
On Acyclic Vertex Coloring of Grid like graphs

Bharat Joshi and Kishore Kothapalli

{bharatj@research., kkishore@}iiit.ac.in

Center for Security, Theory and Algorithmic Research

International Institute of Information Technology, Hyderabad, India

Abstract

d-dimensional partial tori are graphs that can be expressed as cartesian product of d

graphs each of which is an induced path or cycle. Some well known graphs like d-dimensional
hypercubes, meshes and tori are examples belong to this class. Muthu et al.[MNS06] have
studied the problem of acyclic edge coloring for such graphs. We try to explore the acyclic
vertex coloring problem for these graphs. In this respect, we provide coloring schemes to
acyclically color a few basic graphs of this class such that at least one of the factor graphs is
an induced cycle. Some of our schemes are optimal while others are close to optimal.
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1 Introduction

A graph coloring is said to be proper if no two adjacent vertices have been assigned the same
color. A coloring of a graph is said to register a bichromatic cycle if there exists a cycle in the
graph such that all the vertices in that cycle are colored with only two colors. A vertex coloring
of a graph is said to be acyclic if there does not exist any bichromatic cycle. In other words, the
subgraph induced by any two color classes is acyclic. That is, it is a disjoint collection of trees,
or a forest. The smallest number of colors needed to acyclically color the vertices of a graph is
called its acyclic chromatic number, and is denoted by a(G).

Acyclic colorings were introduced by Grünbaum[Grü73] in 1973 with a special emphasis on
planar graphs. He conjectured that any planar graph can be acyclically vertex colored with 5
colors. This conjecture was later proved by Borodin[Bor06]. Determing the acyclic chromatic
number is a hard problem from both a theoretical and an algorithmic point of view. More
specifically, A.V. Kostochka proved in 1978 in his thesis that it is an NP-complete problem to
decide for a given G and k if the acyclic chromatic number of G is at most k, even for k = 3
[Kos78]. It is NP-complete even when restricted to the class of bipartite graphs [CC86]. Even for
highly structured class of complete graphs, the value of a′(G) is still not determined. Alon and
Zaks proved that it is NP-complete to determine if a′(G) ≤ 3 for an arbitrary graph G[AZ02].

1.1 Notations

We use several notations as used in [MNS06]. We recap them here briefly. Pk is used to denote
a simple path on k vertices such that V (Pk) = {0, . . . , k − 1} and E(Pk) = {(i, j) : |i − j| = 1}.
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Similarly, Ck is used to denote a cycle on k vertices such that V (Ck) = {0, . . . , k − 1} and
E(Ck) = E(Pk) ∪ (k − 1, 0). PATHS denotes the set {P2, P3, . . .} of all paths on 2 or more
vertices. Similarly, CYCLES denotes the set {C3, C4, . . .} of all cycles. Rest of the notations
are standard graph theory notations [Wes01], such as a Kn represents a complete graph on n

vertices.

1.2 Graph Factorization

Given two graphs G1 = (V1, E1) and G2 = (V2, E2), the cartesian product of G1 and G2, denoted
by G1�G2, is defined to be the graph G = (V,E) where V = V1 × V2 and E contains the edge
joining (u1, u2) and (v1, v2) if and only if either u1 = v1 and (u2, v2) ∈ E2 or u2 = v2 and
(u1, v1) ∈ E1.

Note that the graph product operation is commutative i.e. G1�G2 and G2�G1 are isomor-
phic. They are similarly associative. Hence, the graph G1� · · ·�Gd is unambiguously defined
for any d. Gd denotes the d-fold cartesian product of a graph with itself. Sabisussi[Sab59]
and Vizing[Viz63] have shown that any connected graph G can be expressed as a product
G1� · · ·�Gk of primes factors Gi(1 ≤ i ≤ k). A graph is said to be prime with respect to
the � operation if it has at least two vertices and it is not isomorphic to the product of two
non-trivial graphs (having at least two vertices). Also, this factorization is unique except for
a re-ordering of the factors and is referred to as the Unique Prime Factorization of the graph.
Since a(G) is a graph invariant, we assume without loss of generality that any graph that is
either an induced path or an induced cycle has all the factors from PATHS ∪ CYCLES.

Notice that when for a graph G, each of the factors Gi = P2, then G is a d-dimensional
hypercube. Similarly, when each of the Gi ∈PATHS, then G is a d-dimensional mesh, and, when
every Gi ∈CYCLES, then G is a d-dimensional torus.

Let G1 and G2 be two families of graphs. Then, we define an operation PROD between G1

and G2 such that
G1 PROD G2 = {G1�G2|G1 ∈ G1 and G2 ∈ G2}

1.3 Our Results

We give coloring schemes to acyclically vertex color certain basic graphs of the d-dimensional
partial tori family. We have considered graphs that have at least one factor as a member of
CYCLES. We first provide coloring scheme for a special case Cm�P2 and then extend it to the
general Cm�Pk (k>2). All these schemes are optimal i.e. we prove the acyclic chromatic number
for these graphs to be 3 and 4 respectively. We then provide a coloring scheme for a graph that
has all members from CYCLES. In this respect, we give a scheme to acyclically vertex color
Cm�Ck that uses 7 colors. Since such a graph will use at least as many colors as a Cm�Pk, our
results can differ from the optimal value by at most 3.
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1.4 Related Work

Fertin et al.[FGR03] have explored the acyclic vertex coloring of grids which are a subclass of
the more general d-dimensional partial tori graphs. In other words, none of the prime factors
of the graphs that they consider belongs to CYCLES. They describe lower and upper bounds
for acyclic chromatic number of d-dimensional grid G(n1, . . . , nd). G(n1, . . . , nd) denotes that
G has ni vertices in the ith dimension (1 ≤ i ≤ d). They also show that these bounds match,
and thus give an optimal result, when the length in each dimension is sufficiently large, or more
precisely, if

∑
d

i=1

1

ni

≤ 1. If it is not the case, then these bounds differ by an additive constant

of at most |1−⌊
∑

d

i=1

1

ni

⌋|. Also, they apply those results to a hypercube of d dimensions, which
is a special case of G(n1, . . . , nd) in which there are only 2 vertices in each dimension. In this
case, their bounds differ by a multiplicative constant of 2.

Muthu et al. [MNS06] have explored the acyclic edge coloring for d-dimensional partial tori
graphs. They provide several results on the change in the acyclic edge chromatic number when
a graph is taken product with a member of either PATHS or CYCLES.

2 Coloring Schemes - PATHS PROD CYCLES

We consider the graphs where a member of CYCLES is taken product with a member of PATHS.
Notice that this leads to forming multiple copies of the operand cycle that are connected with
corresponding vertices in the copies. The number of such copies being equal to the length of the
operand path; when taken product with another member of CYCLES, this is equal to the length
of the second operand. This gives us the advantage of symmetry in the manner that any scheme
that works within a cycle works for all the copies. So, we focus only on the edges connecting
them. Each of the following cases describes this further.

2.1 Cm�P2, m is odd

We consider the coloring of the graphs produced when a cycle of odd length Cm (m is odd), is
taken product with a P2. Figure 1 shows this resulting graph. As observed before, we can hope
to modify the acyclic coloring of the cycle and apply it to the copy resulting in the acyclic vertex
coloring of the whole graph.

Lemma 1. Cm�P2 can be acyclically vertex colored with 3 colors for all odd m.

Proof. First of all, we note that a(Cm) = 3 for all m > 2. So, let us assume without loss of
generality, that the operand Cm was colored with 3 colors as shown in figure 4.1. Clearly this
given scheme acyclically vertex colors Cm. Now, let us denote the copy as C ′

m. We propose to
modify this scheme to suitably color C ′

m as follows.

If v is a vertex in the Cm, then let σ(v) denote the corresponding vertex in C ′

m. Then, if
c(v) denotes the color of v, then

c(σ(v)) = {c(v) mod 3} + 1 (1)
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Figure 1: A Cm�P2, where m is odd

Now, we see that such a vertex coloring is proper as well as acyclic for the product graph.
Clearly, this coloring is proper since there are no adjacent vertices with the same color. This is
because

1. Cm is given to be properly colored. So, C ′

m is properly colored as well.

2. c(σ(v)) 6= c(v) for any v.

To show that this coloring is acyclic we consider all the possible bichromatic cycles that can
occur. Also note that since both Cm and C ′

m are acyclically colored, any such cycle should
involve vertices from both of them.

1. 1− 2 · · · − 1 cycle This cannot happen since the only 1-colored vertex in C ′

m does not have
two neighbors with color 2.

2. 2− 3 · · · − 2 cycle The only 3-colored vertex in Cm does not have two neighbors with color
2. So, this cannot occur as well.

3. 3 − 1 · · · − 3 cycle None of the 1-colored vertices in Cm have two 3-colored neighbors.

Hence, this graph can be colored with 3 colors which is also optimal. Thus, the acyclic
chromatic number of the graph, Cm�P2 is 3 when m is odd.

2.2 Cm�P2, m is even

Lemma 2. The acyclic chromatic number of Cm�P2 is 3 i.e. a(Cm�P2) = 3 for all m 6= 4.

Proof. In this case we assume that the given Cm is colored with 3 colors as shown in figure
2. Such a coloring is clearly acyclic. Notice how the last four vertices of the cycles have been
colored to make it look similar to the last case to reuse the conditions that prevent a bichromatic
cycle. We also note that this requires m to be at least 6. Now we try to color the product graph
based on this.
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Figure 2: A Cm�P2, where m is even

As before, we denote the copy of the operand Cm as C ′

m and we define a function σ that
maps the colors from the Cm to C ′

m. In fact, we use the same σ as before i.e.

c(σ(v)) = {c(v) mod 3} + 1 (2)

Clearly, this coloring is proper by the same argument as before. To show that it is also
acyclic, we again go through all possible bichromatic cycles. We also mention here that since
both Cm as well as C ′

m are acyclically colored, any such cycle must involve both of them.

1. 1− 2 · · · − 1 cycle This cannot happen since the only 1-colored vertex in C ′

m does not have
two neighbors with color 2.

2. 2− 3 · · · − 2 cycle The only 3-colored vertices in Cm do not have two neighbors with color
2. So, this cannot occur as well.

3. 3−1 · · ·−3 cycle None of the 3-colored vertices in C ′

m have two neighbors that are 1-colored.

Hence, this coloring scheme optimally colors the given graph with 3 colors. By clubbing this
result with the previous one, we can state that the acyclic chromatic number of Cm�P2 is 3 for
all m 6= 4.

2.3 Cm�Pk

Now we extend our previous results to the case of Cm�Pk (k>2), i.e. we now have more than
just two copies of the operand Cm. We color alternate copies of Cm with same color i.e. all odd
copies with one color scheme and all even copies with another such that the whole graph gets
colored acyclically. Figure 3 shows such a coloring.

Lemma 3. Cm�Pk can be acyclically vertex colored with 4 colors for all m and k > 2.
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Figure 3: A Cm�P3 colored with 4 colors, where m is odd

Proof. We formally define this coloring scheme by providing a mapping function from the colors
in the operand Cm to corresponding vertices in the even copies. As before, we define such a
function that maps the colors of operand Cm to the even copies as following.

c(σ(v)) = 4 if c(v) = 1 (3)

= 3 if c(v) = 2 (4)

= 1 if c(v) = 3 (5)

Clearly, this coloring is proper. This is also acyclic because the only possible bichromatic
cycles should involve at least two copies of the operand Cm and none of the color pairs can form
a cycle that can come back to the copy where is emanates after leaving it once.

2.4 Optimal Coloring of Cm�Pk

Lemma 4. Acyclic chromatic number of Cm�Pk is 4 i.e. a(Cm�Pk) = 4.

Proof. Lemma 3 says that a Cm�Pk can be colored with 4 colors. Now, we prove that this is
also the optimal number of colors required to acyclically color it.

Claim 1. C4�Pk cannot be acyclically vertex colored with 3 colors for k ≥ 2.

To prove Claim 1, we use the simplest member of this family, C4�P2 as shown in figure 4.

Here note that, {1, 2, 3, 2} and {1, 2, 1, 3} are the only possible color patterns of 3 colors
that can be used to color a C4 such that it is properly and acyclically colored. Any other color
combination would just be a renaming of the colors. Also, the possible manners in which these
colors can be validly mapped to the second cycle such that they are also properly and acyclically
colored are shown in figure 4.

By looking at figure 4, one can see that there exists a bichromatic cycle of colors 2 and 3 in
graph (i). Similarly, there is a bichromatic cycle of colors 1 and 2 in both graphs (ii) and (iii),
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Figure 4: All possible distinct color combinations for C4�P2 using 3 colors

and, of colors 1 and 3 in graph (iv).

Hence, we conclude that a C4�P2 requires at least 4 colors to be acyclically colored. Or in
other words, there exist a member of Cm�Pk requires at least 4 colors to be acyclically colored,
thereby proving Lemma 4.

3 Coloring Scheme - CYCLES PROD CYCLES

Now we consider the graphs when a member of CYCLES is taken product with another member
of CYCLES. Note that they have the same structure as Cm�Pk except that the first and last
copies are connecting as well. Hence, if we color the last copy of Cm with colors that are different
altogether from the ones used in other copies, then such a scheme would acyclically color Cm�Ck.

Lemma 5. All Cm�Ck can be colored with 7 colors.

Proof. Also, we know that any Cm can be acyclically colored with 3 colors. This gives us our
first result on the upper bound for number of colors to be used to color Cm�Ck acyclically.

a(Cm�Ck) ≤ a(Cm�Pk) + 3 (6)

Hence, Cm�Ck (m,k > 2) can be colored with 7 colors. Figure 5 shows implementation of such
a scheme.

4 Conclusion

We expect that our work for the cases of graphs of the class d-dimensional partial tori can be
extended to generalised results i.e. bounds on acyclic chromatic number of type G�P2, G�Pk
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Figure 5: A Cm�P3 colored with 7 colors, where m is odd

(k > 2) and G�Ck for any given graph G.

We also note that our coloring scheme for Cm�Ck seems to use the least number of colors
possible. It is therefore expected that our bound might turn out to be the optimal bound for
these graphs.
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[Grü73] Branko Grünbaum. Acyclic colorings of planar graphs. Israel Journal of Mathematics, 14(4):390–408,
1973.

[Kos78] A.V. Kostochka. Upper bounds of chromatic functions of graphs (in Russian). PhD thesis, Novosibirsk,
1978.

[MNS06] Rahul Muthu, N. Narayanan, and C. R. Subramanian. Optimal acyclic edge colouring of grid like graphs.
In Danny Z. Chen and D. T. Lee, editors, COCOON, volume 4112 of Lecture Notes in Computer Science,
pages 360–367. Springer, 2006.

[Sab59] Gert Sabidussi. Graph multiplication. Mathematische Zeitschrift, 72(1):446–457, December 1959.

[Viz63] V. G. Vizing. The cartesian product of graphs (russian). Vyčisl. Sistemy, 9:30–43, 1963.
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