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ABSTRACT
An important problem for wireless ad hoc networks has been to
design overlay networks that allow time- and energy-efficient rout-
ing. Many local-control strategies for maintaining such overlay net-
works have already been suggested, but most of them are based on
an oversimplified wireless communication model.

In this paper, we suggest a model that is much more general than
previous models. It allows the path loss of transmissions to sig-
nificantly deviate from the idealistic unit disk model and does not
even require the path loss to form a metric. Also, our model is ap-
parently the first proposed for algorithm design that does not only
model transmission and interference issues but also aims at provid-
ing a realistic model for physical carrier sensing. Physical carrier
sensing is needed so that our protocols do not require anyprior in-
formation (not even an estimate on the number of nodes) about the
wireless network to run efficiently.

Based on this model, we propose a local-control protocol for es-
tablishing a constant density spanner among a set of mobile stations
(or nodes) that are distributed in an arbitrary way in a 2-dimensional
Euclidean space. More precisely, we establish a backbone struc-
ture by efficiently electing cluster leaders and gateway nodes so
that there is only a constant number of cluster leaders and gateway
nodes within the transmission range of any node and the backbone
structure satisfies the properties of a topological spanner.

Our protocol has the advantage that it is locally self-stabilizing,
i.e., it can recover from any initial configuration, even if adversar-
ial nodes participate in it, as long as the honest nodes sufficiently
far away from adversarial nodes can in principle form a single con-
nected component. Furthermore, we only need constant size mes-
sages and a constant amount of storage at the nodes, irrespective
of the distribution of the nodes. Hence, our protocols would even
work in extreme situations such as very simple wireless devices
(like sensors) in a hostile environment.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network Archi-
tecture and Design—Wireless communication; F.2.8 [Analysis of
Algorithms and Problem Complexity]: Non-numerical Algorithms
and Problems—Computation of discrete structures
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1. INTRODUCTION
An important problem for wireless ad hoc networks has been

to design overlay networks that allow time- and energy-efficient
routing. Many local-control strategies for maintaining such over-
lay networks have already been suggested, but mostly high-level
wireless models have been used for their analysis. However, since
mobile ad-hoc networks have many features that are hard to model
in a clean way, it is not clear how well these strategies may actually
perform in practice. Major challenges are how to model wireless
communication and how to model mobility. Here, theoretical work
is still in its infancy. So far, people in the algorithms community
have mostly looked at static wireless networks (i.e. the wireless
stations are always available and do not move). Wireless commu-
nication has mostly been modeled using the packet radio network
or the even simpler unit disk model. In the packet radio network
model, the wireless units, or nodes, are represented by a graph, and
two nodes are connected by an edge if and only if they are within
transmission range of each other. Transmissions of messages inter-
fereat a node if at least two of its neighbors transmit a message at
the same time. A node can only receive a message if it does not
interfere with any other message.

The packet radio network model is a simple and clean model that
allows to design and analyze algorithms for overlay networks with
a reasonable amount of effort. However, since it is a high-level
model, it does have some serious problems with certain scenarios
in practice because in reality the transmission range of a message
is not the same as its interference range. Consider, for example,
two nodes s and t and a set U of n nodes with all nodes in U
being within the transmission range of s but only one node in U ,
v, being within the transmission range of t. All other nodes in U
just interfere with t. Then no uniform protocol (i.e., at each step all
nodes try to access the wireless medium with the same probability)
can send a message from s to t in an expected o(n) number of
steps, whereas a constant expected time is easy to achieve if we can
ignore interference problems between U and t.

There are a limited number of papers in the theory area that use
a model that differentiates between the transmission range and the
interference range [1, 12, 13, 14, 22], but they still assume a disk
model in a sense that the transmission range and interference range
can be modeled by two distance values that hold irrespective of the
position of a node. We propose a more general model.
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1.1 Wireless communication model
In order to motivate our model, we first review some commonly

used transmission techniques in wireless communication. We will
concentrate here on the IEEE 802.11 standard because IEEE 802.11-
based radio LANs are currently dominating the market and will
most probably do so also in the future. The IEEE 802.11 standard
distinguishes between a Physical (PHY) layer and a Medium Ac-
cess Control (MAC) layer for the transmission of messages. The
802.11 MAC protocols are based on Carrier Sense Multiple Access
with Collision Avoidance (CSMA/CA).

Carrier sensing
The basic approach of the CSMA/CA scheme is as follows. When-
ever a node receives a packet to be transmitted, it first listens to
the channel to ensure no other node is transmitting. If the channel
is clear, it transmits the packet. Otherwise, it uses an exponen-
tial back-off scheme until it either finds a time point in which the
channel is clear so that it can transmit its packet or aborts the trans-
mission due to too many failed attempts.

In WLAN devices, there is usually just one antenna for both
sending and receiving, and hence the stations are not able to lis-
ten while sending. For this and other reasons there is no collision
detection capability like in the Ethernet. Therefore, acknowledg-
ment packets (ACK) have to be sent from the receiver to the sender
to confirm that packets have been correctly received.

In wireless ad hoc networks that rely on a carrier-sensing random
access protocol, such as IEEE 802.11, the wireless medium char-
acteristics generate complex phenomena such as the well-known
hidden-station and exposed-station problems. In order to handle
these problems, the MAC layer uses physicaland virtual carrier
sensingtechniques.

The physical carrier sensing part of the CSMA scheme is pro-
vided by a Clear Channel Assessment (CCA) circuit. This circuit
monitors the environment to determine when it is clear to trans-
mit. It can be programmed to be a function of the Receive Signal
Strength Indication (RSSI) and other parameters. The RSSI mea-
surement is derived from the state of the Automatic Gain Control
(AGC) circuit. Whenever the RSSI exceeds a certain threshold, a
special Energy Detection (ED) bit is switched to 1, and otherwise
it is set to 0. By manipulating a certain configuration register, this
threshold may be set to an absolute power value of t dB, or it may
be set to be t dB above the measured noise floor, where t can be set
to any value in the range 0-127. The ability to manipulate the CCA
rule allows the MAC layer to optimize the physical carrier sensing
to its needs.

Virtual carrier sensing is usually achieved by using two control
packets, Request To Send (RTS) and Clear To Send (CTS), which
are exchanged before the data transmission is taking place. More
precisely, before transmitting a data frame, the source station sends
an RTS packet to the receiving station announcing the upcoming
frame transmission. Upon receiving the RTS packet, the destination
replies by a CTS packet to indicate that it is ready to receive the data
frame. Both the RTS and CTS packets contain the total duration
of the transmission, i.e. the overall time needed to transmit the
data frame and the related ACK, so that other stations within the
transmission range of either the source or the destination stay silent
until the transmission is over.

Transmission range, interference range, and physical
carrier sensing range
Every data transmission mechanism has a minimum signal-to-noise
ratio (SNR) at which a data frame can still be transmitted with a rea-
sonably low frame error rate. The minimum SNRs for 802.11b, for

example, are 10dB for 11Mbps, 8dB for 5.5Mbps, 6dB for 2Mbps,
and 4dB for 1Mbps, and for 802.11a, 23dB is usually the minimum
SNR for 54Mbps. In the 802.11a standard [28], the minimum dB
values are defined as the received signal strength level at which the
frame error rate (FER) of a 1000-octet frame is less than 10%.

The SNRs above specify the transmission rangeof the data trans-
mission mechanism, i.e. the maximum range within which data
frames can still be received correctly. The transmission range is
highly dependent on the environment. A reasonable model for
determining the transmission range is the log-normal shadowing
model [23, 30]. In this model, the received power at a distance of d
relative to the received power at a reference distance of d0 is given
in dB as

−10 log(d/d0)θ +Xσ

where θ is the path loss coefficient and Xσ is a Gaussian random
variable with zero mean and standard deviation σ (in dB) that mod-
els the influence of the background noise. θ usually ranges from 2
(free space) to 5 (indoors) [31].

When using forward error correction mechanisms as proposed in
the IEEE 802.11e MAC standard currently under development, the
transition between being able to correctly receive a data frame with
high probability and not being able to correctly receive a data frame
with high probability is very sharp. As shown in [6], it can be less
than 1 dB. Thus, in an ideal environment the transmission range is
an area with a relatively sharp border that in reality, however, may
be blurred due to environmental effects.

A limitation of the shadowing model is that it is only applicable
in uniform environments. In non-uniform environments, the signal
strength can exhibit a non-monotonic behavior. For example, it
can happen that the sender position A has a smaller distance to a
position B than to a position C and yet the strength of the signal
from A received at B is lower than the signal strength received at
C. This can even happen if B and C are close by.

For the interference and physical carrier sensing ranges there
does not seem to be a commonly accepted definition in practice.
So we will use a conservative model for these ranges to make sure
that our results in this model are meaningful in practice.

Our model
In our model, we assume that we are given a set V of mobile
stations, or nodes, that are distributed in an arbitrary way in a 2-
dimensional Euclidean space. For any two nodes v, w ∈ V let
d(v, w) be the Euclidean distance between v and w. Furthermore,
consider any cost function c with the property that there is a fixed
constant δ ∈ [0, 1) so that for all v, w ∈ V ,

• c(v, w) ∈ [(1− δ) · d(v,w), (1 + δ) · d(v, w)] and

• c(v, w) = c(w, v), i.e. c is symmetric.

c determines the transmission and interference behavior of nodes
and δ bounds the non-uniformity of the environment. Notice that
we do not require c to be monotonic in the distance or to satisfy the
triangle inequality. This makes sure that our model even applies
to highly irregular environments. In Figure 1(a), for example, the
distance between u and v is greater than the distance between u and
w. Yet, the cost of communicating between u and w, c(u, w), is
bigger than c(u, v). Similar cost functions were also used in [21].

We assume that the nodes use some fixed-rate power-controlled
communication mechanism over a single frequency band. When
using a transmission power of P , there is a transmission range
rt(P ) and an interference range ri(P ) > rt(P ) that grow mono-
tonically with P . The interference range has the property that
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Figure 1: Figure (a) shows the notion of transmission range in
terms of cost of communication. Notice that node u can com-
municate directly with nodes v and a and c but not with nodes b
or w. Figures (b) shows the sensing ranges. When all nodes use
a transmission power P and node w uses a threshold of T , in
this example, node w can always sense transmissions of node a
while it may sense transmissions of node b and can never sense
transmissions of node c.

every node v ∈ V can only cause interference at nodes w with
c(v, w) ≤ ri(P ), and the transmission range has the property that
for every two nodes v, w ∈ V with c(v, w) ≤ rt(P ), v is guaran-
teed to receive a message from w sent out with a power of P (with
high probability) as long as there is no other node v′ ∈ V with
c(v, v′) ≤ ri(P ′) that transmits a message at the same time with a
power of P ′.

For simplicity, we assume that the ratio ρ = ri(P )/rt(P ) is a
fixed constant greater than 1 for all relevant values of P . This is
not a restriction because we do not assume anything about what
happens if a message is sent from a node v to a node w within v’s
transmission range but another node u is transmitting a message
at the same time with w in its interference range. In this case, w
may or may not be able to receive the message from v, so any worst
case must be assumed in the analysis. The only restriction we need,
which is important for any overlay network algorithm to eventually
stabilize, is that the transmission range is a sharp threshold. That
is, beyond the transmission range a message cannot be received any
more (with high probability). This is justified by the fact that when
using modern forward error correction techniques, the difference
between the signal strength that allows to receive the message (with
high probability) and the signal strength that does not allow any
more to receive the message (with high probability) can be very
small (less than 1 dB).

Nodes can not only send and receive messages but also perform
physical carrier sensing, which has not been considered before in
models proposed in the algorithms community. Given some sens-
ing threshold T (that can be flexibly set by a node) and a transmis-
sion power P , there is a carrier sense transmission (CST) range
rst(T, P ) and a carrier sense interference (CSI) rangersi(T, P )
that grow monotonically with T and P . The range rst(T, P ) has
the property that if a node v transmits a message with power P and
a node w with c(v, w) ≤ rst(T, P ) is currently sensing the carrier
with threshold T , then w senses a message transmission (with high
probability). The range rsi(T, P ) has the property that if a node
v senses a message transmission with threshold T , then there was
at least one node w with c(v, w) ≤ rsi(T, P ) that transmitted a
message with power P (with high probability). More precisely, we
assume that the monotonicity property holds. That is, if transmis-
sions from a set U of nodes within the rsi(T, P ) range cause v to

sense a transmission, then any superset of U will also do so. The
two sensing ranges are shown in Figure 1(b).

For simplicity, we will assume in the following that for the car-
rier sense ranges, rsi(T, P )/rst(T, P ) = ri(P )/rt(P ) for all rel-
evant values of T .

1.2 Our contributions
Our contributions are two-fold: we present a new model for

wireless networks, and we demonstrate how to develop and ana-
lyze algorithms on top of this model by presenting self-stabilizing
local-control algorithms for building constant density dominating
sets and spanners.

In our algorithms, the nodes do not have to have any a priori
knowledge about the other nodes, not even an estimate on their
total number. Also, fixed identification numbers of any form are
not required so that our protocols may even be applicable to the
important field of sensor networks. It is sufficient for us if the nodes
choose identification numbers so that there are no local conflicts
(which can be easily achieved with random, local-control coloring
strategies). We only require that the mobile hosts can synchronize
in rounds of constant length. This can be done, for example, with
the help of GPS signals or any form of beacons (that are sufficiently
far apart in time for a round of our protocols to complete).

In order to obtain a constant density spanner under an arbitrary
distribution of nodes, we proceed in two stages. First, we show that
there is a simple, distributed protocol to obtain a constant density
dominating set, and then we show how to extend this protocol in
order to also obtain a constant density spanner.

It is worth noting that our protocols only need a constant amount
of storage at each node, irrespective of the distribution of the nodes.
The constant only depends on the δ in our model. Moreover, our
protocols can self-stabilize even if some of the nodes show arbi-
trary adversarial behavior. We only require the honest nodes that
are outside a certain range of the adversarial nodes to be placed so
that they can in principle form a single connected component. So
our protocols would even work for very primitive devices in hostile
environments.

Constant density dominating set
Given an undirected graph G = (V,E), a subset U ⊆ V is called
a dominating setif all nodes v ∈ V are either in U or have an edge
to a node in U . A dominating set U is called connectedif U forms
a connected component inG. The densityof a dominating set is the
maximum over all nodes v ∈ U of the number of neighbors that v
has in U .

Given an arbitrary distribution of a set V of nodes in a 2-dimen-
sional Euclidean space, let the graph Qr = (V,Er) contain all
edges {v, w} with d(v, w) ≤ r. Suppose that we select a maxi-
mal independent set U in Qr. Then this is also a dominating set
of constant density because in the 2-dimensional Euclidean space a
node can have at most five neighbors within a distance of r that are
part of an independent set in Qr [3]. Note that a constant density
dominating set is also a constant factor approximation of a mini-
mum dominating set, a well-studied problem in the algorithms and
wireless networking community.

Now, let us consider the graph Gr = (V,E′
r) that contains all

edges {v, w} such that c(v, w) ≤ r. Since c(v, w) ≤ (1 + δ)
d(v, w), it follows from [3]:

FACT 1.1. Every nodev can have at most five neighbors within
a Euclidean distance ofr/(1 + δ) that are part of an independent
set inGr.
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Otherwise, there must be a pair v, w ∈ V with c(v, w) ≤ (1 +
δ)d(v, w) ≤ (1 + δ) · r/(1 + δ) = r that are in an independent
set in Gr , a contradiction. Furthermore, because c(v, w) ≥ (1 −
δ)d(v, w), a node can only be connected in Gr to nodes up to a
Euclidean distance of r/(1 − δ). Hence, it is easy to see that for
every node v there is a set Cv of neighbors of v in Gr of constant
size so that for every neighbor w of v in Gr there is a neighbor
w′ ∈ Cv with d(w,w′) ≤ r/(1+δ). Combining this with Fact 1.1,
we get:

FACT 1.2. For any independent set inGr it holds that every
nodev in Gr can have at most a constant number of neighbors in
this set, where the constant depends onδ.

Now, recall that any maximal independent set in a graph Gr is
also a dominating set in Gr , and according to the fact above, any
maximal independent set in Gr has a constant density (i.e., every
node only has a constant number of neighbors in that set). Hence,
in order to obtain a dominating set of constant density, it suffices
to design an algorithm that constructs a maximal independent set in
Gr . It turns out that constructing such a set is quite tricky, given the
uncertainties in our model, but we can construct something close to
that so that the following result holds.

THEOREM 1.3. For any desired transmission ranger and any
initial situation, the dominating set protocol generates a constant
density dominating set inGr in O(log4 n) communication rounds,
with high probability.

Hence, our protocol self-stabilizes within O(log4 n) rounds. In-
terestingly, this result is only possible because our protocol uses
physical carrier sensing. It is known that if physical carrier sens-
ing is not available and the nodes have no estimate of the size of
the network, then it takes Ω(n) steps on expectation for a single
message transmission to be successful [17] in any protocol.

Constant density spanner
A subgraph H of a graph G is called a (topological)t-spannerof
G if for every pair of nodes v, w in G there is a path in H from v
to w whose length is at most t times the minimum length of a path
from v to w in G. In this case, t is also called the stretch factorof
H .

We then extend the dominating set protocol by additional pro-
tocols that connect the nodes in the dominating set via so-called
gateway nodes so that the following result holds.

THEOREM 1.4. For any desired transmission ranger and any
initial situation, the spanner protocol generates a constant den-
sity spanner inGr in O(D logD log n + log4 n) communication
rounds, with high probability, whereD is the maximum number of
nodes that are within the transmission range of a node.

All of our protocols can self-stabilize even under adversarial be-
havior as long as the nodes outside a range of r′ = Θ(r) of adver-
sarial nodes form a connected component in Gr .

1.3 Previous work
The problem of finding a minimum dominating set has been

shown to be NP-complete even when restricted to unit disk graphs
[7] and, hence, approximation algorithms are of interest. Recent re-
search focused on developing distributed (rather than centralized)
algorithms for finding good approximations of minimum dominat-
ing sets in arbitrary graphs (see, for example, [9, 16, 20]). A simple
and elegant distributed approximation algorithm was proposed by
Luby [27].

Alzoubi et al. [4] presented the first constant approximation algo-
rithm for the minimum connected dominating set problem in unit-
disk graphs withO(n) and O(n log n) time and message complex-
ity, respectively. Cheng et al. [5] proposed a polynomial time ap-
proximation scheme for the connected dominating set problem in
unit-disk graphs.

Huang et al. [15] formally analyze a popular algorithm used for
clustering in ad-hoc mobile network scenarios. They show that this
algorithm actually gives a 7-approximation for the minimum domi-
nating set problem in unit-disk graphs, while adapting optimally to
the mobility of the nodes in the network.

Recently, Kuhn et. al. [19] presented a distributed algorithm that
computes a constant factor approximation of a minimum dominat-
ing set in O(log2 n) time without needing any synchronization but
it requires that nodes know an estimate of the total number of nodes
in the network. In [29], Parthasarathy and Gandhi also present dis-
tributed algorithms to compute a constant factor approximation to
the minimum dominating set. The running time of their algorithm
depends on the amount of information available to the nodes, and
nodes have to know an estimate of the size of the network. Both
papers extend the unit disk model taking into account signal inter-
ference.

Spanners
Suppose that we have a set of nodes V that are distributed in an
arbitrary way in a Euclidean space. For v, w ∈ V , let d(v, w denote
the Euclidean distance between v and w. The goal of the geometric
spanner problem is to find a graphG = (V, E) so that for each pair
of nodes v, w ∈ V there is a path in G from v to w whose length
is at most t · d(v, w) for some fixed constant t. In this case, G is
called a geometrict-spannerof G where t is the stretch factor.

For geometric spanners, several structures have been proposed.
Geometric spanners based on the Delaunay triangulation have been
studied, e.g., [11, 24, 33]. Spanners based on the Yao graph [36]
and Gabriel graph [10] are presented in [25, 35, 32].

For topological spanners, Dubhashi et. al. [9] presented a span-
ner with logarithmic stretch factor. Alzoubi et. al. [2] presented a
spanner with constant stretch factor of 5 where the protocol is very
similar to ours but uses a high-level model for wireless networks.

Our protocol for selecting gateway nodes also has similarities to
the protocols presented in [34, 11]. However both these papers are
based on high-level wireless models.

1.4 Structure of the paper
We start with an overview of our protocol for the constant density

spanner problem. This protocol consists of three phases. A detailed
description and analysis of phase I is given in Section 3, which also
proves Theorem 1.3. Phases II and III are described and analyzed
in Sections 4.1 and 4.2. The paper ends with possible extensions
and open problems.

2. OVERVIEW OF SPANNER PROTOCOL
In the following, rt denotes the desired transmission range and

Grt represents the graph with node set V and edge set Ert con-
taining all edges {v, w} with c(v, w) ≤ rt.

Our spanner protocol for Grt consists of 3 phases:

• Phase I: The goal of this phase is to construct a constant den-
sity dominating set in Grt . This is achieved by extending
Luby’s algorithm [27] to our more complex model. Since
the dominating set resulting from phase I may not be con-
nected, we need further phases to obtain a constant density
spanner.
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Phase I Phase IPhase III Phase III

Phase II Phase II

Round

Figure 2: Two consecutive rounds of the spanner protocol.

• Phase II: The goal of this phase is to organize the nodes of the
dominating set of phase I into color classes that keep nodes
with the same color sufficiently far apart from each other.
Only a constant number of different colors is needed for this,
where the constant depends on δ. Every node organizes its
rounds into time frames consisting of as many rounds as there
are colors, and a node in the dominating set only becomes
active in phase III in the round corresponding to its color.

• Phase III: The goal of this phase is to interconnect every pair
of nodes in the dominating set that is within a hop distance
of at most 3 inGrt with the help of at most 2 gateway nodes,
using the coloring determined in phase II to minimize inter-
ference problems. Constructions using gateway nodes were
also presented in [11, 34] but assuming a higher level model
of wireless networks.

Each phase has a constant number of time slots associated with
it, where each time slot represents a communication step. Phase I
consists of 3 time slots, phase II consists of 4 time slots, and phase
III consists of 4 time slots. These 11 time slots together form a
roundof the spanner protocol (see also Figure 2). We assume that
all the nodes are synchronized in rounds, that is, every node starts
a new round at the same time step. As mentioned earlier, this may
be achieved via GPS or beacons.

The spanner protocol establishes a constant density spanner by
running sufficiently many rounds of the three phases. All of the
phases are self-stabilizing. More precisely, once phase I has self-
stabilized, phase II will self-stabilize, and once phase II has self-
stabilized, phase III will self-stabilize. In this way, the entire algo-
rithm can self-stabilize from an arbitrary initial configuration.

It is not difficult to see that our spanner protocol results in a 5-
spanner of constant density: Consider any pair of nodes s and t in
Grt and let p = (s = v0, v1, . . . , vk = t) be the shortest path from
s to t inGrt . Then we can emulate p via the connected dominating
set by first going to a leader $0 of s, then (possibly via gateway
nodes) to a leader $1 of v1, then to a leader $2 of v2, and so on,
until we reach a leader $k of t, and finally to t. The length of this
path is at most 3k + 2 ≤ 5k for every k ≥ 1. Combining this with
the time bounds shown for the various phases in the sections below
results Theorem 1.4.

An important feature of our protocol is that all messages sent
are of constant length and the nodes only have to have a constant
amount of storage, irrespective of the density of the network. We
just need the assumption that a storage unit is large enough to store
the ID of a node. Hence, our protocol can be used with very simple
devices such as sensors.

3. PHASE I: DOMINATING SET
Let P be some fixed transmission power with transmission range

rt and interference range ri for which we want to construct a dom-
inating set of constant density. That is, given any set of nodes V ,
we want to find a subset U ⊂ V of nodes so that every node v ∈ V

Legend:

Inactive node

Gateway 

Other edges 

Gateway node

Active Node

Figure 3: The spanner of the original network.

has at least one node w ∈ U with c(v, w) ≤ rt and at most some
constant number of nodes w ∈ U with c(v, w) ≤ rt.

As mentioned earlier, if we want to reach the goal above in a
sub-linear number of steps without physical carrier sensing, then
a good approximation of log n is needed, where n = |V |. Since
our goal is to arrive at a dominating set without using any prior
knowledge of the network topology, physical carrier sensing has to
be used, which complicates the design as it has uncertainties (see
our model). To handle these uncertainties, we use a distributed
coloring strategy together with two different sensing ranges.

In our protocol, nodes can either be activeor inactive. The active
nodes are the candidates for the dominating set. The nodes use two
different sensing thresholds, depending on their state. The sensing
threshold Ta has a CSI range of rt and the sensing threshold Ti has
a CST range of ri. To distinguish between these ranges, we speak
about an aCST/aCSI-range whenever we mean Ta and iCST/iCSI-
range whenever we mean Ti.

Each node cuts the time into time framesof k roundseach for
some constant number k that is the same for every node. The
rounds are synchronized among the nodes but we do not require
the frames to be synchronized.

Initially, all nodes are inactive. Afterwards, each node executes
the following protocol in each round. In this protocol, each active
node has exactly one, fixed active round in a frame and a signal is
just a very simple message. Each item represents a communication
step.

1. If v is active and in its active round, then v sends out an
ACTIVE signal.

If v is inactive and v did not sense any ACTIVE signal for the
last k rounds using a sensing threshold of Ta, v senses with
threshold Ti, and if it does not sense anything, it becomes
active and declares the current round number as its active
round. If v did sense some ACTIVE signal in one of the
last k rounds, it just performs sensing with threshold Ta and
records the outcome.

2. If v is active and is in its active round, then v sends out a
LEADER message containing its ID with some fixed prob-
ability p (determined later). If v decides not to send out
a LEADER message but it either senses a LEADER mes-
sage with threshold Ta or receives a LEADER message, v
becomes inactive.

In the following, let Hr,k = (V,E) be an undirected graph that
contains an edge between two nodes v and w if and only if v and w
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are active and use the same active round (or color) k and c(v, w) ≤
r. A node v is called a leader if it is active and there is no other
active node w of the same color with c(v, w) ≤ rt. Since inactive
nodes sense with an iCST range of ri before they become active,
none of the inactive nodes w with c(v, w) ≤ ri will become active
in the active round of v. Hence, we get:

FACT 3.1. At any time, the set of leader nodes forms an in-
dependent set inHrt,k that is disconnected from all other active
nodes inHrt,k.

In addition, a leader node uses an aCSI range of rt and will there-
fore not be affected by nodes outside of a range of rt. Hence, we
arrive at the following fact.

FACT 3.2. Once a node becomes a leader, it will stay a leader
as long as the cost functionc does not change.

Furthermore, an inactive node v can only become active if in the
previous k rounds there was no active node w with c(v, w) ≤ rs,
where rs is the CST range for threshold Ta, because otherwise v
would have sensed the ACTIVE signal of w in one of these rounds.
Hence, we also get:

FACT 3.3. There cannot be two leadersv andw with c(v, w) ≤
rs.

Since rt/rs is a constant, the facts above and Fact 1.2 imply that
the leaders must form a set of constant density inGrt . On the other
hand, the following lemma is true.

LEMMA 3.4. In any situation in which all active nodes are lead-
ers but the leaders do not form a dominating set with respect toGrt ,
at least one inactive node will eventually become active.

PROOF. From Facts 1.2 and 3.3 it follows that there can be at
most some constant number k′ of leaders within the iCSI range of
any node. Hence, if k > k′ then for every inactive node that does
not yet have a leader within its transmission range there must be at
least one round s in which there is no leader within its iCSI range.
Because the inactive node will continue to explore potential active
rounds in a round-robin fashion as long as it senses a transmission
with threshold Ti, it will eventually arrive at round s and become
active (unless some other inactive node close to it becomes active
before that).

On the other hand, the following result is easy to check.

LEMMA 3.5. Every connected component of active nodes in
Hrt,k results in at least one leader.

Thus, the algorithm eventually arrives at a situation where there
is no inactive node that does not have a leader within its transmis-
sion range. At that point, the leaders must form a superset of a
maximal independent set inGrt . Thus, according to Facts 1.2, 3.3,
and 3.2 the leaders eventually form a static dominating set of con-
stant density. It remains to prove how much time is needed to reach
such a state.

THEOREM 3.6. If all nodes are initially inactive, afterO(log4 n)
rounds of the algorithm, the leaders form a static dominating set of
constant density with respect toGrt , with high probability.

PROOF. The next two lemmata state important properties of con-
nected components of active nodes in Hrt,k. Notice that a leader
always represents a connected component by itself.

LEMMA 3.7. At any time stept, Hrt,k consists of connected
components of active nodes where all nodes in a connected compo-
nent were reactivated at the same round.

PROOF. Suppose that there are two adjacent nodes, v and w, in
some active, connected component in Hrt,k that were not reacti-
vated at the same round. W.l.o.g. let v be the first node that became
active. Then w could not have become active because v is in its
iCST range, leading to a contradiction.

For the next lemma, given an active node v, we define ls(v) as
the bit sequence in which the ith bit is 1 if and only if v sent out a
LEADER message in round i since it joined its current component.
ls(v)i denotes the first i bits of ls(v).

LEMMA 3.8. Every connected component of active nodes in
Hrt,k needs at mostO(log n) rounds, w.h.p., until every node in
it either becomes inactive or becomes a leader.

PROOF. Consider any connected component C of active nodes in
Hrt,k at some time point t0, and let C′ be the union of the con-
nected components of active nodes in Hrt,k that have at least one
node within the interference range of a node in C.

Whenever a node becomes active after t0, it cannot interfere with
the remaining nodes in C because it will be guaranteed to be out-
side of their interference range (and therefore also of their aCSI
range). Hence, we only need to focus on the remaining active nodes
in C ∪ C′.

We prove the lemma in two steps. First, we show that it only
takes O(log n) rounds, w.h.p., until there are no two active nodes
v and w in C ∪ C′ where w is within the aCST range of v or vice
versa. Then we show that it only takes O(log n) further rounds,
w.h.p., until there are no two active nodes v and w in C that are
within the transmission range of each other.

The probability that for any two fixed, active nodes v and w it
holds that ls(v)i = ls(w)i is equal to pi. Hence, if i = c log1/p n,
then the probability that there are two nodes v and w in C ∪ C′

with ls(v)i = ls(w)i that are within their aCST range is at most
n2/pc log1/p n = n2−c. Thus, the probability that after c log1/p n

rounds there are still two nodes within the aCST range in C ∪ C′

that are both active is polynomially small in n for c > 2.
Hence, after O(log n) rounds, there can only be at most some

constant number d of active nodes within the interference range of
any active node in C, where d depends on the ratio between the
interference range and the aCST range. Thus, when choosing p =
1/d, then the probability that exactly one of the active nodes within
the interference range of an active node v in C is transmitting a
LEADER message in a round is Θ(p). Therefore, it takes at most
O((1/p) log1/p n) = O(d logd n) rounds until for every node v in
C that is still active there is no other active node in the transmission
range of v, with high probability.

Next we give a lower bound on the number of leaders that emerge
from a connected component of active nodes inHrt,k. For the rest
of the proof, we assume w.l.o.g. that rt = 1 and ri = 1 + α for
some constant α > 0. We define the area covered by an active node
v as the area that is within the transmission range of v.

LEMMA 3.9. For any time step in which the currently existing
connected components of active, non-leading nodes cover an area
of A = Ω(log3 n), the number of leaders emerging from these
components isΩ(A/ log2 n), w.h.p.

PROOF. Consider any set C of connected components of active,
non-leading nodes that cover an area of A. Given any node v, let
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Γ(v) denote the set of nodes w ∈ C with c(v, w) ≤ 1 and let
γ(v) = |Γ(v)|. Let H be the directed graph resulting from C by
connecting two active nodes v and w by an edge (v, w) if and only
if c(v, w) ≤ 1 and γ(w) ≥ 2γ(v). A node is called a sink if it
does not have any outgoing edges. H has the following important
property:

CLAIM 3.10. Every nodev in H has a directed path to a sink
s of length at mostlog n.

PROOF. First of all, H cannot contain a directed cycle. Thus,
every directed path must eventually end in a sink. Suppose now
that some node v has a directed path p to a sink s of length more
than log n. Because of the definition of the edges, it follows that
γ(s) ≥ 2k · γ(v) > n · γ(v), which cannot happen because there
are only n nodes in the system.

Recall that our cost function must satisfy c(v, w) ∈ [(1 − δ)
d(v, w), (1+ δ)d(v, w)]. Thus, if we consider disks of radius (1+
log n)/(1 − δ), around the sinks of H , then the complete area A
of active, non-leading nodes is covered. To extract out of all sinks
a set of sinks useful for our analysis below, we consider these sinks
one by one. For each sink s that has not already been eliminated,
eliminate all sinks s′ that are of distance at most 4 from s and add
s to a set S. At the end, we arrive at a set S of sinks of pairwise
distance at least 4 such that disks of radius r = (5+logn)/(1−δ)
around these sinks cover the entire area A. Thus, the area A can be
decomposed into areas of size at most a = πr2 each containing a
sink in S, and therefore |S| ≥ |A|/a. It is not difficult to show that
these sinks have the following property:

CLAIM 3.11. For any sinks ∈ S, the expected number of ac-
tive nodes inΓ(s) that become a leader isΘ(1).

For any sink s, let the random variable Xs denote the number
of active nodes in Γ(s) that become leaders and let X =

P
sXs.

From Claim 3.11 it follows that E[X] ≥ α|S| for some constant
α > 0, and because the distance between any two sinks in S is
at least 4, the Xs variables are independent. Thus, we can use
Chernoff bounds to obtain

Pr[X ≤ (1− ε)α|S|] ≤ e−ε2α|S|/2

for any ε > 0. This is polynomially small if ε = 1/2 and |S| =
Ω(log n) is sufficiently large. Hence, in this case,

Pr [X ≤ α|S|/2] = Pr

»
X ≤ α|A|

2πr2

–

is polynomially small, which completes the proof of the lemma.

Now, let us call a node unfinishedif it is active but not a leader
or it is inactive and it does not have a leader within its transmission
range. We know that an unfinished node is either active or must
have at least one node within its iCSI range, rii, that was active
within the previous k rounds (because otherwise it would become
active). Hence, when drawing disks of radius rii/(1 − δ) around
all nodes that were active in at least one of the k previous rounds,
the entire area that the nodes can transmit messages to is covered.

Let A0 be the area covered by the transmission ranges of all the
nodes in the system. If A0 = Ω(log3 n), then Lemma 3.8 and
Lemma 3.9 imply that after O(log n) rounds, the area covered by
the unfinished nodes is at most

A0 − c · A0

log2 n
=

„
1− c

log2 n

«
A0

for some constant c, with high probability. Thus, after k stages of
O(log n) rounds each, the area covered by the unfinished nodes is
at most „

1− c

log2 n

«k

A0 ≤ e(c·k)/ log2 nA0 ,

with high probability. The right hand side is less than log3 n if k ≥
(logA0)(log

2 n)/c. Once an area of size O(log3 n) is reached, it
follows from Lemma 3.5 that it takes only O(log3 n) more stages
of O(log n) rounds each until there are no unfinished nodes any
more. Since A0 = O(n), it follows that the total runtime needed
for the set of active nodes to stabilize is O(log4 n).

The dominating set algorithm can be easily extended so that it
self-stabilizes [8] and it is robust against malicious behavior. Self-
stabilization means that it can recover from any initial configura-
tion.

3.1 Self-stabilization
An extra rule is necessary to provide self-stabilization because

if the protocol above starts in a configuration violating Fact 3.3, it
may not succeed in establishing a dominating set.

Consider adding a third step to each round of the protocol above.
In this step, every active node sends a leader message with proba-
bility p and a transmission power so that its transmission range is
only equal to the aCST range. Adding now the rule that whenever
an active node receives a leader message in that step for a round
different from its active round, then it becomes inactive, we do not
have to assume anything about how the nodes are initially activated
in order to satisfy Fact 3.3. So we get:

COROLLARY 3.12. For any initial situation, the extended pro-
tocol needs at mostO(log4 n) rounds to arrive at a static dominat-
ing set of constant density with respect toGrt , w.h.p.

3.2 Robustness
Our dominating set algorithm is also highly robust against adver-

sarial nodes. For any node v, let the r1 ⊕ r2-range of v be defined
as the union of the r2-ranges of all the nodes within the r1-range
of v. Given any distribution of nodes, let A be the area covered
by the rii ⊕ rt-ranges of adversarial nodes, where rii is the iCSI
range of a node. Because in our protocol adversarial nodes can di-
rectly influence only nodes within their iCSI range, nodes beyond
the rt range of these nodes can only have leaders outside of A, and
leaders outside of A will stay leaders forever, one can show:

COROLLARY 3.13. If the honest nodes outsideA are connected
in Grt , then afterO(log4 n) rounds, the active honest nodes out-
sideA form a dominating set of constant density with respect to
Grt , w.h.p.

4. CONSTANT DENSITY SPANNER
In the next two subsections, we describe phases II and III in de-

tail. We use the following notation. The constant d1 refers to the
number of active nodes that are within the interference range ri of
any node. The constant d2 refers to the number of active nodes that
are within the ri ⊕ ri-range of any node, and the constant g refers
to the maximum number of required gateway connections for any
active node. Finally, D refers to the density of the network, i.e.
the maximum number of nodes within the transmission range of a
node.
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4.1 Phase II - Distributed Leader Coloring
Similar to phase I, each node organizes the time into time frames

consisting of cd1 rounds for some constant c that is the same for
every node. Also here, the rounds are synchronized but frames do
not have to be synchronized among the nodes. We again assign
active nodes to distinct rounds using a coloring mechanism. While
the coloring in phase I was done with respect to Grt , we now need
a coloring of the active nodes with respect to Gri⊕ri , that is, we
need the active nodes to be at least ri ⊕ ri apart in order to receive
the same color.

Every active node from phase I tries to own one of the rounds.
An active node u is said to own a round if no other active node
within its ri ⊕ ri range is using that round. Active nodes are in
one of the states {owner, volatile}. An active node is in owner
state if it already owns a round and is in volatile state if it is still
trying to own a round. Active nodes in owner state always send
their ID in the first time slot of their round. Initially, every active
node is volatile. Active nodes in volatile state choose an active
round from the cd1 possible rounds uniformly at random. Active
nodes in owner state use a sensing threshold To with CST range ri
and active nodes in volatile state use a sensing threshold Tv with a
CST range being equal to the CSI range of To, rii.

Active nodes do the following repeatedly. Every time a node re-
activates, it sets its time stamp to 0. This time stamp is used by
active nodes in Phase III to compare entries.

1. Every active node in owner state that is in its active round
sends out a LEADER message containing its ID and its cur-
rent time stamp and increases its time stamp by one after-
wards.

2. Every active node in owner state that is in its active round de-
cides with probability 1/2 to send out an OWNER message
either in the first or second substep of step 2.

3. Every inactive node that sensed a LEADER message with
threshold Tv sends out a BUSY signal. Every active node in
volatile state that senses a BUSY signal in its active round
chooses a new active round uniformly at random.

4. Every inactive node that sensed OWNER messages in both
substeps of step 2 with threshold To sends out a COLLISION
signal.

If an active node in owner state senses a COLLISION sig-
nal and sent an OWNER message in the second substep, it
changes into volatile state and chooses a new active round
uniformly at random.

If an active node in volatile state did not sense a BUSY or
COLLISION signal in its active round, it becomes an owner.

It is not difficult to show the following result:

THEOREM 4.1. Once a stable set of active nodes is available,
it holds: If c ≥ 4, then all active nodes will be in owner state after
O(log n) rounds of the protocol, w.h.p.

The theorem implies that after O(log n) rounds, all active nodes
have chosen rounds so that for any two active nodes $ and $′ with
the same round and any inactive node v within the interference
range of $, $′ is outside of the interference range of v. Hence, $
can transmit messages to nodes within its transmission range with-
out interference problems, and these nodes can transmit messages
to $ without causing interference problems at $. Both properties are
important for phase III to work correctly.

Without the two types of signals BUSY and COLLISION and
the two different sensing thresholds the coloring achieved may fail
to be ri ⊕ ri distinct. For any active node $ in volatile state, the
threshold Tv and the BUSY signal helps to identify the presence of
active nodes in owner state with the same active round so that ac-
tive nodes in owner state without another active node in owner state
within the rii ⊕ rii-range will also keep this property in the future
and are therefore safe from becoming volatile again. The COLLI-
SION signal is necessary to resolve conflicts among close by active
nodes in owner state with the same active round, which can hap-
pen if volatile nodes become an owner in the same round, or this
may be part of the initial state when looking at self-stabilization. In
any case, the monotonicity assumption on the sensing in our model
is important to make sure that there will either never be a conflict
among owner nodes or immediately a conflict when a collision is
detected.

4.2 Phase III - Gateway Discovery
In this section we describe the protocol for phase III. The goal of

this phase is for the active nodes from Phase I to discover gateway
connections to other leaders that are within a hop distance of at
most 3 in Grt .

During this phase, the active nodes use an aCST range of rt.
The active nodes use the rounds reserved in phase II to achieve
interference-free communication with the inactive nodes within their
transmission range. Each round consists of four time slots for com-
munication in phase III, where each time slot represents a commu-
nication step as shown in Figure 2. In the first time slot, inactive
nodes send CLIENT messages and in the second time slot the ac-
tive node sends a response accordingly; in the third and fourth time
slots, an inactive node u may broadcast to its (active and inactive)
neighbors all the information it has regarding possible gateways be-
tween the leader owning the reserved round and other leader nodes
it has heard about. For simplicity, we assume that all active nodes
are reactivated at the same time and hence that we can directly com-
pare the time stamps with respect to the different active nodes. In
reality, each inactive node u would keep track of the offsets of the
(constant number of) time stamps it receives (in the corresponding
slots allocated to the different leaders in phase II) and use these
offsets when comparing time stamps from different leaders.

We first describe the data structures that are maintained during
this phase. Each inactive node u maintains a cache, called Pu,
which has entries of the form ($, v, t�) where $ is an active node, v
is an inactive node (with u = v possibly), and t� is the time stamp
with respect to $ at which the entry ($, v) is added to Pu. When
comparing entries in the cache, a ∗ acts as a wild card that matches
any value. The operation enqueue($, v, t�) on Pu is used to add the
new entry ($, v, t�) to Pu. Enqueueperforms the following checks
before actually adding the new entry to Pu. When adding a new en-
try ($, v, t�), any entry of the form ($, ∗, t′) with t′ < t� is evicted.
If no such entry exists and Pu is full, then the least recently added
entry (∗, ∗, t′), that is t′ = min{t|t < t� and (∗, ∗, t) ∈ Pu}, is
evicted to make room for the new entry. The cache Pu has space
enough to store a constant, d2, number of entries. Inactive nodes
also maintain a state that is either awakeor asleepwith respect to
each active node that is within their transmission range. The asleep
nodes just listen the channel and becomes awakewhen they receive
a FREE or a ACK message.

Each active node $ maintains a list, called G�, and each entry
in G� contains two fields. The first field has gateways represented
as quadruples of the form ($, u, v, $′) where $′ �= $ and u = v
possibly, $′ is an active node and u, v are inactive nodes. The sec-
ond field contains the time stamp t� at which the entry was added
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to G�. The operation enqueueon G� is used to add a new entry
(($, u, v, $′), t�) to G�. Before adding the new entry (($, u, v, $′), t)
to G�, any entry of the form (($, ∗, ∗, $′), t′) is evicted from G� for
t′ < t. If the list G� is full, then the entry corresponding to t′ such
that t′ = min{t′′|t′′ < t and (($, ∗, ∗, $′), t′′) ∈ G�}, that is the
entry of G� with smallest time stamp, is deleted to make room for
the new entry. (Similar to enqueueon Pu for inactive node u). The
list G� has space enough to store a constant, g, number of entries.

In the following, $ refers to the ID of the active node that owns
the current slot and u is an inactive node that received the ID mes-
sage from $ and the state of u is with respect to $.

1. If u is awake then u sends out a CLIENT message of the
form 〈CLIENT, $, u〉 with probability 1/2.

2. Node $ responds with a reply in the next time slot which can
be of three forms. If $ receives a CLIENT message from node
u then $ adds u to N� by calling enqueue(u) and also sends
an acknowledgment containing the ID of u as 〈$,ACK, u〉.
If $ only senses a busy channel but does not receive any mes-
sage, then $ sends a collision message of the form 〈$,COL−
LISION〉. If $ does not receive any message and also does
not sense a busy channel, the $ sends a free channel message
of the form 〈$,FREE〉.
If u is awake and decided not to send a CLIENT message
in the previous slot and receives a collision message then u
goes to asleep state. If u is asleep and receives a free channel
or an acknowledgement message then u becomes awake.

3. If u is awake and receives an acknowledgment containing the
ID of u then u will store ($, u, t�) in Pu, where t� is the cur-
rent time stamp associated with $, by calling enqueue($, u, t�).

Node u also deletes any entries of the form (∗, $) from Pu

(since $ is no longer inactive). Node u then broadcasts, in the
third time slot, a message 〈ADV, $, u, t�〉 to its neighbors.

4. Node u builds one GATEWAY message containing all quin-
tuples of the form (($, u, vj , $j), t) for each j such that $j �=
$ with ($j , vj , tj) ∈ Pu, where t = min{t�, tj}, and sends
the message to its neighbors. The GATEWAY message is
sent in the fourth time slot.

If v is not active and received an ADV message 〈ADV, $, u, t�〉
then it calls enqueue($, u, t�) on Pv . Node v also deletes any
entries of the form (u, ∗) or (∗, $) from Pv (as u is no longer
an active node nor is $ inactive).

If $ is active and receives a GATEWAY message containing
(($, u, v, $′), t), then $ stores (($, u, v, $′), t) in G� by calling
enqueue(($, u, v, $′), t).

Before we analyze the protocol, we start with the following fact,
which follows from the observation that a necessary condition for
an inactive node u to transmit in step 3 and step 4 is to receive an
ACK from an active node in step 2.

FACT 4.2. During steps 3 and 4 of the protocol there are at
most a constant numberd1 of nodes that are transmitting any mes-
sage.

Using this fact, we can prove the following theorem.

THEOREM 4.3. In O(D log n logD) rounds, each active node
learns about a gateway to each of the currently active nodes in its
3-neighborhood with respect toGrt , w.h.p.

PROOF. We prove the convergence of phase III to a set of valid
gateway connections in O(D log n logD) rounds after phase I and
phase II have reached a stable state. Since, at that point the active
nodes have reserved rounds that are distinct within the ri⊕ri range,
we can treat the actions of active nodes independent of each other.

Let (v, $) be an inactive node-active node pair such that v has to
send a CLIENT message to $. Node v has at most O(D) inactive
nodes in its interference range sending a CLIENT message to some
leader node. If more than one node in awake state, with respect to
$, decides to send a CLIENT message, then $ will send a collision
message. Since the collision message will be received by the inac-
tive nodes, within rt range of $, awake nodes that decided not to
send a CLIENT message to $ in the previous slot will go to asleep
state.

Consider time to be partitioned into groups of consecutive rounds
such that each group ends with a round where the active node $
sends either an ACK message or a FREE message. (A group end-
ing with an ACK message signifies a successful group and a group
ending with a FREE message is a failed group). Notice that at the
end of every group, whether successful or not, all the inactive nodes
within the rt range of $ go to awake state (by step 2 of the protocol).

It is not difficult to show that the expected number of rounds
in each group, successful or failed, is O(logD) and any group is
successful with constant probability. Due to symmetry reasons any
inactive node is equally likely to be send a CLIENT message in a
successful group. Thus, during any successful group, for a given
pair (v, $) ,

Pr[ v sends a CLIENT message successfully to $] ≥ 1/cD

for some constant c > 1.
Using Chernoff bounds, for any given pair (v, $) the probability

that it takes more than Dk groups so that v sends a CLIENT mes-
sage to $ successfully will be polynomially small for k = O(log n).
It can also be shown that each group hasO(logD) rounds not only
on expectation but also with high probability. Thus any node v
requires at most O(D log n logD) rounds to send a CLIENT mes-
sage to $ successfully w.h.p.

To proceed further, let $ and $′ be active nodes, with d($, $′) ≤ 3
and let ($, u, v, $′) be a gateway between $ and $′. Notice that once
$ and $′ receive CLIENT messages from u and v respectively, $
and $′ can establish a gateway connection between them as suc-
cessful CLIENT messages are followed by ADV and GATEWAY
messages in the next time slots reserved for this phase. Without
loss of generality, we assume that u sends the ADV message that v
receives and adds the entry ($, u, v, $′) to the GATEWAY message
that v sends. Along with Fact 4.2 it holds that during every group
the probability that u gets an ACK message and sends the ADV
message is ≥ 1/c′D for a constant c′ > 1. And similarly the prob-
ability that v gets an ACK message from $′ and sends a GATEWAY
message is ≥ 1/c′D. Thus, in each group,

Pr[$ and $′ discover a gateway connection] ≥ 1/c′′D

for some constant c′′ > 1. Using calculations similar to the above,
it holds that $ and $′ can establish a gateway connection inO(D log n
logD) rounds w.h.p.

Note that, after phase II stabilizes and after we let phase III run
for O(D log n logD) time steps, time stamping will be enough to
guarantee that we will always keep information received at a leader
node $ about a valid gateway connection between leader nodes $
and $′, if at least one such connection exists (since we have at most
a constant number of leader nodes within cost 3rt from any given
leader node, and since we have at most a constant number of leader
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nodes adjacent to any inactive node, constant size Pu and G� lists at
inactive nodes u and active nodes $ respectively will suffice).

5. FUTURE WORK
We feel that our model provides a realistic model for wireless

communication and it would therefore be highly interesting to see
how algorithms in our model perform in practice. Also, it would
be very interesting to develop protocols for other problems on top
of our wireless model (e.g. broadcasting and service discovery), in
particular, protocols that can self-stabilize under adversarial influ-
ence.
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