
On Using Classical Poetry Structure for Indian Language Post-Processing

Anoop M. Namboodiri, P. J. Narayanan and C. V. Jawahar
International Institute of Information Technology, Hyderabad, INDIA

{anoop, pjn, jawahar}@iiit.ac.in

Abstract

Post-processors are critical to the performance of lan-
guage recognizers like OCRs, speech recognizers, etc.
Dictionary-based post-processing commonly employ either
an algorithmic approach or a statistical approach. Other
linguistic features are not exploited for this purpose. The
language analysis is also largely limited to the prose form.
This paper proposes a framework to use the rich metric and
formal structure of classical poetic forms in Indian lan-
guages for post-processing a recognizer like an OCR en-
gine. We show that the structure present in the form of the
vrtta and prāsa can be efficiently used to disambiguate some
cases that may be difficult for an OCR. The approach is
efficient, and complementary to other post-processing ap-
proaches and can be used in conjunction with them.

1. Introduction

Post-processors are critically important to enhance the
performance of language-recognizers such as OCRs, con-
tinuous speech recognizers, etc. They help to correct the
errors in classification and provide more robust output from
the language point of view. Post-processors are often
language-specific and exploit the special features of the lan-
guage to get high performance [5].

Post-processors rely on different aspects of a language.
Dictionary-based post-processors use the vocabulary of a
language to correct recognizer errors. Approaches for ef-
ficient dictionary lookup such as Tries [3, 7] has been ex-
plored. Other post-processors use deeper language rules
to validate a given word in its context [2, 8], using mor-
phological analysis. Script structure has also been modeled
for recognition [11]. Statistical approaches use word-level
and character-level joint probabilities (n-grams), for post-
processing [12]. A combination of all such information
needs to be used to correct for errors in individual methods.

Work on OCRs and post-processing have concentrated
on prose due to its wider interest and greater prevalence.
However, poetry or verse need to be handled for a com-

plete treatment of the system. In languages like English, the
word-level recognition may be largely the same for prose
and poetry, except for the morphological analysis and the
joint-probabilities. The problem is more serious in Indian
languages, which have a much richer tradition in poetry or
verse than European languages.

The sandhi rules of Indian languages allow words to be
combined into longer strings of words. This makes recog-
nition much difficult as word segmentation is not straight-
forward. This is further complicated in poetry as the word
ordering is not as strict as in the prose form. For a recog-
nizer of the written form like an OCR, further complications
arise due to the closeness of the pictorial forms of different
letters.

Post-processors using the state-of-the-art in other lan-
guages have been designed for Indian languages also [13].
Dictionary based post-processing using a vocabulary [14]
and statistical models of words [4] has been applied to In-
dian languages. The complexity of the Indian language
models have seriously limited the application of effective
post-processors. Interestingly, the classical Indian literature
– which stems from the Sanskrit literature – has strong com-
putational bias [9] and have been subject to many language
processing applications including language translation.

In this paper, we present the use of the metric informa-
tion from classical Indian poetry structure as an effective
clue for post-processing the output of an OCR. In particu-
lar, we show how the laghu and guru classification of ak-
sharas and their conjoining into well-structured meters or
vrttas can be used to overcome errors in the classification of
the underlying components. Though we present it from the
point of view of an OCR, these observations are relevant to
other recognition tasks involving Indian languages, includ-
ing continuous speech recognition and language parsing. To
our knowledge, this is the first use of the rules specific to the
verse form of any language for post-processing of recogni-
tion output. We show two approaches based on the vrtta
structure: a string matching approach and a statistical ap-
proach. This paper presents the framework and points the
way towards the use of the structure. The structural knowl-
edge may be exploited in many other ways also.

Figure 1. A shloka from Mēghasandēsham by Kālidāsa, and the same marked with the akshara types.

2. Structure of Ancient Indian Poetry

The vēdās (there are four, namely, rk, yajus, sāma,
atharva) are poetic forms composed several thousand years
ago; some from 4000 BC or earlier (Other opinions exist
about their exact times, with some placing them one or two
millennia later.) The compositions were transmitted from
one generation to next orally as writing came much later in
history. The poetic form had total dominance in the oral
tradition due to the ease of committing verses to memory.
Strict meter in the form of chhandas or vrtta and repetition
of sounds (like alliteration) in the form of prāsas are preva-
lent in the Indian poetic form to aid oral transmission. The
vrtta rules enforce a rhythmic pattern to the verses.

2.1. Vrtta: Strict Metric Structure

The chhandas or vrtta are rules of poetry defines a set
of structures or frames for composing the lines of a poem,
and is similar to metre in English poetry (closer to Greek
and Latin poetry). Each vrtta defines a sequence of syllable
types for each line of a poem so that the poem follows a
rhythm when read out. The poet can choose to compose his
work in any accepted vrtta.

However, in order to stick to the vrtta rules, poets make
liberal use of the flexibility in word ordering in languages
like Sanskrit. Moreover, the sandhi rules are extensively
used, giving rise to long words formed by combining mul-
tiple root words. For example, in the verse in Figure1, The
first word is a combination of four root words, while the
second word of the third line is formed from five differ-
ent root words. These characteristics make the use of both
word n-grams and dictionaries extremely difficult in post-
processing.

The basic linguistic unit of an akshara is a fusion (and
not a succession) of 0 to 3 consonants and one vowel with
an optional vowel-modifier. There are about 35 consonants,
15 vowels, and 2 or more vowel modifiers (anuswāram, vis-
argam, and chillu in some languages). To define the vrttas,
each akshara or syllable of a word is classified as either a

laghu (∪) or a guru (–). Laghus are those aksharas that are
short and soft, while long or hard sounding aksharas are
classified as guru. Some of these concepts are observed in
Greek and Latin poetry also. The grammar of poetry defines
a set of rules that can classify each akshara in a word as a
guru or laghu. Section 3 gives the outline of an algorithm
to do this classification. Each vrtta is then defined as a se-
quence of laghus and gurus in groups of 1, 2 or 4 lines. The
sequence repeats thereafter. For example, the vrtta named
Indravajra has the following sequence for each line: – – ∪
– – ∪ ∪ – ∪ – –. Every shloka strictly follows one of the
vrttas in classical Indian poetry. A rare exception is the use
of a short akshara in place of a long one at the end of a line
which is stretched while reading, to keep the rhythm. Fig-
ure 1 gives an example of a verse from Mēghasandēsham
by Kālidāsa, along with the classification of each akshara.
It is customary to form groups of three syllables for each
line of the poetry, except at the end. Note that each line fol-
lows the same akshara pattern that is specified by the vrtta,
Mandākrānta.

The rules governing metres in poetry have been the sub-
ject of much study in the Sanskrit tradition from more than
three thousand years ago. A looser form of the chhandas is
used as a rule in the vēdās that date back to 4000 BC or ear-
lier. The theory of the stricter vrtta form appears in classical
treatise on Sanskrit poetry structures like Chhandas Shastra
and Vrttaratnākaram [10, 6], which date back several cen-
turies before the start of the common era. Modern treatises
on the topic are available in several Indian languages such
as the Vrttamanjari by A. R. Rajaraja Varma [1] that was
published as late as 1904.

2.2. Prāsas: The Optional Structure

In addition to vrttas, which are mandatory rules, there
are many optional structures that are commonly used in tra-
ditional Indian poetry to enhance their beauty. Prāsas re-
fer to repetitive sounds in a line or successive lines of a
verse. This is similar to the concept of Rhyme in English
poetry, where the last syllable is often repeated in consec-

utive or alternate lines to make the poem sound pleasing.
In English, similar sounding syllables can have very differ-
ent spellings (e.g., puff and enough), and hence cannot be
used directly for post processing. However, for phonetic
alphabets as used in Indian languages, similar sounds also
means the same akshara, and hence can give a strong clue
for recognition.

There are a variety of prāsas used in classical Indian po-
etry. For example, the dwitīyākshara prāsa is commonly
used by poets, where the second akshara in each line in a
verse is made the same. Antyaprāsa is the common form
of rhyme used in English, where the last syllable of a line
repeats in consecutive lines. Ādyaprāsa refer to the rep-
etition of the first akshara of each line. The presence of
such prāsas in a poem can give additional cues when the
classifier output is ambiguous. However, as the presence of
prāsas is optional, they need to be incorporated in a proba-
bilistic framework for recognition. Another structures that
is useful is that of yati (or pause), which results in a word
division at specific points. However, poets often break it by
introducing composite words, and hence should be treated
as an optional structure.

3. Modeling and Processing of Poetry

Using the structural information involves two steps: the
conversion of a given verse into a sequence of laghu and
guru aksharas and matching with the candidate vrtta. Since
each letter or akshara is either laghu or guru, we can encode
each as a binary bit with 0 denoting laghu. Each line of the
candidate vrtta can also be written as a string.

3.1. Encoding the Mātra String

As explained in Section 2, the assignment of a letter into
laghu or guru mātra is based on a strict set of rules. A letter
is guru if the vowel is elongated, or a vowel modifier follows
the letter, or the following akshara is a composite-letter of
the form ccv or cccv. The following steps can perform the
encoding.

1. Segment the text into aksharas.

2. For each akshara, check if it has (a) the elongated
vowel form, (b) a vowel-modifier like anuswaram, vis-
argam, or chillu immediate after it, or (c) if the next
akshara is a composite one.

3. If any of the conditions is satisfied, label the akshara
as a guru, else a laghu.

The procedure is straightforward except for the segmen-
tation of the aksharas. Segmentation is a critical step in all
recognition and is being developed by several researchers

currently. The given verse is converted to a binary mātra
string by the above process and can be compared with the
string for the candidate vrtta.

3.2. Algorithmic Post-Processing

If the given verse belongs to the candidate vrtta, the
mātra strings for both will be identical. If the recognizer
that produced the akshara labels for the given verse makes
mistakes, the string will not match. Conventional string-
matching techniques can be used to verify the match. The
edit distance between the mātra strings can give an rough
estimate of the errors in recognition. This can be followed
by a scan through the strings to identify discrepancies.

Several algorithmic approaches are possible at this stage.
We can assume that the verse belongs to the candidate vrtta
if the edit distance is small. The aksharas for which the
mātra labels do not match can then be analyzed closely. If
a laghu is found where a guru was expected (or vice versa),
the modified symbol for the associated vowel may be mis-
matched. The classifier output can be examined again and
corrected if known confusion exists between the pictorial
forms. This method can correct a significant number of con-
fusion between close forms. Figure 2 shows the pairs ki/kī,
and ku/kū in Malayalam and Telugu. (The upper bar on a
vowel symbol indicates its elongated form.) It is clear that
the pictorial forms could use additional clues for accurate
recognition.

Figure 2. Pictorial forms of ki/kī (top), and ku/kū
and ke/kē(bottom) in Malayalam and of Telugu.
Note the similarity of glyphs.

3.3. Statistical Post-Processing

Post-processors are more effective when the uncertainty
in classification is propagated up to the post-processor. This
provides a statistical framework in which the classification
can be studied. We present a presentation of the poetry
structure in a statistical framework. Let the probability of
a sequence of input glyphs gi belonging to the akshara cj

be p(cj |gi). This could be the posterior probability of the
classifier.

Let l(cj) ∈ {0, 1} be the function that maps an akshara
to laghu (value of 0) or guru (value of 1). This mapping is
performed using the procedure described earlier. A verse

consisting of aksharas cj , 1 ≤ j ≤ NV belongs to a vrtta
V if the string of l(cj), 1 ≤ j ≤ NV matches withe mātra
string of V , where NV is the number of aksharas in vrtta V .
For instance, the vrtta Indravajra would have a mātra string
11011001011.

Given a set p(cj |gi), 1 ≤ i ≤ N of aksharas from a line
of a shloka and their classifier outputs, the probability of a
vrtta V is given by

P (V) =
NV∏
i=1

f i
V (cj) p(cj |gi),

where f i
V (c) is an indicator function that matches the ak-

shara c with the expected mātra from the vrtta. That is,
f i

V (c) = l(c) if vrtta V has a guru at position i and
f i

V (c) = (1− l(c)) if vrtta V has a laghu at position i. (That
is, if fV (cj) equals 1 if the corresponding akshara of V and
cj in their mātra and equals 0 otherwise.) If the vrtta is not
available, we can estimate of the probability of each vrtta
V , using dynamic time warping or by defining an HMM for
each vrtta.

Once the vrtta is obtained, the problem is to find the best
recognition alternative, that confirms with the mātra struc-
ture of the vrtta. We formulate this as a dynamic program-
ming problem, on an NV ×K array, where K is the number
of alternatives suggested for each akshara by the recognizer.
Each cell in the array denotes the probability of the prefix
of the akshara, matching the mātra structure. To compute
this probability, we consider three factors: a) the probabil-
ity of the akshara and its fitness to the mātra at the location
(Prik), b) the fitness of the changed class label of the previ-
ous akshara due to the current akshara (Ci−1,j,k ∈ {0, 1}),
and c) the probability of the prefix string (Pi−1,j). Then the
probability at a position is given by:

Pik = max
j

(Prik × Ci−1,j,k × Pi−1,j)

Finally, the value of P (V) is obtained as the best alterna-
tive for the complete string from the last column of the ar-
ray: max

k
PNV ,k. The computation is illustrated in Figure 3,

and is similar to Trellis decoding, employed in HMMs. A
decoding step can recover the aksharas ci, 0 ≤ i ≤ NV that
is the corrected version of the verse by traversing the most
likely path. The computations can be done efficiently.

Modeling Prāsa: In addition to the above cases, where
the recognition result is clearly not allowed by the vrtta
rules, our framework can also handle probabilistic rules as
mentioned by Prasas. This is directly incorporated into the
recognition output, where the probabilities of each akshara
in the first, second, or last positions are modified in case of
the presence of ādyākshara, dwithīyākshara or anthyākshara
prasas.

C
2,1,2

C2,2,2

P2,1

P2,2

P2,4

P3,2

C
2,4,2

C
2,3,2

3

2

Choice

1

1 2 3 N v

K

. . . .

. . . .

. . . .

. . . .

.

.

U

Akshara
Matra

P2,3

Figure 3. Decoding of the most probable ak-
shara sequence.

3.4. Validation and Discussion

To ascertain the effectiveness of the above algorithm, we
have tried it on a variety of vrttas and languages. We illus-
trate the working of the algorithm with an example from the
verse in Figure 1. Consider the last word in the first line of
the above verse, Pramatta.

Table 1. Recognition alternatives of the word
in Fig. 4(a) along with their probabilities.

Input Rank Output Prob. Type Class
1 pra 0.62 ccv ∪
2 pa 0.21 cv ∪
3 ma 0.17 cv ∪
1 ma 0.45 cv ∪
2 pa 0.43 cv ∪
3 ya 0.12 cv ∪
1 ta: 0.46 cvm –
2 tta: 0.41 ccvm –
3 tra: 0.13 cvm –

(a) (b)

Figure 4. (a) recognition result of the last word
in line 1 of Fig.1, and (b) the corrected word.

The recognition result of the last word of line 1 (Fig.1) is
shown in Figure 4(a). Note that the last letter, tta, was in-

correctly recognized by the OCR as ta (the softer version) as
the glyphs are very similar in shape. Consider the recogni-
tion results of the word given in Table 1. The table gives the
top three recognition candidates, as per the akshara recog-
nizer and the corresponding akshara types and classes (the
m in the akshara type indicates a modifier). Computing the
overall probability, the best choice is given by the result in
Figure 4(a). The string pattern corresponding to the recog-
nition result is ∪ ∪ –, while the one specified by the vrtta
is ∪ – –. Clearly, there is an error in the recognition result.
The second choice would be the option Ranks : 1, 2, 1 for
the three aksharas from Table 1. However, this also will
not satisfy the vrtta. The third choice, Ranks : 1, 1, 2
would satisfy the requirement as per rule 2(c) in Section 3.1
(laghu becomes guru if followed by cc*). Hence our post-
processor would select this choice and the result is shown
in Figure 4(b).

Computational Complexity: In languages such as San-
skrit, where multiple words can be combined using sandhi
rules, the vocabulary size is exponentially large in terms
of the root words. The primary advantage of this post-
processing method is that it is completely independent of
the size of the vocabulary or a corpus. Let N be the number
of aksharas in a line of the verse (typically, N ∈ [8, 21]),
and let k be the number of choices output by the recognizer
for each akshara (typically, k ∈ [1, 5]). To determine the
best alternative for each akshara, we need to examine the
alternatives for the previous, as well as the next akshara. Us-
ing the dynamic time warping formulation, we can compute
the most likely sequence of aksharas that satisfy the given
vrtta in O(k2.N) time. This includes the classification of
the candidate aksharas into guru or laghu. In case the vrtta
is not available, we need to estimate the most likely vrtta.
This classification would take O(v.N) time, where v is the
set of possible vrttas. Although the set of available vrttas
is around 320 [1], the popular ones are only around 25, and
we can further restrict our search based on the number of
aksharas in each line (typically, v ∈ [3, 10]). The overall
time complexity of the algorithm is hence O(N(k2 + v)).

Thus, post-processing is light, both computationally and
in terms of the data requirements. In addition, the algorithm
can work in conjunction with other post-processing steps
such as dictionary lookup or character n-gram probabilities.
It is also interesting to note that the approach is indepen-
dent of the language also, as long as it follows the poetic
structure as most Indian languages do. If the recognition
output is encoded as either UNICODE or ISCII, the classi-
fication of aksharas into guru and laghu and the subsequent
post processing is generic and applicable to any Indian lan-
guage.

The pictorial forms of many of aksharas are hard to dis-
tinguish using standard pattern recognition techniques ap-

plied to the images. Similar symbols often result from us-
ing different vowel modifiers on the same consonant as in
Figure 2. However, these are the easiest to handle for our
post-processor, since a change in the modifier often changes
the aksahra class, and hence the vrtta structure.

4. Conclusions and Comments

In this paper, we have presented a framework for incor-
porating the metric information present in classical Indian
poetry to enhance the results of recognition. The informa-
tion is relatively easy to encode, and can be used very effi-
ciently to improve the recognition results. The approach is
independent of the vocabulary size and even the language,
provided the verses follow the metre structure. The algo-
rithm can be used in conjunction with other post processing
approaches and is effective in correcting modifier symbols,
which are difficult to recognize for an OCR. The work can
also be extended to the additional vrttas used in certain re-
gional languages, that are not as rigid as the classical San-
skrit vrttas.

References

[1] A.R.RajarajaVarma. VrttaManjari. National Book Stall,
1904.

[2] Dan Klein and Christopher D. Manning. Natural Language
Grammar Induction with a Generative Constituent-context
Model. Pattern Recognition, 38(9):1407–1419, Sept. 2005.

[3] Edward Fredkin. Trie Memory. Communications of the
ACM, 3(9):490–499, 1960.

[4] G.S. Lehal and Chandan Singh. A post-processor for Gur-
mukhi OCR. Sādhana, 27(1):99–111, Feb. 2002.

[5] Henry S.Baird. Anatomy of a Versatile Page Reader. Pro-
ceedings of the IEEE, Special Issue on Optical Character
Recognition(OCR), 80(7):1059–1065, 1992.

[6] Kedarabhatta. Vṙttaratnākara. c. 800 AD.
[7] D. Knuth. The Art of Computer Programming, Volume 3:

Sorting and Searching. Addison-Wesley, 3rd edition, 1997.
[8] Li Zhuang and Xiaoyan Zhu. An OCR Post-processing Ap-

proach Based on Multi-knowledge. In Proc. KES, pages
346–352, 2005.

[9] Pānini. Ashtādhyāyi. c. 500 BC.
[10] Pingala. Chhandas Sastra. c. 200 BC.
[11] R.M.K. Sinha. PLANG-A picture language schema for a

class of pictures. Pattern Recognition, 16(4):373–383, 1983.
[12] Tin Kam Ho and George Nagy. Exploration of Contextual

Constraints for Character Pre-Classification. In Proc. IC-
DAR, pages 450–454, Sept. 2001.

[13] U Pal and B B Chaudhuri. Indian Script Character Recogni-
tion: A Survey. Pattern Recognition, 37:1887–1899, 2004.

[14] V. Bansal and R.M.K. Sinha. Partitioning and Search-
ing Dictionary for Correction of Optically-Read Devanagari
Character Strings. In Proc. ICDAR, pages 653–656, 1999.

