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Abstract. Points, lines, and polygons have been the fundamental prim-
itives in graphics. Graphics hardware is optimized to handle them in a
pipeline. Other objects are converted to these primitives before render-
ing. Programmable GPUs have made it possible to introduce a wide class
of computations on each vertex and on each fragment. In this paper, we
outline a procedure to accurately draw high-level procedural elements ef-
ficiently using the GPU. The CPU and the vertex shader setup the draw-
ing area on screen and pass the required parameters. The pixel shader
uses ray-casting to compute the 3D point that projects to it and shades it
using a general shading model. We demonstrate the fast rendering of 2D
and 3D primitives like circle, conic, triangle, sphere, quadric, box, etc.,
with a combination of specularity, refraction, and environment mapping.
We also show combination of objects, like Constructive Solid Geometry
(CSG) objects, can be rendered fast on the GPU. We believe customized
GPU programs for a new set of high-level primitives – which we call
GPU Objects – is a way to exploit the power of GPUs and to provide
interactive rendering of scenes otherwise considered too complex.

1 Introduction

Points, lines, and polygons are the basic primitives in conventional graphics. Ac-
celeration hardware is optimized to process them quickly in a pipeline. Complex
shapes are converted to these primitives before rendering. Procedural geometry,
on the other hand, involves on-the-fly creation of arbitrarily accurate shape from
compact descriptions, usually in the form of implicit equations. The graphics
display pipeline cannot render procedural geometry directly. Procedural objects
are converted to piecewise linear models using polygons and lines before ren-
dering. This results in a loss in resolution and incurs computational overhead.
Ray-tracing methods can handle procedural geometry to produce high-quality
renderings. These methods have very high computational complexity and are
not suitable for interactive applications.

The Graphics Processor Units (GPUs) have seen very steep growth in pro-
cessing capabilities. They deliver highest computation power per unit cost today
and have been improving at a quick pace. Introduction of programmability in
GPUs at the vertex and the fragment levels has brought novel uses of the graph-
ics hardware. We present several examples of fast and accurate rendering of
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procedural objects on the GPUs in this paper. The equations of the objects are
evaluated exactly at each pixel it projects to in a way similar to the ray-tracing
techniques. This results in high quality rendering at all resolution levels and
exact, per pixel lighting. We also apply the technique to objects that are tradi-
tionally not considered to be procedural. All of this is performed at interactive
frame rates.

Procedural geometry has many benefits over polygonal geometry. In the lat-
ter, the surface is approximated by a triangle mesh. Triangulation in itself is
an overhead, which requires time consuming preprocessing of the geometry. Tri-
angulated mesh requires high memory bandwidth from the CPU to the GPU
and huge video memory for storage. Procedural geometry can save both band-
width and memory requirements drastically. Resolution independent rendering
of curved surfaces [1] was achieved using procedural geometry on GPU. Resolu-
tion independence results in the curved surfaces appearing exactly curved at all
magnification levels. Procedural geometry finds its application in Constructive
Solid Geometry (CSG), which is used in solid modeling to create complex shapes
by combining simple shapes primitives with boolean operators on sets [2]. The
primitives used in CSG are ground set of shapes such as box, sphere, cylinder,
cone, torus, prism, etc.

In this paper, we outline a general procedure for rendering a wide class of
objects using ray-casting from a GPU. We also show how high-quality lighting
options can be computed exactly for these objects. We demonstrate the proce-
dure to interactively render several generic objects very fast on the GPU. These
include triangle, quadrilateral, circle, conic, sphere, box, tetrahedron, quadric,
etc. We also show how different lighting models can be incorporated into the
rendering. We then extend the basic procedure to render a combination of ob-
jects together and demonstrate it on various CSG objects. We believe this is
the first time high-quality ray-casting of CSG objects has been performed at
interactive rates. Our work lays the foundation for a class of GPU Objects that
can be rendered interactively in high quality. We show overview of our results in

(a) (b) (c)

Fig. 1. GPU Objects: (a) Bunny with 36K spheres at 57 fps. (b) Hyperboloid with
reflection and sphere with reflection and refraction at 300 fps. (c) Four-primitive CSG
at 22 fps.
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Figure 1. A GPU Object consists of program fragments for the CPU, the vertex
shader and the pixel shader and can be called like a function by an application
program with the parameters for the objects. As the limitations of today’s GPUs
go away and the architecture evolves to include more memory, longer programs,
and more flexible shaders, customized GPU Objects will be a way to exploit
their compute power to provide interactive rates to rich scenes.

2 Prior Work

Graphics hardware is getting faster which helps rasterization to produce good
rendering effects. The effects generated by ray tracing are the most realistic.
Programmable graphics hardware is able to deliver the promise of realistic ren-
dering effects using ray tracing. Ray tracing of procedural objects [3] transforms
the three dimensional ray-surface intersection into a two dimensional ray-curve
intersection problem, which is solved by using strip trees. It was demonstrated
on procedural objects such as fractal surface, prisms and surfaces of revolu-
tions. Ray tracing of complex scenes [4] incorporated several new schemes such
as bounding box being a good convex hull of the object, division of the object
into hierarchies and efficient data structure for traversing this hierarchy. These
techniques were used for speeding up ray tracing. Ray-tracing on GPU [5] with
different methods such as Whitted ray tracing, path tracing, and hybrid render-
ing algorithms showed that it runs faster on GPU than on CPU. Ray Engine [6]
does a ray-triangle intersection on GPU and achieves effects such as recursive
ray tracing, path tracing, form factor computation, photon mapping, subsurface
scattering, and visibility processing. Ray tracing of ellipses with EWA filtering
which results in anti-aliased splats was done by Botsch et. al [7]. Ray tracing of
perspectively correct ellipsoids on GPU [8] render ellipsoid by transformation of
a unit sphere. GPU accelerated primitives [9] presents a framework for rendering
of quadric surfaces on GPU. They use a different Ray Tracing Area for each type
of quadric to minimize the load on pixel shader. Ray tracing of quadrics on GPU
[10] which uses efficient bounding box computation has been done recently. Fully
Procedural Graphics [11] proposes the extension of graphics hardware so that it
may be able to support procedural rendering of objects.

CSG has already been a well explored area using CPU based algorithms. Ini-
tial methods included the generalization of scanline algorithm using ray tracing
for rendering of intersecting objects [12]. CSG graph representation is optimized
into Convex Difference Aggregates for efficient CSG of convex objects [13]. Nor-
malization and bounding box pruning for CSG [14] demonstrated on the pixel
planes architecture and surface intersection using bounding box optimization
[15] achieve faster CSG. The use of stencil buffer and depth peeling techniques
was done for CSG by Guha et. al [16]. Blister [17] evaluates Blist representa-
tion of CSG expression directly on GPU and is able to render large number of
primitives in real-time.
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3 Rendering Geometric Objects

The fundamental operation used by our rendering method is the intersection of
a ray with an object. The intersection is computed in the pixel shader for each
pixel, given the parameters of the object being rendered. This step is essentially
the conventional ray casting implemented on the pixel shader. The points on
the ray in parametric form can be represented as P = O + tD, where t is the
parameter along the ray, O the camera center and D the direction of the ray.
The intersection of the ray with an object given by f(P ) = 0 can be calculated
by substituting the parametric form for P and solving the resulting equations for
the smallest value of t. Polynomial forms of f() span a range of useful objects and
are easy to solve. Many non-linear forms of f() can also be solved for analytically.
Representations such as triangle, quadrilateral, box, tetrahedron, etc., are not
procedural, but can be intersected with a ray efficiently on the pixel shader.

We now give a generic procedure to draw a general object using an appropriate
shader. The object is given by the implicit form f(P ) = 0.

Algorithm 1. renderGeomObject(f)
CPU: An OpenGL program performs the following.

1: Pass the parameters of f() to the graphics pipeline as graphics bindings such as
texture coordinates, color and position. A texture can be used if more data needs
to be sent.

2: Draw an OpenGL primitive such that the screen-space area of the object is covered
by it. This ensures that all pixels will be drawn and the corresponding shaders will
be executed. The primitive used could be a dummy one with the right number of
vertices.
Vertex Shader: A vertex shader performs the following.

3: Pass the parameters from the CPU to the pixel shader.
4: Transform the OpenGL primitive drawn by the CPU to cover the screen-space area

of the object using the object parameters.
5: Perform other pixel independent calculations required for the pixel shader and

passes on the results.
Pixel Shader: A pixel shader performs the following.

6: Receive the parameters of the object and own pixel coordinates (i, j) from the
pipeline.

7: Perform an acceptance test for (i, j) based on the parameters of f(). This involves
computing exactly if the pixel will be on the projected region of the object. This
may require the parameters of f(), the Modelview, Projection, Viewport matrices,
etc. The acceptability can be computed in a 2D texture space in some cases.

8: Compute the ray-object intersection for accepted pixels. This involves solving an
equation in t that is based on f().

9: Compute the 3D point corresponding to the smallest t among the intersecting
points. Also compute the depth and normal at that point using f().

10: Shade the pixel using the lighting, material, normal, and viewing information that
is available to the shader. The reflected ray at the intersection point can be pursued
to apply environment mapping, refraction etc.
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It is important to setup the screen-space bounding area as compactly as pos-
sible as it affects the computation time. A compact bounding polygon is a good
option. The CPU and the vertex shader set this up in combination. The inter-
polation of texture coordinates performed by the primitive assembly unit can be
exploited to send values to all pixels, if suitable. This would be useful for data
like the 3D position, depth, etc., that may be needed at the pixel shader. It is also
possible to draw a single point-primitive with appropriate point-size [10]. This
can involve extra calculations performed at the pixel shader. The pixel shaders
code memory and computation time could be stretched by this, while the task of
the CPU and the vertex shader are simplified. Every pixel in the bounding area
need to check if it is part of the actual object. The ray-object intersection will
give imaginary results for pixels that are outside the object. Easier acceptance
tests may be available for some shapes. The intersection point for the accepted
rays has 3D position (from the ray equation), a normal vector (from derivatives
of f()), and a view direction (from the camera position). Every pixel can be lit
accurately using these. The reflected and refracted rays can be computed and
used for effects like environment mapping and refraction. Recursive ray tracing
is, however, not possible as the pixel shaders don’t support recursion or deep
iteration due to the SIMD programming model available at the fragment units.

We now explain how the above generic procedure can be used to render several
different 2D and 3D objects.

3.1 Planar Shapes

We consider the shapes circle, conic, triangle, and parallelogram. For planar
shapes, the pixel acceptance can be performed in two ways: in the 3D space and
in the texture space. In the former, the ray-plane intersection and the accep-
tance tests are performed in 3D space. In the latter, the vertex shader converts
the coordinates to in-plane coordinates and passes them as texture coordinates.
These values are interpolated by the rasterizer. The pixel shader performs the
acceptance test using the 2D equations using the interpolated texture coordi-
nates. Texture space acceptance test is more efficient but requires a dedicated
bounding area. This means only one primitive can be rendered at a time.

Circle: A square is used as the bounding area for the circle. A more close fitting
regular polygon can also be used, but at the cost of increasing the vertex shader
time. The parameters for the circle are its center, radius and the plane normal.
These values are passed using texture coordinates to the shaders. A dummy
square with coordinates (±1,±1) is passed by the CPU and are transformed by
the vertex shader to a square with length twice the radius. The implicit equation
|P − C| − r ≤ 0 is evaluated in world coordinates to check validity in 3D space.
For texture space calculations, the in-plane coordinates of the square corners are
sent by the vertex shader as a texture coordinate. This is interpolated by the
rasterizer and the interpolated value is available to the pixel shader. The circle
equation can be evaluated in 2D using the texture coordinates. We illustrate the
algorithm for rendering of a circle with environment mapping below :
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Algorithm 2. CircleRender(Center, Radius and Normal)
1: CPU Send a dummy quad with coordinates (±1,±1).
2: Vertex Shader Convert the corner coordinates of the quad to in-plane coordi-

nates and set them as texcoord.
3: Pixel Shader receive center and in-plane coordinates
4: if distance of current pixel from center > radius then
5: discard
6: else
7: use normal for lighting.
8: use reflected ray for environment mapping. reflected ray is obtained by reflecting

the ray from camera center to current pixel about the normal
9: return color and depth of accepted pixel

10: end if

(a) (b)

Fig. 2. (a)Ellipse rendered procedurally on GPU (b) Ellipse rendered using a texture of
512x512 resolution. GPU based rendering is resolution independent and has no aliasing
artifacts where circle shows the zoomed view.

Conic: Conic is a curve formed by intersecting a cone with a plane. Shapes such
as hyperbola, ellipse, circle, and parabola can be represented using conics. Conics
are represented in matrix notation as PCPT = 0 where C is a symmetric matrix.
A conic is described using 6 parameters for C, and the base plane normal. The
bounding area for a conic is computed by finding orthogonal lines tangent to the
conic. The bounding area thus formed is a rectangle. The dummy square from the
CPU is aligned to this rectangle by the pixel shader. The shader also computes
the in-plane coordinates of the rectangle vertices as texture coordinates, which
are interpolated before reaching the pixel shader. Pixel shader evaluates PCPT

for the in-plane coordinates and its sign is used for acceptance.

In fragment shader we first compute intersection of the ray with plane. Equa-
tion of plane with normal n and passing through point p is given by n·(p−x) = 0
and its intersection with ray is given by t = n · (p−O)/n ·D. The traced point is
converted to 2D point and then checked with equation of the conic. For texture
space test, the ray-plane intersection and conversion to 2D point is computed
in vertex shader and interpolated values are used in pixel shader for acceptance
test using sign of PCPT .
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Fig. 3. The sphere is converted into a circle normal to camera view vector

Triangle and Parallelogram: Triangle is strictly not a procedural object. How-
ever, the interior of the triangle is given by 0 ≤ u, v ≤ 1, where u, v are the
barycentric coordinates calculated using the vertices. The bounding area for tri-
angle is a one pixel wider triangle in screen space. Three points are sent from the
CPU which are converted to the barycentric coordinates by the vertex shader
using Möller et al. algorithm [18]. Triangle bound checking on barycentric coordi-
nates is used for acceptance test. For 3D space test the coordinates are evaluated
in pixel shader and then used for bound checking. The same can be achieved
in texture space, by evaluating the barycentric coordinates on the vertex shader
and interpolating it to the pixel shader.

A parallelogram can be handled in a similar way. The condition for acceptance
is 0 ≤ u, v ≤ 1. As for triangle, this acceptance test can be done either in 3D
space or in texture space.

3.2 3D Shapes

We consider the following 3D shapes: sphere, quadric, cylinder, cone, paral-
lelepiped, and tetrahedron. For 3D objects, the bounding area is either a bound-
ing box for the object in 3D space or bounding rectangle in projected space. 3D
shapes can have one or more intersections with ray. Nearest intersection is used
for calculating depth and shading. For use as CSG primitive all intersections are
important.

Sphere: A sphere can be represented using a quadric. It is handled more effi-
ciently than a general quadric by Toledo et al. [9]. We use a different approach
in order to render it even more efficiently by reducing the problem to rendering
of a circle of appropriate radius and orientation. Figure 3 shows a sphere with
center C and radius r and its projected circle with center C2, radius r2, and
oriented along the ray from sphere center to camera center. The procedure for
rendering a sphere, SphereRender(C, r) is described in Algorithm 3.

Thus, we reduce the bounding area for sphere to bounding area of the circle,
which in general is a camera facing regular polygon. It can be drawn using a
polygon with optimal edges or even as a single point with proper size. Figure
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Algorithm 3. SphereRender(C, r)
1: CPU Send a dummy quad

2: Vertex Shader r2 = r cos(sin−1r/d); C2 = (1 − r2

d2 )C + r2

d2 O.
Convert to in-plane coordinates using [18] and send corner points as texcoord.

3: Pixel Shader receive C, C2, r and r2 and in-plane coordinates P : (u, v)
4: if |P − C2| > r2 then
5: discard
6: else
7: solve quadratic equation for ray-sphere intersection and use smaller t.
8: light using 3D point, normal, and view vector.
9: use reflected ray for environment mapping if enabled.

10: if refraction then
11: intersect refracted ray again with sphere,
12: refract it once more and use it for environment mapping.
13: end if
14: set color of pixel as linear combination of above colors.
15: return color and depth of accepted pixel
16: end if

Fig. 4. Top: Bunny Model with 35,947 spheres is rendered at 57 fps at 512x512 viewport
and its zoomed view. Bottom: Ribosome molecule with 99,130 spheres is rendered at
30 fps at 512x512 viewport and its zoomed view.

4 shows rendering of large datasets represented as collection of spheres at in-
teractive frame rates. We used NVIDIA GeForce 6600 GT in our experiments.

Cylinder and Cone: The bounding area for cylinder is billboard rectangle along
cylinder axis and a square at end of the cylinder facing the camera. The bounding
area for cone is billboard triangle along cone axis and a square at the base of
the cone. Ray intersection involves solving quadratic equation, and real roots
producing pixels are accepted.
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Fig. 5. Sphere and Ellipsoid with environment mapping and refraction at 300 fps

General Quadric: Quadric surfaces are second order algebraic surfaces repre-
sented in matrix notation as PQPT = 0 where Q is a symmetric matrix and P
is a point. Bounding area for the quadric is computed from its conic projection
defined as C = PQPT where P is projection matrix. The base plane of the conic
is QC. Ray intersection of quadric is given by roots of quadratic equation in
t and pixels resulting in complex values of t are discarded. For texture space
acceptance test, ray is intersected with base plane of conic in vertex shader and
texture space values of intersections are used in pixel shader for inside-conic
test. Quadrics with reflection, refraction and environment mapping are shown
in Figure 5.

Parallelepiped and Tetrahedron: Parallelepiped is formed by three pairs of paral-
lel parallelograms. A parallelepiped can be represented using four vertices. The
six parallelograms can be described using these vertices and the intersection
with each is computed. Bounding area for parallelepiped is given by three par-
allelogram faces. 3D space ray-parallelogram intersection is computed for every
face, and the nearest intersection point is considered for lighting. For CSG both
intersection are of importance.

Tetrahedron is formed by four triangles and can be represented using its four
vertices. The four triangles can be described using these vertices. A regular tetra-
hedron is representedusing apex position, direction vector and side length. Bound-
ing box for tetrahedron is formed by four triangles of it and the intersection with
each triangle is computed using ray-triangle intersection in 3D space.

4 Rendering CSG Objects

We showed how different objects can be rendered fast using special shaders on the
GPU. The object is rendered with correct depth and color values. Thus, the GPU
rendering can be mixed with normal polygonal rendering and the picture will
have correct occlusions and visibility. We now see how a combination of objects
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can be drawn together by the GPU. The motivation is to draw CSG objects,
which are formed using union, intersection, and subtraction of other objects.
CSG objects are represented using CSG trees of primitives and are popular in
CAD to describe objects exactly. Procedural objects are commonly used in CSG.

We show the rendering of CSG objects that are boolean combinations of the
objects we have seen earlier. Ray casting at the pixel shader is used for this.

Algorithm 4. renderCSGObject()
CPU:

1: Write the primitives of the CSG tree into the texture memory with appropriate
descriptions.

2: Calculate the screen-space bounding area for the positive primitives in the scene
and draw it using OpenGL.

Pixel Shader:

1: Read the CSG tree and information about the primitives from the texture.
2: Calculate all ray intersection for every primitive.
3: Sort the intersections by t. Preserve primitive id for each intersection point. Set toi

as +1 for entry intersections (smaller t) and -1 for exit intersections (larger t).
4: Create two counters: plus for positive and minus for negative primitives and ini-

tialize both to zero.
5: Examine each intersection point. Add its toi to the plus counter if the corresponding

primitive is a positive one. Add toi to the minus counter otherwise. The counters
contains the number of positive and negative objects encountered by the ray from
beginning.

6: Stop when the minus counter is zero and plus counter is positive. This is the
first visible point along the ray. The primitive for this intersection is the visible
primitive.

7: Compute depth and normal using the visible primitive. Reverse normal direction
if the visible primitive is negative.

8: Light the point using the normal material properties etc.

(a) (b)

Fig. 6. (a) CSG of four quadrics with reflection and environment mapping at 20 fps.
(b) CSG of cylinders and spheres with phong shading at 20 fps.
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However, the ray could intersect multiple objects and the boolean combination
between them decides what actually gets drawn. Thus, all objects in the CSG tree
need to be rendered together to generate the correct image at each pixel. Points
are evaluated for being on the boundary of composite object for drawing [17].

Our scheme stores the CSG tree in texture memory and its reference is made
available to the shaders. Each primitive is represented using an id for its type, the
parameters for that type of primitive, and a flag to indicate if the primitive is used
in an additive or subtractive sense. We outline a procedure renderCSGObject()
(Algorithm 4), to draw a simple CSG object, consisting of a set of positive
primitives and a set of negative ones.

The above procedure can render complex CSG objects. Rendering many prim-
itives together is a challenge on today’s GPUs with its limitations on the shader
length. We are able to render CSG objects shown in Figure 6 containing upto 5
quadric primitives on the NVidia 6600GT system. This will improve with newer
generation cards and very complex CSG objects will be possible in the future.
We show some of our results in the accompanying video.

5 Conclusions and Future Work

In this paper, we presented a scheme for rendering several high-level objects using
appropriate shaders on programmable GPUs. We showed interactive rendering
of several geometric and CSG objects with sophisticated, per pixel, lighting. The
figures and accompanying video demonstrate the effectiveness and speed of our
method in rendering many high level objects.

The GPUs are getting more powerful and more programmable with every
generation. While they speed up the rendering of conventional geometry, their
impact can be felt more in rendering higher level primitives that are slow to
render today. This can be made possible using specialized shader packages that
can draw certain types of objects quickly. These packages – which we call GPU
Objects – could be parametrized to generate a class of objects and a class of
rendering effects. These GPU Objects can be invoked by a rendering program
as they do with OpenGL primitives. They can be mixed freely with one another
and with conventional geometry rendering and will produce the correct visibility
and lighting effects. We are currently devising generic GPU Objects that can be
parametrized to get a variety of objects. Such objects will be possible to render
at high speeds on the future GPUs as they get more flexible.
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