environments are made of objects with diverse sizes, the hybrid
model would work especially well.

References

[1] http://www.openscenegraph.org/.
[2] T. Akenine-Moller and H. Eric. Real-time Rendering, pages

612–614. A K Peters, 2002.
[3] M. Botsch, A. Wiratanaya, and L. Kobbelt. Efficient high

quality rendering of point sampled geometry. In EGRW ’02:
Proceedings of the 13th Eurographics workshop on Render-
ing, pages 53–64, 2002.

[4] D. Carsten, V. Christian, and M. Stamminger. Sequential
point trees. In SIGGRAPH ’03, volume 22, pages 657–662,
2003.

[5] B. Chen and M. Nguyen. Pop: A hybrid point and polygon
rendering system for large data. In IEEE Visualization, pages
45–52, 2001.

[6] S. Fleishman, D. Cohen-Or, M. Alexa, and C. Silva. Progres-
sive point set surfaces. In ACM Trans. Graph., volume 22,
pages 997–1011, 2003.

[7] S. Fleishman, D. Cohen-Or, and C. Silva. Robust mov-
ing least-squares fitting with sharp features. In ACM Trans.
Graph., volume 24, pages 544–552, 2005.

[8] L. Kobbelt and M. Botsch. A survey of point-based tech-
niques in computer graphics. In Computer and Graphics,
volume 28, pages 801–814, 2004.

[9] M. Levoy, K. Pulli, B. Curless, S. Rusinkiewicz, D. Koller,
L. Pereira Ginzton, M. Anderson, S. Davis, J. Ginsberg,
J. Shade, J, and D. Fulk. The digital michelangelo project:
3d scanning of large statues. In SIGGRAPH ’00, pages 131–
144, 2000.

[10] M. Pauly and M. Gross. Spectral processing of point-
sampled geometry. In SIGGRAPH ’01, pages 379–386,
2001.

[11] M. Pauly, M. Gross, and L. P. Kobbelt. Efficient simplifica-
tion of point-sampled surfaces. In VIS ’02: Proceedings of
the conference on Visualization ’02, pages 163–170, 2002.

[12] S. Rusinkiewicz and M. Levoy. Qsplat: A multiresolution
point rendering system for large meshes. In SIGGRAPH ’00,
pages 343–352, 2000.

[13] J. M. Singh and P. J. Narayanan. Progressive decomp osition
of point clouds without local planes. In Proceedings of the
Indian Conference on Computer Vision, Graphics and Image
Processing, 2006.

[14] M. Waschbüsch, M. Gross, F. Eberhard, E. Lamboray, and
S. Wurmlin. Progressive compression of point-sampled
models. In Proceedings of the Eurographics Symposium on
Point-Based Graphics, pages 95–102, 2004.

