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Abstract

Most robotic vision algorithms have been proposed by
envisaging robots operating in industrial environments,
where the world is assumed to be static and rigid. These
algorithms cannot be used in environments where the as-
sumption of a rigid world does not hold. In this paper, we
study the problem of visual servoing in presence of non-
rigid objects and analyze the design of servoing strategies
needed to perform optimally even in unconventional envi-
ronments. We also propose a servoing algorithm that is ro-
bust to non-rigidity. The algorithm extracts invariant fea-
tures of the non-rigid object and uses these features in the
servoing process. We validate the technique with experi-
ments and demonstrate the applicability.

1. Introduction

Visual servoing [8] describes a broad class of navigation
problems in which a robot is positioned with respect to a
target using computer vision as the primary feedback sen-
sor. It is achieved by processing the visual feedback (2D
features or 3D pose or both) and minimizing an appropriate
error function.

Several algorithms [1, 3, 7, 10] have been proposed to
perform the task of visual servoing; however, much of the
research until now focuses only on rigid objects. As far as
we are aware, the problem of visual servoing in presence of
non-rigid objects has not been addressed in literature. The
challenge with non-rigidity is that the motion planned based
on the image-clues extracted at current time instant might
not be valid in the next time instant as the object under-
goes a change in its pose. This problem is different from
that of servoing with respect to a moving object, where all
the features that are being tracked undergo the same or pre-
dictable transformations in the image space. Whereas, for a
deforming object, each feature point transforms differently
and thus generates different control signals at the same time
instant, thereby destabilizing the motion planning process.

Many of the living forms that we come across everyday

are non-rigid [2] in nature. For example, the articulated hu-
man motion; the deforming nature of the beating heart, fly-
ing birds and moving aquatic animals; the near-rigid nature
of the human face etc. If robots are to be used in pres-
ence of such objects, we need servoing algorithms that are
adaptable to non-rigidity. The work done by [7] and [10]
deals with only moving rigid object visual servoing. Re-
cently in [4], Cavusoglu et al. proposed a method to handle
non-rigidness by canceling the relative motion between the
non-rigid object (heart) and the camera by using a model
predictive controller so as to facilitate easy manipulation of
the object. In this paper, we address the issue of position-
ing of the end-effector of a robot with respect to a non-rigid
object. Often, the positioning task is a pre-requisite for the
manipulation task.

As a non-rigid object undergoes a persistent change in
its pose, it is preferable to extract pose-invariant features
of the object and use them in the servoing process. As a
first attempt towards analyzing this problem, we investigate
the various issues that need to be considered while solving it
and also propose one simple yet an effective visual servoing
algorithm to handle deformations. The algorithm is based
on a not so strict assumption that any non-rigid motion can
be approximated to a generalized quasi-periodic motion.
And for a quasi-periodic motion, gross measures such as
the moving average are sufficient to reveal its general sta-
tionary characteristics, provided the change in pose can be
compensated. By using the recent results of multiple-view
geometry, we efficiently extract such static features of the
non-rigid object, which enable us to use the conventional
visual servoing techniques even in this case.

2. Background

In image-based visual servo control, the error signal e
is defined directly in terms of image feature parameters as
e(S) = S − S∗, where S and S∗ are the current and the
desired feature parameters respectively. By differentiating
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this error function with respect to time, we get:

de

dt
=

dS

dt
= (

∂S

∂r
)
dr

dt
= LSV, (1)

where V = (vT , ωT )T is the camera screw, r is the cam-
era pose and LS is the interaction matrix [8]. It relates the
motion of the features in the image space to the camera
motion in the Cartesian space. The main objective of the
visual servoing process is to minimize the error function
e(S). For exponential convergence, we use a proportional
control law i.e., de(S)

dt = −λe(S). By substituting this in
(1), the required velocity of the camera can be computed as
V = −λL+

S e(S), where L+
S is the pseudo-inverse of the in-

teraction matrix and λ is a scale factor. In case of a moving
object, the expression for V will get modified as (see [8])

V = −λL+
S e(S) − L+

S

̂∂e

∂t
, (2)

where ∂̂e
∂t represents the object motion model. The image-

based visual servoing algorithm has gained prominence in
literature due to its robustness to depth estimation errors.

Note that the above analysis assumes the objects to be
rigid. Though non-rigid objects have not been studied in the
visual servoing framework, they have been well analyzed in
computer vision in the context of non-rigid tracking and 3D
reconstruction problems. Most of these algorithms employ
models like the linear subspace model, appearance mani-
fold [11], kinematic chains [5, 9] etc in order to maintain
a representation of the non-rigid object and also to infer its
internal motion model. Such models allow prediction of the
future states of the object, given its current state. Prediction
is necessary in case of manipulation tasks where the end-
effector needs to interact with the deforming object. For the
positioning task, only an approximate pose of the object is
sufficient to align the camera with respect to the object. Any
error resulting due to this approximation can be corrected
by using the visual feedback.

3. Visual Servoing in Presence of Deformations

Our problem of visual servoing is to position the end-
effector of the robot with respect to a deforming object.
Several strategies could be conceived to solve this problem.
One possible solution is to use clues from object appearance
to aid the positioning task. Alternatively, one could gain a
stable representation of the object from its motion charac-
teristics, which can be used to calibrate and move the end-
effector. Another solution is to extract some pose-invariant
features of the non-rigid object and use these features in the
servoing process. Here we adopt a relatively simple strategy
to solve this problem.

Any servoing algorithm that computes an optimal path
for the robot to traverse from the initial position to the de-
sired position, can be divided into two basic steps. After de-
ciding on an appropriate feature to represent the non-rigid
object, the following steps need to be repeated until the de-
sired position is reached.

• Compute the error estimate between the current and
the desired feature vector i.e., S − S∗

• Using a proportional control law (see Section 2), move
in the direction that minimizes the above error

It is crucial to have a good feature vector S to represent
the object state and thereby to perform the servoing task.
However for non-rigid objects as the object pose contin-
uously changes, we cannot obtain a feature vector from a
single image that characterizes its state as it might lead to
an unstable end-effector trajectory. For instance, a surgical
robot positioning itself only using the current image of the
heart, will oscillate corresponding to the systole and dias-
tole states of the heart during its motion. Moreover, if only
a single image is used to describe the desired position S∗,
it will lead to oscillations of the manipulator even after the
goal position is reached. One possible solution to circum-
vent this problem would be to use the sequence of images
representing all states of the object to perform the servo-
ing task. This will generate better control signals as it takes
into account the object deformations. However, a more effi-
cient solution could be to extract gross features from those
sequence of images by exploiting the stationary signal prop-
erty of the quasi-periodic object deformations.

At each pose, a sequence of images (I1, I2, ..., In) are
acquired by the camera, capturing the deformations of the
non-rigid object (where n depends on the periodicity of the
deformations). Then, m point features are extracted from
each image Ii to obtain a feature vector F t

i = [f1f2...fm]T ,
where each feature fk corresponds to the projection of a 3D
point on the surface of the non-rigid object at time instant
t. The invariant feature Gt corresponding to the image se-
quence is computed as a function of all the feature vectors.

Gt = f(F t
1 , F t

2 , ...., F t
n) (3)

However, the camera can use its previous knowledge and
predict the next gross appearance of the deforming object.
Thus at each position, only a single image is captured by
the camera. The rest of the deformations of the object are
obtained by projecting the past images into the new pose.
Hence, the gross feature at time t can be predictively calcu-
lated as a function of the features extracted from the current
image and the previous images as

Gt = f(g(F t−n, ...., F t−2, F t−1), F t), (4)

where F t−i denotes the feature vector obtained from
the image captured at camera pose rt−i, F t denotes the
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feature vector extracted from the current image and g(·)
is a function that projects the past image features into the
current view as explained below.

Projection of Images Given two camera matrices M1

and M2 and an image I1 taken from the pose corresponding
to M1, the task is to obtain the image I2 as seen from the
pose corresponding to M2 using a partial 3D model of the
world that is assumed to be available in the image-based
visual servoing process [8]. Let M1 = K1[R1 t1] and
M2 = K2[R2 t2] where Ki denotes the intrinsic para-
meter matrix and [Ri ti] denotes the pose (rotation and
translation). Let p1 represent a point in I1 and Z1 be an
estimate of the depth of the corresponding 3D point P1 in
the camera frame given by the 3D model. The coordinates
of point P1 are given by P1 = K−1

1 Z1p1 (see [6]).
Now to obtain the 3D coordinate of this point in the other

camera frame, we have

P2 = [R2 t2][R1 t1]−1P1. (5)

Finally, the image coordinates of the point with respect to
the second camera are given by p2 = 1

Z2
K2P2. Thus by

projecting the past image features into the new view, all
the deformations of the object as viewed from the current
camera pose can be obtained. These features are used to
compute the representative feature of the non-rigid object.

4. Results and Discussions

In our experiments, we consider a set of four 3D points
on the surface of a non-rigid object being observed by a
perspective camera. The projection of the points onto the
image are considered as features. The deformations of the
non-rigid object are simulated by using a sinusoidal motion
perturbed by a white gaussian noise. This makes the object
undergo quasi-periodic deformations. The task of position-
ing a camera with respect to the non-rigid object is studied.

The basic implementation of the proposed algorithm can
be summarized into the following steps.

1. In an offline step, acquire images from the desired fi-
nal position. Extract feature S∗ from these images us-
ing (3)

2. Acquire a sequence of images from the current camera
pose and calculate S, again using (3)

3. Compute the velocity screw V using (2)
4. Using V , move the end-effector to the new pose and

capture a new image
5. Project the features in the old images into the new pose

as discussed in the latter half of Section 3
6. Using the features extracted from the old images and

the current image, extract S using (4)
7. Repeat steps 3 to 6 until e(S) < θ

We demonstrate our results using two kinds of features
namely the mean and the eigen feature. Such features have
been used in computer vision to capture statistical regulari-
ties and redundancies shared by a set of images. In the first
method, all the feature vectors Fi, i = 1, 2, ..., n obtained
from the n images are averaged to get the mean feature vec-
tor M . In this context, the mean operator corresponds to
the function f(·) and M represents the invariant feature Gt.
This feature is used as the input S to the servoing algorithm.
As explained in Section 3, the new mean is predictively cal-
culated using the past image features.

In the second method, the eigen feature of the sequence
of image features is computed and used as the input feature
to the servoing process. This feature indicates the direction
in which the point features undergo maximum variation in
the image space. In estimating the camera screw from (2),
the line Jacobian is used to compute V since the eigen fea-
ture can be conceived of as a line segment in the image.

In comparison to classical image-based visual servoing,
the use of above features generated a stable camera trajec-
tory. Fig. 1a shows the velocity screw obtained in the case
of the classical servoing algorithm. As only a single image
is used, the generated control instructions resulted in an os-
cillatory camera trajectory (see the jagged behavior of the
velocity screw in Fig. 1a as compared to that of Fig. 1b),
affecting the stability of the robot. Also the system set-
tled in a critically stable condition as the oscillations of the
end-effector continued even after the desired position was
reached.
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Figure 1. Velocity Screw (a) Oscillatory be-
havior (features only from single image are
used) (b) Smooth convergence

We also tested the use of image sequence as an input
feature to the servoing algorithm. In this case, the feature
S was the entire sequence of features extracted from each
image in the sequence i.e., S = [F1, F2, ..., Fn]T . As a
large set of features are considered, minimizing the error
difference between the current and the desired feature
vector consumed more time and led to slower convergence
of the error function (compare the error norm and the time
taken in Fig. 2a to that of Fig. 2b).

Stability and Robustness We empirically verify the
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Figure 2. Error norm in case of (a) Eigen and
mean feature (b) Image sequence

robustness of our approach to calibration errors. Often
due to system calibration errors, the obtained image
measurements are corrupted. The current image will be
corrupted by the error in the current camera pose whereas
the projected images will be corrupted by the error in the
previous camera poses. This leads to the incorrect compu-
tation of the error function as e

′
(S) = e(S) + Δe where

e(S) is as defined in Section 2 and Δe is the measurement
error obtained due to the corresponding error in pose. As
a result, the velocity screw changes to V

′
= V + ΔV

where V is as given in (2) and ΔV is the velocity command
generated to compensate the corresponding measurement
error Δe. This ΔV accommodates the uncertainty in pose
and thus ensures the convergence of error to zero. The
stability of the algorithm was tested by introducing noise
into the camera extrinsic parameters. The noise level was
varied and the performance of the algorithm was studied.
In Fig. 3a, it is observed that in spite of the calibration
errors (a 10% gaussain noise was added), the convergence
of velocity screw is achieved. This supports our analysis
that uncertainty in pose is corrected by the visual feedback
rather than getting propagated due to the prediction step.
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Figure 3. Convergence of velocity screw ob-
served even in presence of errors (noise)

One of the crucial steps in the algorithm is the predic-
tion step that assumes the depth of the feature points. The
robustness of the algorithm to depth estimation errors was
tested by introducing noise into the depth values. Fig. 3b
shows the velocity screw obtained when the estimated depth
was corrupted by 15% gaussian noise. This experiment
demonstrated that minor error in the depth values can be
accommodated by our algorithm.

5. Conclusion

Existing servoing schemes cannot adapt to the non-
rigidity present in domestic environments. In this paper, we
studied the issues involved in designing servoing strategies
with optimal performance in presence of non-rigid objects.
We also proposed a novel image-based visual servoing al-
gorithm, which efficiently extracted gross features from se-
quence of images and used them in the servoing process.
This algorithm generated a stable camera trajectory unlike
the classical servoing algorithms. In future, we plan to im-
prove the algorithm by considering other invariant features
which better characterize the non-rigid object motion.

References

[1] J. Adachi and J. Sato. Uncalibrated visual servoing from
projective reconstruction of control values. International
Conference on Pattern Recognition, 4:297–300, August
2004.

[2] J. K. Aggarwal, Q. Cai, W. Liao, and B. Sabata. Non-
rigid motion analysis: articulated and elastic motion. Com-
puter Vision and Image Understanding, 70(2):142–156,
May 1998.

[3] J. P. Barreto, J. Batista, and H. Araujo. Model predictive
control to improve visual control of motion: Applications in
active tracking of moving targets. International Conference
on Pattern Recognition, 4:4732–4735, September 2000.

[4] M. C. Cavusoglu, J. Rotella, W. S. Newman, S. Choi,
J. Ustin, and S. S. Sastry. Control algorithms for active rel-
ative motion cancelling for robotic assisted off-pump coro-
nary artery bypass graft surgery. International Conference
on Advanced Robotics, pages 431–436, July 2005.

[5] F. Chaumette, E. Marchand, and A. Comport. Object-
based visual 3d tracking of articulated objects via kinematic
sets. IEEE Workshop on Articulated and Non-Rigid Motion,
CVPRW, 1:2–9, June 2004.

[6] R. Hartley and A. Zisserman. Multiple view geometry in
computer vision. Cambridge University Press, 2003.

[7] K. Hashimoto, K. Nagahama, T. Noritsugu, and M. Taka-
iawa. Visual servoing based on object motion estimation.
IEEE/RSJ International Conference on Intelligent Robots
and Systems, 1:245–250, October 2000.

[8] S. A. Hutchinson, G. D. Hager, and P. I. Corke. A tutorial
on visual servo control. IEEE Transactions on Robotics and
Automation, 12(5):651–670, October 1996.

[9] T. Kanade, D. D. Morris, and J. Rehg. Ambiguities in vi-
sual tracking of articulated objects using two- and three-
dimensional models. International Journal of Robotics Re-
search, 22(6):393–418, June 2003.

[10] E. Malis and S. Benhimane. A unified approach to visual
tracking and servoing. Robotics and Autonomous Systems,
52(1):39–52, July 2005.

[11] A. Shashua, A. Levin, and S. Avidan. Manifold pursuit:
A new approach to appearance based recognition. Interna-
tional Conference of Pattern Recognition, 3:590–594, Au-
gust 2002.

The 18th International Conference on Pattern Recognition (ICPR'06)
0-7695-2521-0/06 $20.00  © 2006



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (None)
  /CalCMYKProfile (None)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 2.00333
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 2.00333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00167
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <>
    /FRA <>
    /PTB <>
    /DAN <>
    /NLD <>
    /ESP <>
    /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
    /ITA <>
    /NOR <>
    /SVE <>
    /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


