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Abstract—In this paper we design and implement an algorithm
for finding the biconnected components of a given graph. Our
algorithm is based on experimental evidence that finding the
bridges of a graph is usually easier and faster in the parallel
setting. We use this property to first decompose the graph into
independent and maximal 2-edge-connected subgraphs. To iden-
tify the articulation points in these 2-edge connected subgraphs,
we again convert this into a problem of finding the bridges on
an auxiliary graph.

It is interesting to note that during the conversion process, the
size of the graph may increase. However, we show that this small
increase in size and the run time is offset by the consideration
that finding bridges is easier in a parallel setting. We implement
our algorithm on an Intel i7 980X CPU running 12 threads. We
show that our algorithm is on average 2.45x faster than the best
known current algorithms implemented on the same platform.

I. INTRODUCTION

The biconnected components of a given graph are its max-

imal 2-connected subgraphs. Finding the biconnected compo-

nents of a graph is an important problem in graph theory.

This problem has been pushed to the fore recently for its use

as a subroutine in other graph based computations such as

shortest paths, betweenness-centrality, and the like [3]. The

problem has applications to network design too as bridges and

articulation points in a communication network indicate lack

of robustness and resiliency to single edge and vertex failures.

Of particular interest has been to design algorithms for

sparse graphs as most real world graphs tend to be sparse in

nature [2]. In this direction, Madduri and Slota [12] present the

most recent algorithm for finding the biconnected components

of a given graph on multicore architectures. The work of [12]

presents two algorithms, one based on performing multiple

BFS, and one based on graph coloring. The algorithms of

Madduri and Slota [2] improve on previous algorithms for the

problem in the parallel setting, most notably those of Tarjan

and Vishkin [16] and of Bader and Cong [4]. However, it is

not clear as to which of the two algorithms is a better choice

on a given graph. Adding to the difficulty, the algorithms can

differ in their run time significantly, of the order of 5x in some

cases.

In this paper, we design a simple and efficient algorithm

for finding the biconnected components of a given sparse

graph. Our algorithm has two interesting characteristics to it.

Firstly, we observe that identifying the bridges of a graph can

be done more easily compared to identifying the articulation

points. Secondly, based on our first observation, we construct

an auxiliary graph that is larger in size than the given graph

with the property that bridges in the auxiliary graph can be

used to identify the articulation points in the input graph.

Our algorithm is easy to parallelize. An implementation of

our algorithm on an Intel i7 980X CPU running 12 threads is

2.45 faster than both the algorithms presented in [12] on an

average on a wide variety of real-world graphs. We also believe

that some of the techniques we introduce in this paper can be

of independent interest in designing other graphs algorithms.

A. Motivation

One of the aspects that motivate our algorithm and its ap-

proach is to note that identifying bridges in a given undirected

graph is a much simpler task in general, and particularly so

in sparse graphs. In a sparse graph, one can build a BFS tree,

or just a spanning tree, and mark all edges that are part of

some fundamental cycle. As a result, edges that are not marked

are simply the bridges of the graph. We use this idea in our

algorithm (see also Algorithm 2). Since the depth of the BFS

tree in real world graphs is observed to be small, this process

of identifying the bridges is usually very fast. In fact, while

Tarjan and Vishkin [16] also outline an approach to identify

the bridges, their algorithm for the same is usually more time

consuming as it involves computation of functions low and

high. Using the two functions low and high, a tree edge in T
from v → w is marked as a bridge if and only if w ≤ low(w)
and high(w) ≤ w + nd(w) − 1 where nd(w) refers to the

number of descendants for a vertex w.

To illustrate the simplicity of our approach for identifying

bridges on sparse graphs, we consider some graphs from Table

I and perform identification of bridges using our approach (Al-

gorithm 2) and also the approach of Tarjan and Vishkin [16].

The time taken for both these approaches is plotted in Figure

1. As can be seen, our approach outperforms that of Tarjan

and Vishkin. Another advantage of such a step of identifying

the bridges in the context of biconnectivity algorithms is that

the graph after removing bridges decomposes into several 2-

edge-connected components and the rest of the processing can

be performed independently on each of the 2-edge-connected

components. This helps in increasing the available parallelism.

B. Our Contributions

Some of the notable contributions from our paper are as

follows. We design a new parallel algorithm, Algorithm LCA-

BiCC, for finding the biconnected components of a graph.
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Fig. 1. Figure shows the time taken to identify bridges in a graph G using
our algorithm (Algorithm 2 and also the algorithm of Tarjan and Vishkin [16].

Our algorithm has two interesting aspects. We have shown

in section I-A that in the parallel setting, it is beneficial

and also easy to identify the bridges of the given graph.

This allows us to treat the graph obtained after removing

the bridges as consisting of independent maximal 2-edge

connected subgraphs. On these subgraphs, we now have to find

articulation points and identify the biconnected components.

Given the observation that finding bridges is easier, we build

an auxiliary graph G′

i for each maximally 2-edge-connected

subgraph Gi, i ≥ 1, of G such that bridges in G′

i can be

used to quickly locate the articulation points in Gi (and hence

in G). This mechanism of removing the bridges to arrive at a

decomposition consisting of independent and maximal 2-edge-

connected subgraphs, and exploiting the properties of 2-edge-

connected subgraphs, may be of independent interest in the

design of other graph algorithms in the parallel setting.

We extend our results and propose modifications to one of

the algorithms from [12]. These modifications are based on

the observations from the design of Algorithm LCA-BiCC

(Algorithm 1), and the modified algorithm is noticed to be

1.46x faster than Algorithm LCA-BiCC.

C. Related work

There are several known parallel algorithms for identifying

the biconnected components in the given graph. For a graph

G with n vertices and m edges, Eckstein [6] provided the first

parallel algorithm that takes O(d log2 n) using O((n+m)/d)
processors, where d is the diameter of the BFS tree. Savage

and Jaja [11] proposed parallel algorithms on CREW PRAM

for both sparse and dense graphs. One of them takes O(log2 n)
on O(n2/ log2 n) processors and is suitable for dense graphs.

The other is for graphs which are sparse in nature and it

requires O(log2 n log k) time with O(mn+log2 n) processors

where k is the number of biconnected components in the given

graph.

Tsin and Chin [17] developed an algorithm optimal for

dense graphs that runs in O(log2 n) time using O(n2/ log2 n)
processors. Tarjan and Vishkin [16] provided a O(logn) time

algorithm that uses O((n+m)) processors. Cong and Bader

[4] demonstrated a parallel speedup over the Tarjan-Vishkin

algorithm on symmetric multiprocessor systems. Edwards and

Vishkin [7] demonstrated the parallel speedup over Tarjan

serial algorithm [15] and Tarjan-Vishkin algorithm [16] on

XMT manycore computing platform. Most recently Madduri

and Slota [12] proposed two parallel algorithms that provides

considerable speedup over the Cong and Bader approach [4].

D. Organization of the Paper

The rest of the paper is organized as follows. In Section

II, we briefly describe the existing algorithms that are directly

relevant to our current work. In Section III, we develop the

required lemmata for our algorithm that is described in Section

IV. Experimental results of our algorithm are presented in

Section VI. Further improvements are discussed in Section VII

along with experiments. The paper ends with some concluding

remarks in Section VIII.

II. EXISTING ALGORITHMS

We review in brief some of the parallel algorithms that are

most relevant to our present work

A. Tarjan-Vishkin Parallel Algorithm (TV) [16]

Tarjan-Vishkin PRAM model [16] for identifying the bi-

connected components in G requires O(log(n)) time with

O(n + m) processors. The main steps in Tarjan-Vishkin al-

gorithm are as follows. A rooted spanning tree T for the

input graph G is constructed. Using T , two functions low and

high are computed for each vertex v ∈ G. These functions

help define an auxiliary graph G′ such that the connected

components of G′ are the biconnected components of G.

B. Cong and Bader [4] Improvement to TV (TV-filter)

An experimental study by Cong and Bader [4] provides an

improvement to the Tarjan-Vishkin ([16]) algorithm [16] by

removing non-essential edges in its computation . This leads

to a significant reduction in computing low , high values and

connected components computation. In particular, they define

an edge e as non-essential for biconnectivity if removing e
does not change the biconnectivity of the component it belongs

to. They show that edges of G that are not in a BFS tree

T and are also not in a spanning forest F of G \ T are

nonessential. However, in this algorithm, T must be a BFS

tree, which can be difficult to compute in parallel compared to

a simple spanning tree. The runtime for Cong-Bader approach

is O(dia + log(n)) where dia is the diameter of the graph.

For more details of the algorithm, proof of correctness and

implementation details we refer the reader to [4].

C. BFS-BiCC

The BFS-BiCC algorithm [12] is an improvement over

Cong-Bader’s approach [4] on sparse graphs. This algorithm

is similar to that used by Eckstein [6]. A rooted BFS tree T of

the input graph G is constructed. To identify the articulation

points, this algorithm considers every vertex u and performs a

BFS on the graph after removing its parent P (u) (according to

T ) from the graph G. During this process they keep track of
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the level of vertices reached from u. If any vertex w with

level L(P (u)) or less is reached and u has a path to all

its siblings after the removal of P (u), then P (u) is not an

articulation point. The main drawback of this approach is that

it performs BFS from all the vertices of the graph. While there

are optimizations introduced to stop some of these breadth-first

traversals, there exist graphs on which such early stopping

cannot be done and on such graphs, Algorithm BFS-BiCC

from [12] suffers heavily. For the proof and correctness of

Algorithm BFS-BiCC, we refer the reader to [12].

D. Color-BiCC

The BFS-BiCC algorithm [12] is an improvement over the

Cong and Bader approach [4] on sparse graphs. This is an

iterative strategy that is similar to recursive doubling used

to compute connected components in undirected graphs as

well as weakly and strongly connected components in directed

graphs [13]. Let par(v) signify the parent articulation point

that separates the vertex v from the root. This algorithm is

based on the observation that any two vertices in a biconnected

component will have their least common ancestor set to the

par(v). The goal of this approach is to color all vertices in

the biconnected component with a parent level articulation

point that is separating the vertex from the root. We have

observed (from figure 6) that the Color-Bicc algorithm is

heavily dependent on the structure of the graph and can be

slower than the sequential Tarjan [15] approach in some cases.

For the proof and correctness of the Algorithm we refer the

reader to[12].

III. OUR APPROACH FOR BICC

In this section we present a simple yet efficient algorithm

for identifying the biconnected components of graph G. Our

algorithm is based on our experimental evidence that identi-

fying bridges of a graph in a parallel setting is a much easier

and simpler task. Based on the above observation, we initially

decompose the graph into maximal 2-edge-connected compo-

nents G1, G2, · · · ,. For each such component, Gi, i ≥ 1, we

construct an auxiliary graph G′

i where articulation points in Gi

translate to bridges in G′

i. Therefore, identifying the bridges

of G′

i allows us to identify the articulation points of Gi, and

hence those of G. Using this information, we then identify the

biconnected components of G.

We develop two results (Lemmata 1,2) below that will help

us present our algorithm. Towards this, let T be a rooted BFS

tree of G and LCA denotes the least common ancestor. Each

non-tree edge (u, v) in G \ T is a cross edge that connects

two different branches of a tree. For an edge e to be a bridge,

e must be part of BFS spanning tree and e cannot be on any

cycle induced by the non-tree edges (u, v) ∈ G \ T .

Now, consider the graph G obtained by removing the

bridges of G. The resulting graph consists of maximal 2-edge

connected components G1, G2, · · · , such that for each pair of

vertices u, v in the same 2-edge-connected component, there

are at least two edge disjoint paths between u and v. We can

now treat each such component independently and in parallel

to identify the articulation points within each component.

These will also be articulation points of G.

Let G be a 2-edge-connected graph and TG be a rooted BFS

tree of G. We use the notation Vlca(G) to denote the set of

vertices that are the LCA of the end points of some nontree

edge of G according to a given BFS on G. We can classify

the vertices of G into two categories as follows.

1) Potential articulation points: We will prove shortly that

all the vertices Vlca(G) belong to this category. A subset

of the vertices in Vlca(G) are the articulation points of

G.

2) Non-articulation points: These are the set of safe vertices

whose removal does not disconnect the graph. All the

vertices v ∈ V (G) \ Vlca(G) belong to this set.

The above categorization is supported by the following

lemma which shows that vertices not in Vlca(G) cannot be

articulation points in G.

Lemma 1: Let G be a 2-edge-connected graph and let T
be a BFS tree of G. If v is not in Vlca(G), then v cannot be

an articulation point of G.

Proof: On the contrary, assume that a vertex v is an

articulation point and is not the LCA of any nontree edge

of G. If v is on only one cycle in G, then v cannot be an

articulation point. So, we assume in the rest of the proof that

v is on at least two cycles in G.

Let C1, C2, ...., Ck be the fundamental cycles induced re-

spectively by non-tree edges e1, e2, · · · , ek ∈ G \ T and pass

through vertex v. Let Ci and Cj be any two cycles from

the set {C1, C2, ...., Ck} induced by nontree edges ei and ej
respectively. Let vertices x, y be LCA of the endpoints of ei
and ej respectively. It is evident that x and y should be the

ancestors of v as v lies on both the cycles and v /∈ (x, y). The

relation between x and y can be categorized as follows.

• x = y: In this case the two cycles Ci and Cj share the

same LCA say x and also the vertex v. This implies that

Ci and Cj share at least an edge (as there are at least two

vertices, x and v, common to both Ci and Cj). So, even

after the removal of v, all edges belonging to Ci and Cj

remain in a single biconnected component. Hence, v is

not an articulation point.

• x �= y, z = LCA(x, y), and z �∈ {x, y} : As x and y
are ancestors of v there is a path x to v and v to y in

T . As z is the ancestor of x and y there is a path z to

x and y to z in T . This concludes that there is a path

from z � x � v � y � z which leads to a cycle

in T . However, T is a BFS tree and cannot have cycles.

Therefore, our assumption that v is an articulation point

is not valid.

• x �= y and LCA(x, y) ∈ {x, y}: Without loss of

generality, we will assume that y = LCA(x, y). Let Ci

and Cj be any pair of cycles induced by nontree edges

ei and ej and pass through v with LCA(ei) = x and

LCA(ej) = y. Since y is a proper ancestor of x, there is

a path from x � v (in T and also in G) that is common

to Ci and Cj . This ensures that there is at least an edge

common between the cycles Ci and Cj . Similar to the

case where x = y, this allows us to argue that even after
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the removal of v, all edges of Ci and Cj remain in a single

connected component. Since the above holds for any pair

of cycles passing through v, v is not an articulation point.

The above lemma indicates that we have to only check

whether vertices in Vlca(G) of G are articulation points in G.

To find these articulation points, we now construct an auxiliary

graph G′ as follows. Let TG be a BFS tree of G. We use the

notation LCA(e) to refer to the LCA of the end points of the

edge e. (Such a notation is used in other earlier works too

[10]).

Initialize V (G′) = V (G) and E(G′) = E(G). For every

non-tree edge e in G \ TG, compute the LCA(e) = x. Let

b1 and b2 be the neighbours of x in the fundamental cycle

induced by e. We now remove the edges xb1 and xb2 from

G′, add an alias vertex for vertex x as x′ to G′, and add edges

xx′, x′b1, and x′b2 to E(G′). All other edges in G with end

points as x, b1 or b2, remain unchanged.

The alias vertices and edges with one end point as an alias

vertex have the property that articulation points of G are

transformed as bridges in the auxiliary graph G′ as we will

show shortly. An example of the construction of the auxiliary

graph is shown in Figure 2. In Figure 2, we consider a BFS

of the graph in Figure 2(a) with z as the source vertex, and

edges wx and ts as the nontree edges. In the following, we

show that bridges in H ′ can be used to identify the articulation

points of H .
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Fig. 2. Figure (b) shows the auxiliary graph for Figure (a). Edges wx and ts

are kept as nontree edges and the rest of the edges are tree edges according
to a BFS starting from vertex z as the source.

Lemma 2: Let G be a 2-edge-connected graph, TG a rooted

BFS tree of G with root as r, and G′ be the auxiliary graph

of G constructed as earlier. The following are true. (i) Vertex

r is an articulation point in G if r is the LCA of more than

one nontree edge of G′ according to a BFS in G′ from r, and

r is also the end point of some bridge in G′.

(ii) For vertices u in G′ with u �= r, u is an articulation

point of G if there is a bridge uv in G′ with u ∈ G and v �∈ G.

Proof: We use Puv(G) to denote a path between vertices

u and v in the graph G. We first argue case (i) of the lemma.

Notice that since G is 2-edge-connected, vertex r is on at least

one cycle. Further, since r is the root of the BFS tree of G, for

every fundamental cycle that contains r, vertex r is the LCA

of the nontree edge that induces the cycle. We now make a

case distinction as follows.

If r has exactly one cycle that passes through it, then r
is not an articulation point of G. Now consider the case that

more than one cycle passes through r. Let Ci and Cj be any

two cycles through r induced by nontree edges ei and ej . In

G′, we now introduce two alias vertices ri and rj and also the

edges rri and rrj , along with edges between ri and rj to the

base vertices of Ci and Cj . If r is not an articulation point,

then we notice that there are two distinct vertices x and y in

Ci and Cj respectively such that there is a path between x and

y that does not go through r. This path between x and y, Pxy ,

along with paths Pxri , the edges rir and rrj , and path Prjy

creates a cycle that contains the edges rri and rrj . Therefore,

the edges rri and rrj cannot be bridges in G′.

We now consider case (ii) of the lemma. Consider a vertex

u which is not an articulation point in graph G with u �= r.

We will show that any edge of type uu′, where u′ is the alias

of u, cannot be a bridge in auxiliary graph G′.

Let Cu := {C1, C2, · · · , Ck} be the cycles that pass through

vertex u in G. The relation between vertex u and the such

cycles can be categorized as follows.

• u is not the LCA of any of the cycles in Cu: In this

case, no alias vertices are introduced in G′ because of u.

Therefore, bridges with u as one end point does not exist

in G′. (Note that G is already 2-edge-connected and has

no bridges).

• u is the LCA of some pair of cycles Ci and Cj in Cu:

According to the construction of G′, two alias vertices ui

and uj are introduced in the auxiliary graph G′. Further,

two edges uui and uuj are also added to G′. An example

is illustrated in Figure 3.
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Fig. 3. Figure shows the cycle created by paths Pxy , Pyuj
, Pujui

, and
Puix

. The left part of the figure shows the actual graph and the right part
shows the corresponding auxiliary graph. For ease of exposition, the auxiliary
graph shown contains only the changes made with respect to u and not the
changes induced with respect to other vertices. It can be noted that changes
induced with respect to other vertices do not affect the proof with respect to
u and its alias vertices.

Let x and y be any distinct vertices on the cycles Ci and

Cj respectively. Since u is not an articulation point in

G, there must be some path Pxy in G′ between x and y
that does not pass through u as shown in Figure 3. The

path Pxy along with paths Pyuj
, Pujui

, and Puix forms

a simple cycle in G′. This indicates that edges uui and
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uuj on this cycle cannot be bridges in G′. So their is no

bridge in G′ with one of the endpoint as u pertaining to

cycles Ci and Cj . The above property holds for any two

cycles Ci and Cj .

• u is the LCA for just one cycle Ci from Cu: Consider the

case where the number of cycles through u is at least 2.

By our assumption, u is not an articulation point. Hence,

for some vertex x in Ci that is not equal to u, and another

vertex, say the parent of u, there is a path that does not

go through u. This path along with edges uu1 and uP (u)
mean that the edge uu1 is part of a cycle. Therefore, in

G′, the edge uu1 will not be a bridge.

Now, consider the case where exactly one cycle passes

through u and u is not an articulation point as per our

original hypothesis. Since Gi is 2-edge connected there

must exist atleast two paths from u to root r. But u is

the LCA of excatly one cycle and r cannot be part of

this cycle as r is the ancestor of all vertices. This shows

there exists only one path from u to r which cannot be

true as the graph is 2-edge connected. So u = r and this

case already proved.

Thus, bridges in the auxiliary graph are a good indicator

of articulation points in the original 2-edge-connected graph.

Further, it is relatively easy to find the biconnected components

of a graph when the bridges and articulation points are

identified. Our approach also indicates that the size of auxiliary

graph in terms of both the number of vertices and the number

of edges, is more than the size of original graph. But, we

will see later that for real-world graphs that are sparse in

nature, this increase in size is usually small, and the additional

increase in run time can be offset by the simplicity of our

algorithm.

IV. OUR ALGORITHM FOR BICONNECTED COMPONENTS

Given Lemmata 1 and 2, we now provide the following

algorithm to identify the biconnected components of a graph

G. Algorithm LCA-BiCC shown as Algorithm 1 describes our

approach in a high level as consisting of 5 steps. In Step 1, we

obtain a BFS tree of the input graph G. In Step 2, we find the

bridges of G and also decompose G into its 2-edge-connected

components G1, G2, · · · . Step 3 onwards, each such 2-edge

connected components is treated independently. In step 3, for

each Gi, an auxiliary graph G′

i is constructed. Step 4 identifies

non-tree edges of each G′

i, and Step 5 identifies the bridges of

the auxiliary graph, and hence the articulation points of G. In

Step 6, the bridges and the articulation points of G are used

to identify the biconnected components of G.

An example run of the algorithm is presented in Figure 4.

In the following, we elaborate on each step of Algorithm 1.

A. Step I: BFS on input graph G

We choose an arbitrary vertex r as the source vertex and

perform BFS from r and also root the BFS tree at r. The output

of BFS is stored in two arrays namely L(v) and P (v), where

L(v) signifies the level of the vertex in the BFS spanning tree

and P (v) stores the parent of v in the corresponding BFS tree.

For the root r, we set P (r) = −1 and L(r) = 0.

Algorithm 1 BiCC(G)

1: procedure LCA-BICC(Graph G)

2: T ← BFS(G) /*Step I*/

3: {G1, G2, · · · } = BRIDGES(G, T ) /* Step II*/

4: for all Gi i = 1, 2, · · · in parallel do

5: Construct the auxiliary graph G′

i./*Step III*/

6: Identify the nontree edges in G′

i among the newly

added edges to Gi from Step III/*Step IV*/

7: {H1, H2, · · · } = BRIDGES(G′

i, T
′

i )/*Step V*/

8: Check if ri is an articulation point in G′

i

9: Run a connected components algorithm to identify

the BCC of G/*Step VI*/

10: end for

11: end procedure

B. Step II: Finding the Bridges of G

Recall that an edge in G is a bridge if and only if the

edge is not on any cycle in G. The above property can be

modified further to say that an edge is a bridge if it not on

any fundamental cycle, i.e., on cycles induced by non-tree

edges according to a spanning tree. To this end, we consider

each nontree edge e according to the BFS tree T from Step

1 and mark all edges in T that are in the cycle induced by e.

Algorithm 2 explains the above steps. As shown in Algorithm

2, for each nontree edge e = xy, we traverse up the tree edges

from x and y till we reach the LCA of x and y. Each edge

encountered in this process is marked. Edges of T that are not

marked in the above process are the bridges of G. Also, end

points of these bridges with degree atleast 2 are articulation

points in G.

For each bridge xy identified above with x = P (y), we set

P (y) = −1 that essentially decomposes G into its 2-edge-

connected components. We return these 2-edge-connected

components as the output of Algorithm Bridges.

Algorithm 2 Edge-Biconnectivity(G)

1: procedure BRIDGES(Graph G, Tree T )

2: for all e = (w,v) ∈ G \ T do

3: Mark the tree edges that we encounter in the

process of computing the LCA(w, v).
4: end for

5: for all e ∈ E(G) do

6: If e is not marked then B ← B ∪ {e}
7: end for

8: Return the connected components of G−B
9: end procedure

We choose to find the LCA of the end points of a nontree

edge by using a traversal from these end points while more

robust algorithms exist for computing the LCA. In the parallel

setting, such algorithms are studied by Soman et al. [14] as an

application of range minima queries. Our choice is however

justified by two reasons. Firstly, most real-world graphs have

a low diameter as Table I shows. As the number of traversals

is upper bounded by the diameter, such traversals do not

pose a serious performance bottleneck. Secondly, using range
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Step 3: Auxilliary graph constructionStep 2: Identification of BridgesStep 1: BFS Tree

dde

denotes a bridge

e

e d

Step 5: Identification of bridges in the Auxilary graphStep 4: Identify non−tree edges among the newly added edges

Fig. 4. An example run of Algorithm LCA-BiCC. Graph G is BFS tree + non-tree edges (shown in step 1). Vertices marked in a circle in step 2 are the
LCA vertices.

minima query to compute the LCA points involves non-trivial

steps that can be computationally intensive compared to simple

traversal.

C. Step III: Auxiliary Graph construction

Let G1, G2, · · · , be the 2-edge-connected components of

G. As described in Section III, we create auxiliary graphs

G′

1
, G′

2
, · · · corresponding to the 2-edge-connected compo-

nents of G. (See also Figure 4 for an illustration.)

D. Step IV: Identify non-tree edges among the newly added

edges

In this step, for each 2-edge-connected component Gi of G,

i ≥ 1, we do the following. We consider all the edges added

to the auxiliary graph G′

i and mark them as either edges in

the BFS tree or nontree edges according to BFS. Notice that

we do not have to run a BFS traversal again on G′

i, and can

extend the BFS on Gi to identify the nontree edges.

In particular, consider a vertex u which is the LCA of

a nontree edge e and vertices v and w are the children

(neighbors) of u in the BFS tree T that are on the cycle

induced by e. As part of the auxiliary graph construction, we

add a vertex u′, and edges uu′, u′v, and u′w. We delete edges

uv and uw. Such vertices v and w can now be end points of

edges added during the construction of the auxiliary graph.

Each such vertex v picks one of the alias vertices of its parent

in the BFS of G′. The remaining edges between v and alias

vertices will be marked as nontree edges.

E. Step V: Identifying Articulation Points of G

In this phase we use the algorithm 2 for identifying the

bridges in each of the graphs G
′

1
.G′

2
, · · · . For each such bridge

e = xy, notice that one of the end points is a vertex that is not

in G and is added to the corresponding auxiliary graph during

Step 3 of the algorithm. Such vertices are the articulation

points of G.

F. Step VI: Finding the Biconnected Components of G

In this step, we remove the bridges of G and also the

articulation points of G and then run a connected components

algorithm on the remaining graph. It can be noticed that edges

in each connected component are in a single biconnected

component of G. Once these biconnected components are

identified, we identify the biconnected component to which

edges with exactly one endpoint as an articulation point belong

to. (Bridges have both end points as articulation points, and

also do not belong to any biconnected component [5]).

Analysis: We analyze the work done in Algorithm LCA-

BiCC as follows. BFS requires O(n +m) work, and finding

the bridges in both original and auxiliary graph requires O(dT )
per nontree edge. where dT is the depth of the BFS tree. So

the total work done for all non-tree edges is O(mdT ). Rest

of the steps such as constructing the auxiliary graph, finding

the connected components (Step VI) all can be done in time

O(m+ dT ) time. Thus, the algorithm in the worst case takes

O(mdT ) time in a sequential setting.

However, as observed in Table II, the average number of

traversals towards the root of the tree required in identifying

bridges is often much smaller than the depth of the BFS tree.
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This is the reason why our algorithm is a nearly linear (in m
and n) algorithm.

V. IMPLEMENTATION DETAILS AND OPTIMIZATIONS

In this section, we describe the implementation details of

our algorithm. We also justify our choices made during the

implementation.

We perform the following program optimizations while

implementing Algorithm LCA-BiCC. The performance of

Algorithm LCA-BiCC is influenced by factors such as the

depth of the BFS tree produced in Step I, the time taken to

identify vertices in Vlca in Step II, and size of the auxiliary

graph constructed in Step III. We use the heuristic based

approach of selecting the largest degree vertex as the source

of the BFS to minimize the depth of the BFS spanning tree.

To minimize the time taken to identify the LCA vertices,

we introduce the following optimization. Consider a non-tree

edge, e = (u, v) with both u and v performing a walk towards

the root of the tree. If both u and v encounter a tree edge that

is marked by another non-tree edge, say f , then it holds that

LCA(e) = LCA(f). Therefore, we stop the walks originating

from u and v.

The above optimization also can be used to reduce the size

of the auxiliary graph. If k cycles C1, C2, · · · , Ck induced by

the non-tree edges e1, e2, · · · , ek, respectively share the same

base vertices, b1 and b2, then their common LCA vertex, say

v, cannot be an articulation point with respect to the cycles

C1, C2, · · · , Ck as all these cycles share at least two edges.

Thus, we create only one alias vertex v′ in the auxiliary graph

for v with respect to the above k cycles. This reduces the

number of alias vertices created during phase III.

We note that Lemmata 1 and 2 can be modified suitably

to work with any spanning tree. Using any spanning tree in

Algorithm 2 requires one to associate level numbers to vertices

in the tree. However, using a BFS tree allows to obtain the

required level numbers as part of the BFS traversal and no

additional computation is required for the same. Therefore,

we chose to present the lemmata and the algorithms in terms

of BFS tree.

VI. EXPERIMENTAL RESULTS

A. Platform

We use an Intel i7 980x processor with 8GB main memory

as the experimental platform to test our results. The 980x is

based on the Intel Westmere micro-architecture. This processor

is from the Intel family with each core running at 3.4 GHz and

with a thermal design power of 130 W. The i7-980X has six

cores and with active SMT(hyper-threading) and can handle

twelve logical threads. The L3 cache has a size of 12 MB.

The L1 cache size is 64 KB per core and L2 is 256 KB.

Other features of the Core i7 980 include a 32 KB instruction

cache and a 32 KB data L1 cache per core and the L3 cache

is shared by all 6 cores.

B. Dataset

We experiment on a variety of real-world datasets. The

details of the graphs were given in Table I. For simplicity

purposes, directed edges were considered undirected. Multiple

edges and self loops were removed. The input graphs are

assumed to be a single connected component. If not they are

made connected by adding explicit edges. We experiment with

graphs from the dataset of University of Florida Sparse Matrix

collection [2] and SNAP database [1]. These matrices can

be converted to graphs naturally. A list of the instances we

consider is given in Table I.

C. Results

We study the results of our approach on the graphs men-

tioned in Table I. We will demonstrate both the relative and

absolute speedup compared to prior work on same platform

and analysis of our algorithm with respect to the graph

computations involved in it.

a) Overall Improvement: We consider the overall im-

provement obtained by our approach compared to the best

known implementation for finding BCC’s on the same plat-

form. In Figure 5, the baseline we use for comparison is the

best runtime achieved by either of Algorithm BFS-BiCC and

Algorithm Color-BiCC reported in [12].
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Fig. 5. Comparing the overall performance improvement of our approach
with respect to a baseline implementation. The Y-axis shows the ratio of the
time taken by the baseline to our implementation.

As can be observed from Figure 5, Algorithm LCA-BiCC

outperforms the baseline by a factor of 2.45x on average.

As claimed in [12], the best of the above two algorithms is

an improvement over the results of [4]. So, we expect that

Algorithm LCA-BiCC too would outperform the results of

[4].

Figure 6 shows the absolute times taken for all the three

algorithms on the real world graphs. It is visible from figure

6 that the run time of Algorithm BFS-BiCC and Algorithm

Color-BiCC can vary hugely across instances and it is not

possible to determine a-priori which algorithm might perform

better among the two as both are heavily dependent on the

structure of the graph.
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Graph name Source |V | |E| Diameter

web-google [9] 916,428 5,105,039 23

Webbase [18] 1,000,005 3,105,536 27

Roadnet-PA [9] 1,090,920 3,083,796 794

Roadnet-CA [9] 1,971,281 5,533,214 863

web-Stanford [8] 281,903 2,312,497 145

Wb-edu [9] 9,845,725 57,156,537 511

amazon [9] 262,111 1,234,877 29

Great-Britan [9] 7,733,822 16,313,034 9340

asia-osm [9] 11,950,757 25,423,206 48,126

Patents [9] 3,774,768 16,518,948 29

TABLE I
LIST OF GRAPHS THAT WE USE IN OUR EXPERIMENTS.

b) Understanding the Results: Some of the improve-

ment of Algorithm LCA-BiCC can be attributed to the fact

that finding the bridges of a graph is a much easier task in a

parallel setting. As shown in Figure 7, this step on the original

graph G takes under 16% of the overall time on average, and

takes under 20% on average on the auxiliary graph G′. These

are labeled as Steps II and V respectively in Figure 7.

One can analyze the improvement is in terms of the basic

steps in each of the algorithms under comparison. Algorithm

BFS-BiCC [12] does, in principle, n BFS computations. There

are however several optimizations that Madduri and Slota [12]

introduce to ensure that several of these BFS computations

do not visit all the vertices. On the other hand, Algorithm

LCA-BiCC performs only one BFS computation (Step 1) and

one connected components computation (Step 6), apart from

two calls to Algorithm Bridges (Steps 2 and 5) to find the

bridges of a given graph. The rest of the computation is to

construct the auxiliary graph G′. During Algorithm Bridges,

the end points each nontree edge march up the tree using

the parent pointers. Each such traversal does not necessarily

reach till the root of the BFS tree and stops when the LCA

is identified. The number of traversals for each end point of a

nontree edge therefore is upper bounded by the depth of the

BFS tree produced in Step 1. The depth of a BFS tree is also

related to the diameter of the graph, and it is observed that

most real-world graphs have a low diameter. The diameter of

the graphs used in our experiments is also shown in Table I.

Further, we also computed the average number of traversals

needed by each end point to locate the LCA. The average

number of traversals along with the depth of the BFS tree

constructed in Step 1 are listed in Table II for the graphs

from Table I. It can be noticed that the average number of

traversals needed is smaller than the depth of the BFS tree and

is under 10 in all the graphs. This small number of traversals

on sparse graphs is what also helps in keeping the runtime of

our algorithm low.

We study the size of the auxiliary graph constructed in

Step III of Algorithm LCA-BiCC. Since an auxiliary graph

is constructed for each 2-edge-connected component of G,

we measure the sum of the sizes of the auxiliary graphs

constructed with respect to each 2-edge-connected component

of G. It is noted that the maximum increase in number of

vertices at 25% and 20% occurred on the graphs roadnet-

CA and roadnet-PA respectively. For all the other graphs from

Table I, the number of vertices increased by under 5%. For

each vertex added to the auxiliary graph, there is one edge

removed and two edges that are added to the auxiliary graph.

Thus, the number of new edges is equal to the number of new

vertices. In terms of relative increase, the number of edges had

a maximum increase on the above instances again, at 8% and

7% respectively, and in all other instances from Table I, the

increase in the number of edges is under 3%. This shows that

the actual increase in the size of the auxiliary graph is rather

marginal and does not affect the performance of Algorithm

LCA-BiCC in a significant manner.

c) Profiling and the Choice of the Source Vertex: We

finally show the time taken in each step of Algorithm LCA-

BiCC as a percentage of overall time. Such a study shows the

relative cost of each of the steps of the algorithm. The results

of study are shown in Figure 7. As can be observed, identifying

bridges (Steps II and V) takes as much time as a BFS traversal

(Steps I and VI). The construction of the auxiliary graph and

identifying the nontree edges among the edges added to the

auxiliary graph take only a small percentage of time.
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In practice we have observed that unlike BFS-BiCC and

Color-BiCC our LCA-BiCC approach is not heavily impacted

by the choice of the source vertex while constructing the BFS

spanning tree. The difference in the run time of Algorithm

LCA-BiCC when a vertex of the highest degree is chosen as

the source vertex versus an arbitrary source vertex is usually

under 10% on the graphs from Table I. On the other hand,
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Graph name %of LCA vertices BFS depth #avg LCA-traversals

web-google 3.31 12 1.09

Webbase 0.31 16 2.5

Roadnet-PA 15.02 534 9.91

Roadnet-CA 14.90 554 9.09

web-Stanford 1.90 127 2.82

Wb-edu 11.91 319 9.81

amazon 8.20 23 6.47

Great-Britan 2.96 6841 7.55

asia-osm 2.93 38,793 4.93

Patents 1.97 17 3.91

TABLE II
LIST OF GRAPHS ALONG WITH THE AVERAGE NUMBER OF TRAVERSALS MADE PER NON-TREE EDGE. THE COLUMN LABELED “% OF LCA VERTICES”

INDICATES THE NUMBER OF VERTICES THAT ARE IN VLCA AS A PERCENTAGE OF THE TOTAL NUMBER OF VERTICES. THIS INFORMATION IS USED IN

SECTION VII.
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as reported in [12], and also as witnessed in our experiments

too, Algorithm BFS-BiCC from [12] is significantly affected

by the choice of the source vertex for all graphs listed in Table

I and those considered in [12].

VII. FURTHER IMPROVEMENTS

In this section we present a simple yet efficient optimization

for Algorithm BFS-BiCC [12] for identifying the biconnected

components of graph G. Our improvements is based on two

observations. Firstly, we make use of the observation from

Section I-A that identifying the bridges in a graph is an

efficient operation, especially in a parallel setting. Bridges

also help in partitioning a graph into its 2-edge-connected

components that can be processed independently. Secondly,

given a 2-edge-connected graph, we use Lemma 1 to discard

vertices that are certainly not articulation points and work

with a small subset of potential articulation points. We call

the vertices that are certainly not articulation points as non-

essential vertices. Such a notation with respect to edges was

also used by Bader and Cong [4].

We use the above two observations to modify Algorithm

BFS-BiCC from [12]. Unlike Algorithm BFS-BiCC [12],

we do not check whether non-essential vertices can be an

articulation point. This check is limited to potential articulation

points. Rest of the details are similar to that of Algorithm BFS-

BiCC of Madduri et al. [12]. As can be seen from Table I,

since the percentage of LCA vertices is small in most real-

world graphs, we expect that our modifications to Algorithm

BFS-BiCC would result in an improvement.

Algorithm 3 LCA Based BFS-BiCC(G)

1: procedure LCA-BFS-BICC(Graph G)

2: T ← BFS(G) /*Step I*/

3: {G1, G2, · · · , } = BRIDGES(G, T ) /*Step II*/

4: for all Gi, i = 1, 2, · · · , in parallel do /*Step III*/

5: for all v ∈ Gi do

6: Articulation(v) = false; visited(v) = false

7: end for

8: for all u ∈ Vlca(Gi) \ ri do /* ri is the root of

9: the BFS tree of Gi */

10: v ← P (u)
11: if Articulation(v) = false then

12: l← BFS-L(G,L, v, u, visited)
13: if l ≥ L(v) then

14: Articulation(v)← true
15: end if

16: end if

17: end for

18: Check if ri is an articulation point

19: end for

20: CONNECTED COMPONENTS(G \ Artpoints) /*Step

IV*/

21: end procedure

Our algorithm, called Algorithm LCA-BFS-BiCC, is shown

as Algorithm 3. Some of the steps such as computing a BFS

tree (Step 1), finding the bridges of G (Step 2) are identical to

that of Algorithm LCA-BiCC. In Step III, we limit the call to

Procedure BFS-L described by Madduri et al. [12, Algorithm

6] to only vertices in Vlca(Gi) for each i. In Step 3, once

we identify the articulation points of each Gi, we use a step

similar to that Step VI of Algorithm LCA-BiCC to identify

the biconnected components of G.

A. Experimental Results

We use the experimental platform as described above in

Section VI. We compare the results of LCA-BiCC algorithm

with optimized BFS-BiCC approach on graphs given in Table

I.
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In Figure 8, we show the improvement obtained by Al-

gorithm LCA-BFS-BiCC compared to Algorithm LCA-BiCC.

On average, Algorithm LCA-BFS-BiCC is about 1.46x faster

compared to Algorithm LCA-BiCC. Figure 8 also shows the

improvement obtained by Algorithm LCA-BFS-BiCC over the

BFS-BiCC algorithm of [12]. Central to the improvement

obtained by Algorithm LCA-BFS-BiCC is the idea that we

have to perform BFS from only vertices in Vlca in Step 4 of

Algorithm [12].
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Fig. 8. Speedup obtained by Algorithm LCA-BFS-BiCC over Algorithm
LCA-BiCC and Algorithm BFS-BiCC ([12]), in left-to-right order of bars,
for the graphs from Table I.

To understand the extent of improvement of Algorithm

LCA-BFS-BiCC over Algorithm BFS-BiCC ([12]), we note

the following. From the column labeled “% LCA Vertices” of

Table I, we see that in general, real-world graphs have a small

percentage of vertex that are in Vlca. So, we expect significant

performance gain for Algorithm LCA-BFS-BiCC. However,

Figure 8 indicates the performance gain of Algorithm LCA-

BFS-BiCC does not match the corresponding expected gain.

For instance, if a graph has 10% of vertices in Vlca, one can

expect a 10x improvement in the run time of Algorithm LCA-

BFS-BiCC compared to that of Algorithm BFS-BiCC of [12].

This is not the case in general for the following reasons.

Algorithm BFS-BiCC [12] introduces optimizations such as

truncating the BFS-like traversals that are deemed unnecessary,

invalidating the vertices of an already established biconnected

component, and the like. Algorithm LCA-BFS-BiCC also ben-

efits from these optimizations. However, these optimizations

mean that in Algorithm BFS-BiCC, even though most BFS

traversals are terminated early on, there is still redundant work

that is removed by using Algorithm LCA-BFS-BiCC. For ex-

perimental purposes, when the above mentioned optimizations

from BFS-BiCC are removed, we do notice that the speedup

achieved by Algorithm LCA-BFS-BiCC compared to that of

Algorithm BFS-BiCC is near the expected speedup.

In the BFS-BiCC approach [12], the choice of root vertex

affects the runtime of the level-truncated BFS. Since the

percentage of LCA-vertices (from TABLE II) are quite low

for real world graphs, it is observed by empirical study that

this choice would have minimum affect on the overall runtime

of LCA-BFS-BiCC.

VIII. CONCLUSIONS

In this paper, we have introduced a novel shared memory

parallel algorithm for identifying the biconnected components.

Our experimental results on wide variety of real-world graphs

indicate that our algorithm offers a considerable speedup over

the current best known implementation for identifying the

biconnected components on identical platforms.
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