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ABSTRACT

KEYWORDS: cevents in speech; event-based analysis; glottal closure event; vowel

onset point event.

This thesis proposes an event-based approach for the analysis of speech, and is inspired
by the nature of speech production. A sequence of changes takes place during the
production of speech. These changes are manifested in the speech signal and are
treated as events. From the speech production point of view, events indicate the
instants of significant activity, and hence important and discriminatory information
for the analysis of speech is present around the events. Events are used as the anchor
points, and analysis of the characteristics of the signal around the events is carried
out to develop new methods for processing speech. The event-based approach involves
defining the chosen event in terms of the changes that occur during the production of
speech, deriving methods for the detection of the event and developing methods based
on the chosen event for different applications of speech. The proposed event-based
approach is illustrated using two important events, namely, the Glottal Closure (GC)
and the Vowel Onset Point (VOP). The GC event is defined as the instant at which
the closure of vocal folds takes place within a pitch period. The VOP event is defined
as the instant at which the onset of vowel takes place.

The major contributions of the thesis are:

e Methods are discussed for the detection of the GC events.

A Method is proposed for the extraction of pitch in adverse conditions by ex-

ploiting the properties of the signal around the GC events.

A speech enhancement method based on the GC event information is proposed

for processing degraded speech collected over a single channel

A method for the estimation of time-delay between the speech signals collected
over a pair of spatially distributed microphones is developed using the GC event

information.

A method based on the GC event information is proposed to process degraded

speech signals collected from multiple microphones to produce enhanced speech.
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e A method for enhancing speech of the desired speaker from the speech collected in

a multispeaker environment is developed using the knowledge of the GC events.

e Methods for the detection of the VOP events are proposed using the GC events

as anchor points for the analysis of speech.

e A method for the detection of the end-points of a speech utterance is developed

using the knowledge of the VOP events.
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Chapter 1

INTRODUCTION

1.1 Objective of the Thesis

Speech is produced as a sequence of changes, and these changes are viewed as events
in this work. Important information for processing speech is present around the events
[1,2]. For effective representation and analysis of speech, it is useful to know what
these events are, and then extract and use the knowledge of such events for processing
speech. Conventional block processing approach processes speech in uniform blocks
of 10-30 ms, and it does not exploit the event nature of speech. This thesis proposes
an event-based approach for the analysis of speech. The focus is on identifying and
detecting some events occurring in speech and developing new methods for analysis
of speech using these events. By the nature of production of speech, the events are
generally high Signal-to-Noise Ratio (SNR) regions. By that we mean, level of signal
is high around the events compared to other places. Hence the proposed event-based
approach may provide robustness and may also result in improved performance, since

feature extraction and processing is anchored around the events.

1.2 Events in Speech

The dictionary meaning of the term ewvent is something that happens. Thus any

happening that draws the attention may be viewed as an event. Hence the term event



is used in different fields and even in case of speech itself in different contexts. To name
a few, in case of speech there are phonetic events and acoustic events. Any feature
which can be attributed to the activity of the speech organs is a phonetic event. For
instance, voicing and closure are phonetic events [3-5]. Any feature which is present in
the acoustic signal may be treated as an acoustic event. For instance, burst, frication
and Voice Onset Time (VOT) are the acoustic events. Thus so far in case of speech,
event indicates a property that exist over a region. In this work the term event is used
in a slightly different sense. Any significant change during the production of speech,
manifested in the acoustic signal is viewed as an event. One important deviation in
our definition of event is that event is an instant property, where as in the earlier
definitions event may represent a region property.

When information is to be conveyed, formulation of message takes place in the
mind of the speaker. The formulated message is coded using the sound units and
suprasegmental features of the language. The coded message generates a sequence of
neuromuscular commands. These commands change the shape of vocal tract system
and the nature of excitation, which results in the production of speech. The sequence
of changes in the shape of the vocal tract and the nature of excitation are reflected
as events in the speech signal. From the perception point of view, events and regions
around them are known to contain important information [1,6-26]. A brief discussion
about the significance of events for perception is given in Appendix—A.

Speech can be considered as a sequence of events, where an event can be interpreted
as change in some characteristics of speech production reflected in the speech signal.
The speech signal is also affected by the changes in the environmental characteristics
(noise, reverberation, other speech signals), microphone and channel characteristics.
In the present work, changes caused by deliberate attempt of producing speech alone
are considered as events. In defining events, changes with respect to time only are
considered. The changes occurring in the vocal tract system and the excitation source
characteristics may be viewed at various levels such as signal level, production level,
acoustic system level, phonetic level, sound unit level, suprasegmental level, speaker
level and language level.

At the signal level, changes in the time domain characteristics and changes in



the frequency domain characteristics as a function of time may be treated as events.
Each instant of significant excitation is an event at the signal level. Similarly, changes
in the formant (resonant) frequency values are also events at the signal level. At
the production level, speech may be characterized in terms of production features
such as voicing, aspiration, frication and burst. Onset of any of these features and
change from one feature to the other may be treated as events at the production level.
The characteristics of the vocal tract (acoustic) system depends on the positioning of
various articulators, which in turn decides the type of speech sound produced. The
changes in the positioning of articulators may be treated as events at the acoustic
system level. For instance, during the production of bilabial sounds, opening of lips
from initial closure is an event. At the phonetic level speech may be interpreted in
terms of sequence of phonemes such as consonants and vowels, and transition from one
phoneme to other may be treated as an event. Speech may also be viewed as a sequence
of sound units such as syllables. Onset of syllable and change from one syllable to the
other may be treated as events at the sound units level. By defining the onset and
changing characteristics of the suprasegmental features as events, it may be possible
to analyze and extract suprasegmental features in a better way. For example, onset of
raising and lowering of pitch contour may be treated as events at the suprasegmental
level. In a conversation of two or more speakers, change from one speaker to the other
is an event at the speaker level. In a multi-lingual scenario change from one language
to the other is an event at the language level.

As discussed above, speech may be viewed as a sequence of events at various levels,
and a summary of this discussion is given in Table 1.1. The present work focuses
on two events, namely, the Glottal Closure (GC) and the Vowel Onset Point (VOP)
events. The GC event is the instant at which the closure of vocal folds takes place
within a pitch period. The VOP event is the instant at which the onset of vowel takes

place. GC is an event at the signal level and VOP is an event at the phonetic level.

1.3 Event-based Analysis

The proposed event-based approach for analysis of speech involves the following steps:



Table 1.1: Grouping of events in speech and examples for each group.

Sl.No. | Category of event | Category of linguistic Examples of some events
unit
1 Signal Signal amplitude Instants of significant
excitation
2 Production Manner of articulation Onset of voicing,
burst, fricative
3 Acoustic system Gestural closure and Opening of lips,
release raising of velum
4 Phonetic Melodic properties Change from consonant
to vowel
5 Sound unit Syllable affiliation Change from one
syllable to other
6 Suprasegmental Tonal-metrical-prosodic tier | Onset of raising
or lowering of pitch
7 Speaker Idiolect identity Change from one speaker
to the other
8 Language Grammatical tier Change from one language
to the other
e Defining the event for study in terms of the changes occurring during the pro-

duction of speech.

edge of the event.

Observation of the speech signal to identify the changes around the event
Proposing a set of acoustic cues for the detection of the event.
Developing a method for the automatic detection of the event.

Proposing methods for processing speech for various applications using the knowl-

1.4 Significance of the GC and VOP Events

Knowledge of the GC events is useful for accurate estimation of pitch period. The
closed glottis interval starts at the GC event, and analysis of the speech signal in the
closed glottis interval provides an accurate estimate of the frequency response of the
vocal tract system [2,27]. The GC events may be used as pitch markers for prosodic

manipulation which is useful in several applications like text-to-speech synthesis, voice



conversion and speech rate conversion [28]. The GC event is useful in detecting events
at higher levels like VOP events [29]. Knowledge of GC events may be used for esti-
mating time-delay between speech signals collected over a pair of spatially distributed
microphones [30]. The SNR of speech signal is high around the GC events, and hence it
is possible to enhance speech by exploiting the characteristics of speech signals around
the GC events [31]. Enhancement of speech in a multispeaker environment may be
achieved by extracting the unique sequence of the GC events corresponding to each
speaker, and synthesizing speech using a modified excitation sequence [32].

As vowel is the nucleus of a syllable, segmentation of speech into syllable-like
units may be done better at the signal level with the knowledge of the VOP events
[29]. Knowledge of the VOP event helps in extracting a fixed duration pattern that
contains most of the necessary information for recognition of CV units [33]. The
regions immediately after the onset of vowel are less noisy than other regions. Hence
these regions can be used for time-delay estimation and enhancement of speech [30].
The VOP event may also be used for detection of end-points, which is important in

applications like text-dependent speaker verification [34].

1.5 Scope of the Present Work

The scope of this work is to illustrate the effectiveness of using the knowledge of
events for analysis of speech. The GC and VOP events are chosen to discuss various
issues involved in the proposed event-based approach. Since it is difficult to detect the
events directly from the speech signal under all conditions, a set of acoustic cues are
proposed. Methods for automatic detection of the GC and VOP events are discussed.
The knowledge of the GC and VOP events are used in the following studies:

e Extraction of pitch in adverse conditions.
e Enhancement of degraded speech collected over a single microphone.

e Estimation of time-delay between the speech signals collected over a pair of

spatially distributed microphones.



e Enhancement of degraded speech collected over a set of spatially distributed

microphones.
e Enhancement of speech of desired speaker degraded by speech of other speakers.

e Detection of end-points of a speech utterance.

1.6 Organization of the Thesis

The evolution of ideas presented in this thesis are listed in Table 1.2. The contents of
the thesis are organized as follows:

In Chapter 2, a review of the existing methods for detection of GC events, extrac-
tion of pitch, estimation of time-delay, enhancement of speech, detection of the VOP
events and detection of end-points is presented.

Chapter 3 discusses issues related to the detection of GC events. Identification
of acoustic cues for detection of GC events is explained. An algorithm for automatic
detection of GC events is discussed.

Chapter 4 illustrates the usefulness of GC events in two applications namely,
extraction of pitch and speech enhancement in single channel case. Using information
about GC events, a method is proposed for extraction of pitch in adverse conditions.
A method for enhancement of degraded speech collected over a single channel using
GC events is also proposed.

In Chapter 5 three more applications of GC events namely, estimation of time-
delay, speech enhancement in multichannel case and speech enhancement in multi-
speaker environment are discussed. A method for time-delay estimation between a
pair of spatially distributed microphones using GC events information is proposed.
A method based on the knowledge of GC events derived from the multiple micro-
phone signals for enhancement of speech is proposed. A method based on estimated
time-delays and GC events is proposed for enhancement of speech in multispeaker
environment.

Chapter 6 focuses on the detection of VOP events. Acoustic cues for the detection

of VOP events are proposed. An algorithm for automatic detection of VOP events is



proposed.

Chapter 7 proposes a method based on the knowledge of VOP events for detec-
tion of the end-points. The proposed end-points detection method is evaluated by
conducting speaker verification studies.

A summary of the present work is given in Chapter 8 by listing major contri-
butions of the present work and some directions for further research in the area of

event-based analysis of speech.



Table 1.2: Evolution of ideas presented in the thesis.

Event-based Analysis of Speech

Human beings produce speech as a sequence of events

Important information for processing speech is present around the events
Event-based approach is an attractive alternative to block processing
Steps in event-based analysis

— Defining the event for study

Visual observation of changes at the event
— Proposing acoustic cues for detection of the event
— Proposing a method for automatic detection of the event

— TIllustrating usefulness of the event for different applications
GC and VOP events are chosen for study
Acoustic cues for detection of the GC and VOP events
Automatic detection of the GC and VOP events

Applications of the GC and VOP events

Extraction of pitch in adverse conditions

— Enhancement of speech in single channel case

— Time-delay estimation

— Enhancement of speech in a multichannel case

— Enhancement of speech in a multispeaker environment

— Detection of end-points




Chapter 2

ISSUES IN SPEECH ANALYSIS -

A REVIEW

This chapter reviews some of the issues in the analysis of speech which are addressed
in the present work on event-based approach. Methods proposed in the literature for
detecting GC events are discussed in Section 2.1. The GC events are also termed as
epochs or instants of significant excitation, and hence these terms will be used inter-
changeably in this work. Using information about GC events, methods are proposed
for extraction of pitch, enhancement of degraded speech, multispeaker processing and
detection of VOP events. Section 2.2 discusses the existing methods for extraction
of pitch. Time-delay estimation methods proposed in the literature are discussed in
Section 2.3. Section 2.4 reviews methods for speech enhancement against background
noise and reverberation. Approaches for enhancement of speech in a multispeaker envi-
ronment are discussed in Section 2.5. Some methods have been proposed for detecting
VOP events, and these are reviewed in Section 2.6. Methods used for the detection
of end-points are discussed in Section 2.7. A summary of the issues discussed in this

chapter is given in Section 2.8.



2.1 Detection of GC Events

The first contribution to the detection of the GC event is due to Sobakin [35]. A
slightly modified version is proposed by Strube [36]. In Strube’s work, some predictor
methods based on Linear Prediction (LP) analysis for the determination of the GC
events are reviewed, which do not always yield reliable and unequivocal results. Then
Sobakin’s method using the determinant of the autocovariance matrix is examined
critically, and reinterpreted such that the determinant is maximum if the beginning of
the interval on which the autocovariance matrix is calculated coincides with the glottal
closure.

Method based on the decomposition of composite signals is proposed for epoch
extraction of voiced speech [37]. The general epoch filter theory is applied to the
outputs of models of voiced speech and to actual speech data. It is shown that the
points of excitation of the vocal tract can be precisely identified for continuous speech.
However this method is suitable for analyzing only clean speech. A large value in
LP residual is supposed to indicate the epoch location [38]. However, there are often
ambiguities in the direct use of the LP residual since samples of either polarity occur
around the epochs. A detailed study is made on the determination of the epochs from
the LP residual [27]. Finally a method for unambiguous identification of epochs from
the LP residual is proposed [27].

A least squares approach for glottal inverse filtering from the acoustic speech wave-
form is proposed [39]. In this work covariance analysis as a least squares approach for
accurately performing glottal inverse filtering from the acoustic speech waveform is
discussed. A method based on maximum-likelihood theory for epoch determination
is proposed for detecting the GC event [40]. The speech signal is processed to get
Maximum-Likelihood Epoch Detection (MLED) signal. The strongest positive pulse
indicates the GC event within a pitch period. However the MLED signal creates not
only a strong and sharp epoch pulse, but also a set of weaker pulses which represent
the suboptimal epoch candidates within a pitch period. Hence a selection function is
derived using the input signal and its Hilbert transform, which emphasizes the contrast
between the epoch pulse and the subpulses. Using MLED signal and selection signal
with appropriate threshold, the epochs are detected. The limitation of this method is

10



the choice of window for deriving the selection function and also the use of threshold
for deciding the epochs. A Frobenius norm approach to the detection of GC events
is also proposed [41]. In this work a new approach based on Singular Value Decom-
position(SVD) is proposed. The SVD method amounts to calculating the Frobenius
norms of signal matrices, and is therefore, computationally efficient. The limitation of
this approach is that it is shown to be working only for vowels. No attempt has been
made in detecting the GC events in difficult cases like nasals, voiced consonants and
semivowels.

A method for detecting the GC events in speech using the properties of minimum
phase signals and group delay functions is proposed [42,43]. The method is based on
the global phase characteristics of minimum phase signals. The average slope of the
unwrapped phase (phase slope) of the short-time Fourier transform of linear prediction
residual is calculated as a function of time. Instants where the phase slope function
makes a positive zero-crossing are identified as GC events.

The GC event is an instant property. But, in most of the methods discussed
above (except [27,43]), the GC events are detected by employing block processing
approach, which results in ambiguity about the precise location of the GC events. In
general, it is difficult to detect the GC events in case of low voiced consonants, nasals,
semivowels, breathy voices and female speakers. A summary of the discussion related

to the detection of GC events is given in Table 2.1.

Table 2.1: Summary of the review of detection of GC events.

e All the methods processes either the speech signal or the LP residual signal to
generate an output signal in which there will be prominent peaks at the GC events.
The output signal is interpreted properly to detect the location of the GC events.

e The limitation of existing methods (except [27,43]) is that even though GC event
is an instant property, they employ block processing, which results in ambiguity
about the precise location of the GC events.

e Methods ( [27,43]) based on the instant property will detect the GC events with
high accuracy.

11



2.2 Extraction of Pitch

There are several algorithms proposed in the literature for the extraction of pitch.
These algorithms may be broadly classified into three categories [44], namely, algo-
rithms using time domain properties, algorithms using frequency domain properties
and algorithms using both time and frequency domain properties of speech signals.
The algorithms based on time domain properties operate directly on the speech signal
to estimate pitch. Most often, the measurements for these algorithms are peak and
valley detection, zero-crossings and autocorrelation. The basic assumption is that if
a quasiperiodic signal has been suitably processed to minimize the effects of formant
structure, then simple time domain measurement will provide good estimate of pitch
period. The algorithms based on frequency domain properties of speech signals as-
sume that if the signal is periodic in the time domain, then the frequency spectrum
of the signal contains a series of impulses at the fundamental frequency and its har-
monics. Thus simple measurements can be made on the frequency spectrum of the
signal or a nonlinearly transformed version of it, as in the cepstral method [45], to esti-
mate the pitch period of the signal. In the third category, frequency domain approach
may be used to spectrally flatten the time domain signal, and then an autocorrelation
measurement is used for the extraction of pitch.

The cepstrum method for extraction of pitch utilizes the frequency domain prop-
erties of speech signals [45]. In the short-term spectrum of a given voiced frame, the
information about the vocal tract appear as slowly varying component, and that of
the excitation source as high frequency variations. These two components may be
separated by considering the logarithm of the spectrum, and then applying inverse
Fourier transform to obtain the cepstrum. This operation transforms the information
from frequency domain to cepstral domain, which has a strong peak corresponding to
the pitch period of the voiced speech frame being analyzed.

Simple Inverse Filtering Technique (SIFT) algorithm uses both time and frequency
domain properties of the speech signal [46]. In the SIFT algorithm, speech signal
is spectrally flattened and autocorrelation analysis is performed for the extraction of
pitch. Due to spectral flattening, a prominent peak will be present at the pitch period

of the voiced speech frame being analyzed.
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Most of the existing methods for extraction of pitch work well for clean speech,
and their performance will degrade severely for degraded conditions. This is because,
peaks in autocorrelation function or cepstrum may not be prominent or unambiguous
due to degradations. A summary of the discussion related to the extraction of pitch

is given in Table 2.2.

Table 2.2: Summary of the review of extraction of pitch.

e Existing methods processes speech either in time domain or frequency domain or
both for the extraction of pitch.

e Performance of existing methods will be poor for degraded conditions.

o Knowledge of GC events may be used for the extraction of pitch.

2.3 Estimation of Time-Delay

The problem of time-delay estimation has been handled traditionally by exploiting
spectral characteristics of speech signals [47,48]. Three broad strategies used in these
studies are [49]: (1) Steered response power of a beamformer, (2) high resolution
spectrum estimation, and (3) time difference of arrival estimation. In the steered
beamformer the microphone array is steered to various locations to search for a peak
in the output power. The delay and sum beamformer shifts the array signals in time
to compensate for propagation delays in the arrival of the source signal at each micro-
phone. In this case the signals are time aligned and summed together to form a single
output signal. Sophisticated beamformers apply filtering to the array signals before
time alignment and summing. These beamformers depend on the spectral content of
the source signal. A priori knowledge of the independent background noise is used to
improve the performance [50].

The second category of time-delay estimators based on high resolution spectrum

estimation use spatio-spectral correlation matrix derived from the signals received at
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the microphones. This matrix is derived using an ensemble average of the signals
over the intervals in which noise and speakers are assumed to be stationary, and their
estimation parameters are assumed to be fixed [51]. But in the case of speech these
assumptions are not valid. These high resolution methods are designed for narrowband
stationary signals, and hence it is difficult to apply them for wideband nonstationary
signals like speech.

Methods based on Time Differences of Arrival (TDOA) estimation are more suit-
able for time-delay estimation than the previous two approaches [49]. For accurate
estimation of time-delays, weighted Generalized Cross-Correlation (GCC) method is
often used [52]. The method relies on the spectral characteristics of the signal. Since
the spectral characteristics of the received signal are modified by the multipath prop-
agation in a room, the GCC function is made more robust by deemphasizing the
frequency-dependent weightings [53]. Phase transform is one approach where the mag-
nitude spectrum is flattened. However low SNR portions of the spectrum are given
equal emphasis as those of high SNR portions. Cepstral prefiltering used to reduce the
effects of reverberation, is also difficult to apply for speech signals due to the nonsta-
tionary nature of the signal [54]. Moreover, this approach is not suitable for estimating
time-delays from short (50-100 ms) segments, which is essential for tracking a moving
speaker.

Most of the methods for time-delay estimation rely on spectral characteristics of the
speech signal, and the knowledge of degrading noise and environment. The spectrum of
the received signal depends on how the waveform gets modified due to distance, noise
and reverberation. Therefore, the performance of a time-delay estimation method
depends on how the effect of the degrading components is minimized. A summary of

the discussion related to the estimation of time-delays is given in Table 2.3.

2.4 Enhancement of Degraded Speech

When speech is transmitted in an acoustical environment like an office room, it will
be degraded by background noise and reverberation [55,56]. Several approaches have

been proposed in the literature for enhancement of degraded speech [31,57-66]. These
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Table 2.3: Summary of the review of estimation of time-delays.

e Existing methods rely on the spectral characteristics for the estimation of time-
delays.

e Performance depends on how the effect of degradation is minimized in the collected
signals.

e Knowledge of excitation source information (GC events) may be used for the
estimation of time-delays.

approaches may be broadly classified into single and multichannel cases, depending on
whether the speech is collected from a single or multiple microphones.

Enhancement techniques can be grouped into two categories. In one category,
attempts are made to cancel the effects of degrading components, and in the other
category, attempts are made to enhance the speech components. In the first case,
the emphasis is on improving the overall SNR of the degraded speech [57,60,62]. In
this case more attention is given to the low SNR regions of speech. When attempting
to reduce the effects of degradation in these regions, the natural characteristics of
speech are affected, sometimes causing significant distortions. In the second case,
the objective is to enhance the speech signal wherever possible, so that the resulting
speech is perceived as less noisy and less reverberant, and thus increase the comfort
level for listening. This is achieved by identifying and enhancing the high SNR regions
(31,63, 64].

Knowledge of either the vocal tract system (spectral) features or the excitation
source information may be used for speech enhancement. Many of the existing en-
hancement methods are based on spectral features [57,60,62,67,68]. For instance,
one approach is to estimate the spectral features of noise, and subtract these from the
spectrum of the degraded speech signal [57]. Changes in the spectral characteristics
may introduce audible distortions. Alternatively, manipulation of the excitation source
alone may introduce minimal distortion, as spectral components are not affected.

In some earlier methods of using the excitation source information for speech en-
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hancement, LP residual is used to identify and enhance high SNR regions [31,63,64].
These methods were developed for speech enhancement for a single channel case, in
which the enhancement is achieved mainly with respect to background noise. Only
partial success was achieved in reducing the effects of reverberation. One way to deal
with reverberation is to identify different regions in the degraded speech, such as re-
gions with high Signal-to-Reverberant component Ratio (SRR), low SRR and only
reverberations and enhance only the high SRR regions [31].

The enhancement of speech may also be achieved using the knowledge of GC events.
This is because the high SNR regions of a speech signal are due to the GC events. GC
events are known to be robust against environmental degradations [30]. The locations
of GC events along the time scale do not change due to degradations. Enhancement
against reverberation may be more effective if signals from several microphones are

used. A summary of the discussion related to the enhancement of speech is given in

Table 2.4.

Table 2.4: Summary of the review of enhancement of speech.

e Estimating the degrading components and minimizing there effect in the degraded
speech.

e Difficult to estimate time-varying degradation components.

e Speech specific knowledge may be used for the identification and enhancement of
speech.

2.5 Enhancement of Speech in Multispeaker Envi-

ronment

In multispeaker environments like meetings and discussions, several speakers will be

speaking simultaneously. The signal collected by a microphone in such conditions
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is a mixture of speech from several speakers. Several methods have been proposed
for enhancement of speech in a multispeaker environment [69-74]. These methods
may be broadly classified into two categories, namely, single channel and multichannel
cases. The single channel method is commonly termed as cochannel speaker separation.
The implicit assumption in cochannel speaker separation is that there are only two
speakers, and between them one is the desired one. In the multichannel case signals
from all the microphones are processed to enhance speech of the desired speaker. This
approach seems to be inspired by the binaural processing present in humans [74]. In
the multichannel case speech of two or more speakers may be enhanced using signals
from multiple microphones [73].

Several pitch-based algorithms have been proposed for cochannel speaker separa-
tion [69-71]. The assumption made in these studies is that pitch of the desired speaker
and that of the interfering speaker are quite distinct, and the pitch contours are re-
solvable. The speech energy of a particular speaker is concentrated at his/her pitch
harmonic frequencies. If the spectrum is sampled at the desired speaker’s pitch har-
monics, most of the energy of the spectrum samples would correspond to that speaker’s
voice. After obtaining harmonic amplitudes, the time domain waveform is reproduced
using the synthesis algorithm. Harmonic Magnitude Suppression (HMS) technique
for speech separation was proposed in [75]. Enhancement of speech of the desired
speaker was achieved by estimating the interfering speech spectra and subtracting
the same from the combined speech spectra by spectral subtraction approach. Lee
and Childers [70] proposed a Minimum-Cross-Entropy Spectral Analysis (MCESA)
approach for cochannel speaker separation. The MCESA is an information-theoretic
method that simultaneously estimates the power spectrum of one or more independent
signals, when a prior estimate of each is available. Quatieri and Danisewicz have pro-
posed a method based on sinusoidal modeling of speech [76]. A least squares estimate
algorithm was used to determine the sinusoidal components of each of the speakers,
and the speech of the desired speaker was synthesized using the corresponding sinu-
soidal components. Morgan et al [71] have proposed a method for cochannel speaker
separation termed as Harmonic Enhancement and Suppression (HES). The pitch of

the stronger speaker was estimated first, and it was used for recovering his/her har-
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monics and formants. The weaker speaker information was obtained after suppressing
the stronger speaker harmonics and formants information from the cochannel signal.

A method for enhancing speech of a speaker, while attenuating speech from other
speakers using an array of microphones was proposed in [72]. A class of nonlinear
processes using a microphone array was proposed, which emphasizes the wanted speech
signal relative to the unwanted signals from other locations. The unwanted signals
were attenuated and distorted, while the wanted speech signal was unaffected. When
the unwanted signal is speech, the distortion makes it less intelligible. The problem
of multispeaker speech enhancement in a multichannel case is also termed as Blind
Source Separation (BSS). BSS consists of retrieving the source signals without using
any a priori information about mixing of the signals. It exploits only the information
carried by the received signals themselves, hence the term blind. Neural network
models and learning algorithms for blind signal separation and deconvolution of signals
are discussed in [77]. A method for multichannel signal separation using a dynamical
recurrent network is proposed in [78]. Estimation of speech embedded in a reverberant
environment with multiple sources of noises is proposed in [74,79]. The objective of this
work is to make a specific speech signal more intelligible than the available microphone
signals. An attempt is made to enhance the signal nearest to the microphones, which
is the signal with high energy. This is achieved by mimicking the inner ear, through
the use of a bank of self-adaptive band-pass wavelet filters, tracking of the fundamental
frequency and by masking some parts of the speech with low energy.

In most of the existing methods knowledge of pitch is used for deriving the in-
formation related to each speaker. But reliable estimation of pitch in a multispeaker
environment is a difficult task. A summary of the discussion related to the enhance-

ment of speech in multispeaker environment is given in Table 2.5.

2.6 Detection of VOP Events

A method is proposed based on the assumption that the VOP events are characterized
by the appearance of rapidly increasing resonance peaks in the amplitude spectrum

[80]. A method for detection of VOP events is developed using zero-crossings, energy
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Table 2.5: Summary of the review of enhancement of speech in multispeaker environ-
ment.

e Estimation of pitch and enhancement of speech desired speaker using the knowledge
of the pitch.

e Difficult to estimate pitch in mutlispeaker environment.

e Knowledge of GC events may be used for the enhancement of speech of the desired
speaker.

profile and pitch information [81]. The difficulty in using zero-crossings and energy
profile for detecting VOP events lies in setting appropriate thresholds. A method
based on wavelet transforms is developed for the detection of VOP events [82]. In this
method, product function of the wavelet and the energy profile is used for detecting
VOP events [82]. A method using energy derivative is proposed for the detection
of VOP events [33]. For a given sound unit, the energy and its first derivative are
obtained. The instants of maximum energy derivative are hypothesized as VOP events.
The limitation of this method is that for some sound units like aspirated sounds and
fricatives, the peak in the energy derivative may occur at the onset of aspiration or
frication which is ahead of the VOP event. A neural network based approach is also
proposed for the detection of the VOP events [83]. The acoustic cues, namely, signal
energy, LP residual energy and spectral flatness are used as features in the algorithm.
A multilayer perceptron network is trained using the features extracted from these cues
to detect the VOP events. The assumption is that there will be significant changes in
these acoustic cues in the regions before and after the VOP event. But, for some sound
units like semivowels, nasals and aspirated sounds, the change may not be significant.

In all the existing methods, the VOP events are detected by extracting the vocal
tract system features at the frame level, which results in poor resolution. A summary

of the discussion related to the detection of VOP events is given in Table 2.6.
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Table 2.6: Summary of the review of detection of VOP events.

e In the existing methods vocal tract system features are used and block processing
is employed.

e Detected VOP events will have poor resolution.

e Fxcitation source information may also used for the detection of the VOP events.

2.7 Detection of End-points

The need for accurately detecting the end points of a speech utterance is important
in many applications like isolated word recognition, connected digit recognition and
text-dependent speaker verification [34,84-90]. In all these applications detection of
end-points is the first step for selecting the speech regions in the given utterance.
Once the end points are located, feature vectors are extracted from the signal present
between these points and used for further processing.

The performance of the system in which end-points detection is used as the first
stage, depends critically on the accuracy of detection of the end-points [34,90]. The
computation process is minimum if the end-points are accurately detected. Hence
there is a need for an algorithm for accurate detection of end-points. There are many
algorithms proposed in the literature for detection of end-points [91-94]. All of them
are based mainly on the energy of the speech utterance, and the decision for end-
points is made using multiple thresholds. However, deriving appropriate thresholds
is difficult under noisy conditions. Some algorithms also use the knowledge of pitch
along with energy for end-points detection [95]. A summary of the discussion related

to the detection of end-points is given in Table 2.7.
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Table 2.7: Summary of the review of detection of end-points.

e Fxisting methods use knowledge of energy and pitch.

e VOP events may be used for detection of end-points.

e Extraction of energy and pitch is still a difficult task under degraded conditions.

2.8 Summary

We have discussed some issues in the analysis of speech related to the present work.

Most of the existing analysis methods (except [27,43]) employ block processing. The

goal of this work is to show that the proposed event-based approach is useful in many

applications. A summary of the review of different issues discussed in this chapter is

given in Table 2.8.

Table 2.8: Summary of the review of some issues in the analysis of speech.

Speech analysis task

Review of existing methods

Proposed method

Detection of the GC events

Employ block processing
except for [27,43]

Methods proposed in [27,43]
exploit event nature and
are discussed

Extraction of pitch

Performance will be poor
for degraded conditions

Knowledge of the GC events
is used, which are robust
to degradations

Estimation of time-delay

Employ block processing
and use spectral features

Event-based approach
and uses source information
derived from GC events

Enhancement of speech

Employ block processing
and use spectral features

Based on source information
derived from GC events

Detection of the VOP events

Employ block processing
and use spectral features
representing vocal tract
information

Exploits event nature
of vowel onset

Detection of end-points

Employ block processing
and energy threshold

Knowledge of VOP events
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Chapter 3

GLOTTAL CLOSURE EVENT

FOR SPEECH ANALYSIS

In Chapter 1, the event nature of speech production and its potential use for an event-
based analysis of speech was discussed. The GC and VOP events were chosen to discuss
the issues related to the proposed event-based approach. In the previous chapter we
reviewed some of the issues in the analysis of speech, which is performed mostly by
block processing. Since the objective of this work is to propose methods using the
event-based approach, the first step is to detect the events in speech signal so that they
can be used as anchor points for further analysis. This chapter discusses the issues
involved in the detection of GC events. The GC is an event at the microlevel, around
which significant information about excitation source as well as vocal tract system is
present. The quasiperiodic nature of occurrence of GC events provides an important
perceptual feature for speech, namely pitch. Pitch and associated variations contain
important information about speech, speaker and language. Therefore GC events may
be used as anchor points for analysis of speech.

This chapter is organized as follows: Various issues involved in the detection of GC
events are discussed in Section 3.1. Acoustic cues derived from LP residual that are
useful for the detection of GC events are discussed in Section 3.2. In Section 3.3, man-
ual detection of GC events using the proposed acoustic cues is explained. Section 3.4

discusses a method for accurate detection of GC events. There are applications where
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approximate information about GC events is sufficient for analysis. Section 3.5 dis-
cusses the realization of approximate GC event information. The discussion related to

the detection of GC events is summarized in Section 3.6.

3.1 Issues in the Detection of GC Events

Although the source of excitation for voiced speech is a sequence of glottal pulses,
the significant excitation of the vocal tract system, to a first approximation can be
considered to occur at discrete instants of time, called the GC events. Due to this,
ideally within each pitch period, the instant prior to the maximum amplitude of the
speech signal may correspond to the GC event. However responses due to successive
excitations overlap, forming a composite signal, which makes the detection of the GC
event difficult in the speech signal. For instance, segments of speech signals of vowel
/i/ spoken by different speakers are shown in Figure 3.1. The question (?) marks
indicate the regions of ambiguity for marking the GC events.

As it is difficult to identify the GC events directly from the speech signal, the other
mostly used approach is to inverse filter the speech signal. The parameters of the
inverse filter are obtained by LP analysis [96]. A brief discussion on LP analysis is
given in Appendix-B. In LP analysis, the voiced speech is assumed to be the output
of an all-pole filter. Hence, the prediction will be good at all places except the GC
events, due to which the output of the inverse filter shows large error around the GC
events. Figure 3.2 shows the LP residuals for the speech segments shown in Figure 3.1.

Although the LP residual contains information pertaining to the excitation, iden-
tification of GC events directly from the LP residual is not recommended due to the
following problems [27]: LP analysis assumes an all-pole model for representing the
combined effect of impulse response of the vocal tract system and the glottal pulse
shape. The all-pole model implicitly assumes a minimum phase characteristic of the
speech signal. If this is not valid, the phase response of the vocal tract system is not
compensated exactly by the inverse filter. Phase compensation will also be affected
when formants and their bandwidths are not estimated accurately. Effect of uncom-

pensated phase on LP residual is not known. Moreover, the inverse filter does not
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Figure 3.1: Speech segments of vowel /i/ of two male ((a) and (b)) and two female ((c) and
(d)) speakers. The question (?) marks indicate the regions of ambiguity for marking the GC
events.

compensate for zeros which may be introduced due to the finite duration of glottal
pulse or the nasal coupling. These factors cause multiple peaks of either polarity to
occur in the LP residual, and make the estimation of the epochs from the LP residual
difficult. The presence of multiple peaks of either polarity around the GC events is
shown by question (?) marks in Figure 3.2.

There are sounds like nasals and voiced stop consonants where it is more difficult to
detect the GC events from the LP residual. In the case of nasals like /m/, due to poor
modeling by LP analysis, the inverse filter does not compensate for zeros introduced
due to the nasal coupling. As a result, peaks of either polarity occur around the
GC events. This makes it difficult to detect the GC events unambiguously from the
LP residual. This is illustrated for nasal /m/, both for male and female speakers in
Figure 3.3. In the low voiced stop consonants like /b/, it is even difficult to define the
GC events, let alone detect it. Figure 3.4 shows speech signals and the corresponding

LP residuals for voiced consonant /b/. Due to loading of the vocal tract system, the
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Figure 3.2: LP residuals of the speech segments of vowel /i/ shown in Figure 3.1. The
question (?) marks indicate the regions of ambiguity encountered for marking the GC events.

strength of excitation at the GC events is comparable to that at other places.
Further the ambiguity for the detection of the GC events is more in the case
of female speakers. This may be attributed to the following factors: The following
factors may be attributed for this: As the pitch frequency is higher, the assumption
of quasistationary for analysis of speech over segments of 10-30 ms is no longer valid.
Hence the estimation of characteristics of the vocal tract will be poor. The vocal folds
will be vibrating at a faster rate, and hence the closed phase interval is minimum, and
even nonexistent in some cases. To make this happen the suction pressure with which
the vocal folds will be closing is low. Hence the strength of excitation will be weak,

which in turn produces low error at the GC events in the LP residual.

3.2 Acoustic Cues for the Detection of GC Events

Multiple peaks of either polarity are present around the GC events, thus causing am-
biguity in the detection of GC events directly from the residual. Hence some acoustic
cues derived from the LP residual in which the evidence about GC events is less am-

biguous, are essential for detecting the GC events. This section discusses the acoustic
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Figure 3.3: Speech segments and LP residuals of nasal /m/ of male ((a) and (b)) and female
((c) and (d)) speakers.

cues, namely, magnitude of LP residual, energy of LP residual, LP residual of low pass
filtered speech and Hilbert envelope of LP residual, which are useful for the detection

of GC events.

3.2.1 Magnitude of LP Residual

The magnitude of LP residual approximately represents the strength of excitation and
hence may be used as an acoustic cue for detecting the GC events. Speech segment of
vowel /u/, the corresponding LP residual and magnitude of LP residual are shown in
Figure 3.5. The ambiguity due to peaks of either polarity is minimized. The region of
GC events may be detected by considering the peaks in the magnitude plot.

3.2.2 Energy of LP Residual

A smoothed version of magnitude of LP residual may be obtained by computing the
energy of the LP residual. Energy is computed by considering frames of smaller size,
typically, 1 ms, with a shift of one sample. Peaks in the energy plot approximately

indicate the location of the GC events. Figure 3.6 shows a segment of vowel /u/,
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Figure 3.4: Speech segments and LP residuals of voiced stop consonant /b/ of male ((a)
and (b)), and female ((c) and (d)) speakers.

corresponding residual and the energy plot. The ambiguity in the energy plot is less
as it is a smoothed version of the magnitude. However, the resolution is still poor for
the detection of GC events. This is because energy is computed over a frame which

only indicates a region over which the GC event is present.

3.2.3 LP Residual of Low Pass Filtered Speech

In each pitch period, the region around GC event is known to be high SNR region. The
ambiguity for the detection of GC events may be reduced by eliminating the variations
present in low SNR regions. As the high SNR components in speech are present upto
2 kHz, the speech signal may be low pass filtered with a cut-off frequency of 2 kHz,
and the LP residual may be computed from the low pass filtered speech. Figure 3.7
shows a segment of speech of vowel /u/, its LP residual and the LP residual computed
from the speech low pass filtered using a cut-off frequency of 2 kHz. It can be seen
that the ambiguity for detection of GC instants is less in the LP residual of the low

pass filtered speech, when compared to the LP residual of original speech.
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Figure 3.5: (a) Speech segment of vowel /u/, corresponding (b) LP residual and (c¢) magni-
tude of LP residual.
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Figure 3.6: (a) Speech segment of vowel /u/, corresponding (b) residual and (c) energy.

3.2.4 Hilbert Envelope of LP Residual

A better method to detect GC events is to exploit the property that the GC events
are impulse-like excitations, and the strength of excitation in voiced speech is large
around the GC event. This can be seen by computing the energy in short (1 ms)
intervals of the residual. Ideally it is desirable to derive an impulse-like signal around
the GC event. A close approximation to this is possible by using Hilbert envelope
of the LP residual, instead of the energy in short intervals of time. Even though the
real and imaginary parts of an analytic signal (related through the Hilbert transform)

have positive and negative samples, the Hilbert envelope of the signal is a positive
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Figure 3.7: (a) Speech segment of vowel /u/, corresponding (b) residual, and (c) residual
of low pass filtered speech (cut-off frequency of 2 kHz).

function, giving the envelope of the signal [97]. For example, the Hilbert envelope
of a unit sample sequence or its derivative has a peak at the same instant. Thus the
properties of Hilbert envelope can be exploited to derive the impulse-like characteristics
of the GC events. The Hilbert envelope h.(n) of the LP residual e(n) is defined as
follows [27,30,97]:

he(n) = y/e2(n) + ei(n) (3.1)

where e, (n) is the Hilbert transform of e(n), and is given by [27]

IDFT|—jE(w)], 0O<w<m
en(n) =43 IDFT[jE(w)], 0>w> -7 (3.2)
0 w=0,m

where IDFT is the Inverse Discrete Fourier Transform, and E(w) is the discrete Fourier

transform of e(n). A discussion on the Hilbert transform relations is given in Appendix-
C.

Figure 3.8 shows a segment of LP residual for vowel /u/, its Hilbert transform and

the Hilbert envelope. The peaks in the Hilbert envelope indicate the epoch locations.

Also, as there is no smoothing involved in eliminating multiple peaks around the

epochs, the GC events are detected with high resolution.
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Figure 3.8: (a) Speech segment of vowel /u/, corresponding (b) residual, (c) Hilbert trans-
form of the LP residual and (d) Hilbert envelope of the LP residual.

3.2.5 Summary of the Acoustic Cues

The magnitude and energy of LP residual indicate only the region over which the
GC event may be present, but the GC event is associated with an instant. The
LP residual of the low pass filtered speech will also provide poor resolution due to
downsampling. The Hilbert envelope of LP residual provides high resolution compared
to other acoustic cues in most of the cases. Thus, acoustic cues such as magnitude of
LP residual, energy of LP residual and LP residual of low pass filtered speech may be
used to identify the approximate region of the GC events, and the Hilbert envelope of
the LP residual may be used to mark the GC event.

3.3 Manual Detection of GC Events

The objectives of manual detection of the GC events are: (1) to understand the diffi-
culties involved in the detection of GC events, (2) to observe the signal characteristics
around the GC events and (3) to identify the acoustic cues which may be useful for
automatic detection of the GC events. Manually, the GC events are detected as the

instants at which most of the cues show peak in each pitch period. In particular,
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magnitude of LP residual, energy of LLP residual and LP residual of low pass filtered
speech are used for initial identification of the region of the GC events. Finally, the
GC events are marked by referring to the peaks in the Hilbert envelope of the LP
residual in these regions.

Speech segment of vowel /i/, its LP residual and the proposed acoustic cues derived
from the LP residual are shown in Figure 3.9. The GC events are marked by referring
to the acoustic cues. It is interesting to note that even though information about the
GC events are manifested well in all the cues, the resolution in the case of Hilbert
envelope of LP residual is high. Figures 3.10 and 3.11 show speech segments of nasal
/m/, their residual and the acoustic cues computed for male and female speakers,
respectively. In this case, the manifestation of epoch information in the magnitude of
LP residual is poor due to poor modeling. Energy of LP residual and LP residual of
the low pass filtered speech indicate the region over which the GC events are present.

The GC events are marked by referring to the Hilbert envelope of LP residual.
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Figure 3.9: (a) Speech segment of vowel /i/ with manually marked GC events (shown by
1), and its (b) LP residual, (c) magnitude of the LP residual, (d) energy of the LP residual,
(e) LP residual of the low pass filtered speech and (f) Hilbert envelope of the LP residual.
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Figure 3.10: (a) Speech segment of nasal /m/ of male speaker with manually marked GC
events (shown by 1), and its (b) LP residual, (c) magnitude of the LP residual, (d) energy
of the LP residual, (e) LP residual of the low pass filtered speech and (f) Hilbert envelope
of the LP residual.
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Figure 3.11: (a) Speech segment of nasal /m/ of female speaker with manually marked GC
events (shown by 1), and its (b) LP residual, (c) magnitude of the LP residual, (d) energy
of the LP residual, (e) LP residual of the low pass filtered speech and (f) Hilbert envelope
of the LP residual.
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3.4 Automatic Detection of the GC Events

This section discusses a method for automatically detecting the GC events from voiced
speech using the group delay functions proposed in [42,43]. The method is based
on global phase characteristics of minimum phase signals. The average slope of the
unwrapped phase of short-time Fourier Transform (FT) of LP residual is computed as
a function of time. This average slope obtained as a function of time is termed as the
phase slope function. Instants where the phase slope function makes a positive zero
crossing are identified as the GC events.

Consider a unit sample sequence delayed by 7 samples. The FT of the sequence
is exp(—jwr). The FT phase function is ¢(w) = —w7 and its negative derivative
is —¢'(w) = 7. Thus the phase function has a constant slope which corresponds to
the delay of the unit sample in the time domain. Let us assume an analysis window
enclosing the unit sample. As the window is moved to the right or left, the delay of the
unit sample changes with respect to the position of the window. The average value of
the negative derivative of the FT phase (group delay function) varies linearly with the
position of the window. The instant at which the phase slope function crosses zero is
identified as the delay of the unit sample in time domain.

Now consider a delayed damped sinusoid. The average value of the derivative of
the phase (phase slope) is equal to the delay of the window. As the analysis window
is moved, the phase slope value varies linearly with time. In general a minimum phase
signal starting at time ¢t = 0 has the property that its average value of the unwrapped
FT phase spectrum is zero. If the signal is delayed, then the average slope of the phase
spectrum is proportional to this delay. This is the basis for the proposed method for
the detection of the GC events.

If X(w) and Y (w) are the Fourier transforms of the windowed signal z(n) and

nx(n), respectively, then the group delay (—¢'(w)) is given by [98]

_ XpYgr+ XY

) =7lw) = T (33)

where Xp + jX; = X(w) and Y + jY; = Y(w). Isolated peaks in 7(w) are removed
by using a three-point median filter. The average value of the smoothed 7(w) is

computed. The resulting phase slope function is computed by moving the analysis

33



window by one sample at a time. The positive zero crossing instants of the phase
slope function correspond to the instants of significant excitation. The steps involved
in the detection of GC events are illustrated for a segment of vowel /i/ in Figure 3.12.

The algorithm for determining the GC events is given in Table 3.1.
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Figure 3.12: (a) Waveform of speech segment of vowel /i/, its (b) LP residual, (c) phase
slope function and (d) extracted GC events.

In the present study, after determining the instants of significant excitation, some
of the spurious instants are eliminated by using the algorithm given in Table 3.2.
The spurious instants correspond to noise excitations in nonspeech region, excitations
like onset of burst in unvoiced speech, and secondary excitations (instants of glottal
opening) within a pitch period in voiced speech. Figure 3.13 shows the utterance of
unvoiced aspirated velar consonant vowel /kha/, its LP residual, phase slope function,
extracted instants and the instants after removing the spurious ones.

The algorithm is found to be robust, and is capable of detecting the GC events
accurately even in continuous speech with some degradation. For instance, a continu-
ous speech signal and the detected GC events are shown in Figure 3.14. All the GC
events are detected accurately. The detected GC events for a speech signal degraded
by background noise and reverberation are shown in Figure 3.15. Even under degra-

dation the algorithm detects the GC events accurately, and there are no missing GC
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events.

Table 3.1: Algorithm for extracting the GC events.

Preemphasize the speech signal.

Compute the LP residual using a frame size of 10 ms, frame
shift of 5 ms and 10" order LP analysis.

Compute the group delay (—¢'(w)) for each frame of the
residual signal of size 10 ms and frame shift of one sample

using the relation
— _ XrYRr+X1Y]
_¢’(w) - T(w) - RX121:+X121 L

where Xg + j X1 = X(w) and Yr + jY; =Y (w)
X (w) is the Fourier transform of z(n) whose group delay is

required and Y (w) is the Fourier transform of nz(n).
n=20,1,2,---,N and N — 1 is length of z(n).

Smooth the group delay function using a median filter of order

3 for removing the unwanted peaks.

Find the average group delay for each frame which is the
required phase slope function.

Smooth the phase slope function with a Hamming window of
order 8.

Identify the positive zero crossings as GC events.
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Table 3.2: Algorithm for removing the spurious instants.

Eliminating spurious instants in nonspeech region:

— Compute frame energies of the speech signal.

— Eliminate instants in the frames having energy

less than 30 dB of the maximum frame energy.

Eliminating spurious instants in speech region:

LEVEL-I:

— Compute the strength of instants using

Hilbert Envelope of the LP residual. The amplitude of
Hilbert envelope at the given instant is its strength

— Eliminate the present instant, if its strength is less than
the strengths of both previous as well as next instants, and its
value is less than 0.25 times the maximum strength.
LEVEL-II:

— Compute the epoch intervals, which is the time difference
between successive GC events.

— Compute average value of the epoch intervals.

— Eliminate the present instant, if its interval with respect to
previous as well as next instant is less than 0.7 times

the average epoch interval.
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Figure 3.13: (a) Speech signal of /kha/ and its, (b) LP residual, (c) phase slope function, (d)

extracted instants of significant excitation and (e) GC events after eliminating the spurious

ones.
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Figure 3.14: (a) Continuous speech signal and its (b) LP residual, (c) phase slope function
and (d) GC events after eliminating the spurious ones.
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Figure 3.15: (a) Degraded speech signal and its (b) LP residual, (c) phase slope function
and (d) GC events after eliminating the spurious ones.
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3.5 Approximate Information of GC Events

In the previous section a method for accurate detection of GC events was discussed.
However, there are many applications in which even approximate location of GC
events, but extracted in a computationally efficient manner, may be sufficient. Among
the acoustic cues proposed for the detection of GC events, Hilbert envelope of LP
residual provides better resolution, and the peaks in the Hilbert envelope indicate the
approximate locations of GC events. For instance, for a segment of vowel /i/, the
GC events detected by group delay based approach and the GC events from Hilbert
envelope of LP residual are shown in Figure 3.16. For comparison, the GC events
detected by the group delay based approach are weighted by their strength. As it can
be seen from the figure, the peaks of the Hilbert envelope correspond to the region of

GC events.

5000 T T T T T T T 3

Oiﬁ M A[Lmuf\m NAAJL Mmf[\ M‘J/\m 1€
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Figure 3.16: (a) Segment of vowel /i/, (b) LP residual, (c) GC events detected by the group
delay based approach, (d) GC events weighted by their strength and (e) Hilbert envelope of
the LP residual.

The Hilbert envelope of LP residual is robust, as it detects the GC events even
for degraded speech. A speech signal, the detected GC events using the group delay
approach and Hilbert envelope of LP residual are shown in Figure 3.17. The Hilbert

envelope of LP residual indicates that the GC events appear near the correct locations
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determined by the group delay based approach. The detected GC events for degraded
speech are shown in Figure 3.18. It is interesting to note that even in the case of
degradation, the GC events are detected in the Hilbert envelope of the LP residual

with high resolution.
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Figure 3.17: (a) Continuous speech signal, (b) LP residual, (c) GC events detected by the
group delay based approach and (d) Hilbert envelope of the LP residual.

As will be discussed in the following chapters, approximate information of GC
events is sufficient for several applications like the extraction of pitch, estimation of
time-delay, enhancement of degraded speech and enhancement of speech in multi-
speaker environment. It is interesting to note that various properties of the excitation
source and the vocal tract system can be studied knowing even the approximate infor-
mation of GC events. In the present work, we use the group delay based approach in
applications where accurate location of GC events is needed, and Hilbert envelope of

LP residual for applications where approximate locations of GC events are sufficient.

3.6 Summary

In this chapter, issues involved in the detection of GC events were discussed. Some

acoustic cues derived from LP residual of speech signal were examined. Manual mark-
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Figure 3.18: (a) Degraded speech signal, (b) LP residual, (¢) GC events detected by the
group delay based approach and (d) Hilbert envelope of the LP residual.

ing of GC events using the proposed acoustic cues was performed to evaluate the
proposed acoustic cues. Among the different acoustic cues proposed, Hilbert envelope
of LP residual detects GC events with highest resolution. A method for automatic
detection of GC events based on the property of minimum phase signals and group
delay functions was discussed. Finally a method for the realization of the approximate
epoch information was explained. Summary of the various issues discussed in this
chapter is given in Table 3.3.

In the following two chapters, we discuss some of the applications of GC events.
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Table 3.3: Summary of the issues discussed with respect to detection of GC events.

GC Event for Speech Analysis

e Issues in the detection of GC events

— During speech production, responses due to successive GC events overlap to
form a composite signal and hence detection of GC events directly from the
speech signal is difficult.

— Peaks of either polarity are present in LP residual and hence unambiguous
detection of the GC events from LP residual is difficult.

— The detection of GC events from LP residual is also difficult due to the low
strength of glottal excitation and poor modeling of the vocal tract system in
nasals and voiced stop consonants, especially in female speakers.

Acoustic cues for detection of GC events

— Magnitude, energy and LP residual of low pass filtered speech gives information
about the region of GC events.

— Hilbert envelope of LP residual provides high resolution for detection of GC
events.

Manual detection of GC events

— Instants at which most of the acoustic cues show maximum value in a pitch
period.

e Automatic detection of GC events

— Positive zero-crossings in phase slope function derived by the group delay anal-
ysis on LP residual, are detected as GC events.

e Approximate epoch information

— Hilbert envelope of LP residual may be used in tasks where approximate in-
formation about GC events is sufficient.
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Chapter 4

APPLICATIONS OF GC EVENTS

FOR SINGLE CHANNEL CASE

In the previous chapter, issues involved in detection of GC events and methods for
the detection of GC events were discussed. In this chapter and the following chapter,
we discuss some applications of GC events. This chapter deals with two applications
of GC events in which the speech data is collected with a single microphone (single

channel). They are extraction of pitch and enhancement of degraded speech.

4.1 Introduction

A method for extraction of pitch in adverse conditions is proposed. Real environment,
in which the degradation is due to several unpredictable sources like background noise,
reverberation and channel noise, is treated as adverse condition. The proposed method
is based on the knowledge of GC events. Hilbert envelope of LP residual gives infor-
mation about the location of GC events. Autocorrelation analysis is performed on
Hilbert envelope of LP residual. The properties of Hilbert envelope of LP residual are
exploited for extraction of pitch from the autocorrelation sequence.

A method for enhancement of degraded speech collected over a single channel is
proposed. The proposed method is suitable for speech collected from a severely de-

graded channel. The degraded speech is processed by LP analysis for deriving Hilbert
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envelope of LP residual. The property of Hilbert envelope of LP residual in the au-
tocorrelation sequence is exploited to derive a weight function. LP residual of the
degraded speech is multiplied with the weight function to enhance the excitation re-
gions of the speech. Speech signal synthesized using the modified LP residual is found
to be perceptually enhanced significantly.

This chapter is organized as follows: In Section 4.2 a method is proposed for
extraction of pitch using Hilbert envelope of LP residual. In Section 4.3 a method is
proposed for the enhancement of speech collected over a single channel. A summary

of the applications discussed in this chapter is given in Section 4.4.

4.2 Extraction of Pitch in Adverse Conditions

Even though several algorithms have been proposed in the literature for extraction of
pitch, cepstrum and SIFT algorithms stood over time as good, simple and efficient
methods for the estimation of pitch. However, these methods are suitable mainly for
clean speech. Performance of these methods deteriorates significantly as the degra-
dation increases. Hence, new methods for extraction of pitch are needed. A method
is proposed for the extraction of pitch in adverse conditions, and it is based on the
information of GC events. The proposed algorithm employs autocorrelation analysis

and its results are compared with the results of the SIFT algorithm.

4.2.1 Pitch Extraction using GC Event Information

One approach for extraction of pitch is to detect the peaks near GC events in the
Hilbert envelope and compute the time difference of successive peaks. But peak pick-
ing, especially in the case of degraded speech, is difficult. Therefore autocorrelation
analysis of Hilbert envelope of LP residual is proposed here. Although the autocor-
relation of a voiced speech segment generally displays a peak at the pitch period, the
peaks due to formant structure of the signal are also often present. The autocorrelation
of LP residual shows a peak at the pitch period without any significant influence of
peaks corresponding to the formants. The ease with which this peak can be detected

depends on the prominence of the peak, which in turn depends on the phase values of
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the signal around the GC events. The ambiguity due to the phase can be minimized
using Hilbert envelope of LP residual.

A segment of voiced speech, its LP residual, Hilbert envelope of LP residual and the
corresponding autocorrelation sequences are shown in Figure 4.1. Since the Hilbert
envelope is positive, the mean of the segment is subtracted before computing the
autocorrelation. The LP residual is computed from differenced speech (sampled at 8
kHz) by LP analysis using a frame size of 20 ms, a frame shift of 5 ms and an LP
order of 10. The Hilbert envelope of LP residual is also processed using frames of 20
ms with a shift of 5 ms to extract pitch. In the autocorrelation sequence, the first
major peak in the range of 2.5 to 12.5 ms after the central peak is detected. The
distance of the first major peak from the central peak is marked as the pitch period.
The pitch periods from the previous and next frames are also computed. If the pitch
period of the present frame is within £+ 0.25 ms (2 samples at 8 kHz) of either of the
adjacent periods, then the pitch value is retained for validation in the next stage, else

it is discarded.

1 1
0.5} : :
° W (@ (b)
—os|
-1
5 10 15 20 25 30 10 20 30 40 50
1
o.2f
o.1f
0.5} E
o (©) (d)
—01}
-0.2} °
5 10 15 20 25 30 10 20 30 40 50
15 1
1l
0.5} E
©) ®
7l ./J‘\/L .j\—\ J«
o
oba o SLVAN /J/\A‘
5 10 15 20 25 30 10 20 30 40 50
Time(ms) Time(ms)

Figure 4.1: (a) Segment of voiced speech and its (b) autocorrelation sequence. (c¢) Segment
of LP residual and its (d) autocorrelation sequence. (e) Segment of Hilbert envelope of the
LP residual and its (f) autocorrelation sequence.

Another property of Hilbert envelope of LP residual is the similarity of behavior of

the samples around the first major peak in the autocorrelation sequence of the adjacent
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frames for voiced speech. This similarity can be measured by comparing samples in a
region of 2.5 ms on either side of the first major peak of the present frame, with the
samples from the previous or the next frame. This is measured using the correlation

coefficient (c) [99], which is given by

ee 2l —2)llly —7)| (4.1)

JE@ -2/ -9

where x and y represent samples around the first major peak in the current frame

and the previous or the next frame, respectively, and Z and 7 represent their mean. If
the correlation coefficient is more than 0.7, then the pitch value of the present frame
is accepted, else it is set to zero. The proposed algorithm for extraction of pitch is
given in Table 4.1. A segment of the voiced speech from an isolated utterance, the
values of correlation coefficients (5 point median filtered) and pitch values extracted
by the proposed method and the SIF'T algorithm are shown in Figure 4.2. In the case
of isolated utterance, there is not much variation in the pitch, as the speech is well

articulated. Hence both the methods perform equally well.
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Figure 4.2: (a) Speech of isolated utterance /ki/. (b) Values of correlation coefficients. (c)
Pitch values from the proposed algorithm. (d) Pitch values from the SIFT algorithm.
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Table 4.1: Proposed algorithm for the extraction of pitch

1. Preemphasize the input speech signal.
Compute LP residual using frame size = 20 ms,
frame shift = 5 ms and LP order = 10.

3. Compute Hilbert envelope of the LP residual.

4. Perform autocorrelation on the Hilbert envelope of the
LP residual using frame size = 20 ms and frame shift = 5 ms.

5. In the autocorrelation sequence find the first major peak after
the central peak, in the range 2.5 to 12.5 ms and find its
distance from the central peak.

6. Find the similarity between the small segment (2.5 ms on either
side of the first major peak) of the present frame with the
corresponding segment from the previous or the next frame using
the correlation coefficient given by
c = 2 @=3)lI(y—9)|

V22V -9

7. Smooth the correlation coefficient values with a 5 point median filter.

8. If the distance of the first major peak is approximately same as
that of the previous or the next frame (£0.25 ms), retain
this value for further validation, else set the pitch value as zero.

9. If the distance value is nonzero and the similarity measure is
greater than or equal to 0.7, then declare the distance as the
pitch, else set the pitch value to zero.

4.2.2 Pitch in Continuous Speech

In continuous speech the pitch may vary over a large range. A segment of continuous
speech is taken from a broadcast news database. The values of correlation coefficients
computed from the autocorrelation of Hilbert envelope of LP residual, and the pitch
contours obtained by the proposed method and the SIFT algorithm are shown in
Figure 4.3. The proposed algorithm is able to preserve the variations in the extracted
pitch values. In case of SIFT algorithm the performance degrades slightly in regions
where there is sudden change in the pitch values. The poor performance may be
attributed to the less prominence of the first major peak in the autocorrelation of
the LP residual. While singing, there will be large variations in the values of pitch.
A segment of speech extracted from a song and the extracted pitch contours by the
proposed method and the SIFT algorithm are shown in Figure 4.4. The pitch contour
by the proposed algorithm preserves the variations in the pitch better, compared to

the SIFT algorithm.
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Figure 4.3: (a) Segment of continuous speech extracted from a broadcast news database.
(b) Values of correlation coefficients. (c¢) Pitch values from the proposed algorithm. (d) Pitch
values from the SIFT algorithm.

4.2.3 Pitch in Adverse Conditions

Practically there will be situations in which speech signal may be degraded by the pres-
ence of background noise, reverberation and channel noise. In such conditions humans
are still able to perceive speech. Processing speech to extract pitch in such conditions
is a challenging task. A segment of degraded speech, its LP residual and Hilbert enve-
lope of LP residual and their autocorrelation sequences are shown in Figure 4.5. Since,
in the Hilbert envelope of LP residual, the information of the GC events is preserved
better compared to the LP residual, the autocorrelation analysis of Hilbert envelope
brings out pitch information clearly. This is evident in the autocorrelation sequences
shown in Figure 4.5.

A segment of continuous speech degraded by the background noise and reverber-
ation, and the corresponding pitch contours by the proposed method and the SIFT
algorithm, are shown in Figure 4.6, for a male speaker. The pitch contour extracted by
the proposed method appears to be smoother compared to that extracted by the SIFT
algorithm. The main effect of degradation is on the phase of LP residual. This in turn
affects the prominence of the peak in the autocorrelation sequence of the LP residual.

In the proposed method the effect of this phase is reduced using Hilbert envelope of
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Figure 4.4: (a) Segment of continuous speech extracted from a song. (b) Values of correlation

coefficients. (c) Pitch values from the proposed algorithm. (d) Pitch values from the SIFT
algorithm.

LP residual.

A segment of speech signal degraded by background noise and reverberation and
collected from another acoustical environment is shown in Figure 4.7, for a female
speaker. The pitch contours extracted by the proposed method and the SIF'T algorithm

are shown in Figure 4.7. The pitch contour shape is smoother for the proposed method.

This example illustrates the robustness of the proposed method.
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Figure 4.5: (a) Segment of degraded speech and its (b) autocorrelation sequence. (c) Seg-
ment of LP residual and its (d) autocorrelation sequence. (e) Segment of Hilbert envelope
of the LP residual and its (f) autocorrelation sequence.
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Figure 4.6: (a) Segment of degraded speech of a male speaker affected mainly by back-
ground noise and room reverberation. (b) Values of correlation coefficients. (c¢) Pitch values
computed from the proposed algorithm. (d) Pitch values computed from the SIFT algorithm.
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and reverberation. (b) Values of correlation coefficients. (c¢) Pitch values computed from the

proposed algorithm. (d) Pitch values computed from the SIFT algorithm.
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4.3 Speech Enhancement in Single Channel Case

Perceiving information from speech signals collected over severely degraded channels
is a difficult task. To increase the comfort level of listening, one can process the speech
signal to reduce noise in the nonspeech regions. This is possible if we are able to identify
the speech regions. Noise characteristics may be estimated and subtracted from the
degraded speech signal. However, in real environments, noise characteristics vary
significantly over time. Hence reliable estimation of noise characteristics is a difficult
task. Alternatively, characteristics of speech may be exploited to process the degraded
speech. One advantage of using the knowledge of speech is that the characteristics of

speech are more predictable compared to that of the noise components [31].

4.3.1 Speech Enhancement Method

The speech-specific knowledge from the vocal tract system, the excitation source or
both may be used for enhancement. In this study, we use the knowledge of the ex-
citation source. Hilbert envelope of LP residual containing information about the
excitation source is derived from the speech signal. One property of Hilbert envelope
of LP residual of the speech signal collected over a severely degraded channel is that
the correlation among the samples is high in speech regions and low in nonspeech re-
gions. Autocorrelation analysis may be performed on the Hilbert envelope of the LP
residual to estimate the amount of correlation among the samples. For illustration, a
30 ms frame of Hilbert envelope of LP residual computed from a high voiced segment
of degraded speech, and its autocorrelation sequence are shown in Figures 4.8(a) and
(b), respectively. The strength of the first peak (after the central peak) in the auto-
correlation sequence is an indication of the level of correlation in the frame, which is
high in this case. Hilbert envelope of LP residual of a 30 ms frame of weak voiced
speech and its autocorrelation values are shown in Figures 4.8(c) and (d), respectively.
The strength of peak is relatively lower in this case. Similarly, autocorrelation anal-
ysis performed for Hilbert envelope of LP residual of a 30 ms frame of nonspeech is
also shown in Figures 4.8(e) and (f), respectively. Thus the autocorrelation analysis

performed on the frames of Hilbert envelope of LP residual for every sample shift gives
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an indication of the level of speech at each sample in the degraded signal.
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Figure 4.8: Hilbert envelope of the LP residual of a 30 ms (a) high voiced frame and its
(b) autocorrelation sequence, (c) low voiced frame and its (d) autocorrelation sequence, (e)
nonspeech frame and its (f) autocorrelation sequence. P; indicates normalized first peak
strength.

A 10" order LP analysis is performed on the degraded speech signal (see Figure 4.9(a))
sampled at 8 kHz, to obtain the LP residual. Hilbert envelope of the LP residual is
computed. The autocorrelation is performed on the Hilbert envelope of the LP resid-
ual using frames of size 30 ms and frame shift as one sample. For each frame, the
strength of the first peak of the autocorrelation sequence, normalized with respect to
the central peak, is noted. The normalized peak strength of the autocorrelation se-
quence, computed for Hilbert envelope of LP residual is shown in Figure 4.9(b). High
values in the normalized peak strength indicate the speech regions. The normalized
peak strength sequence is suitably processed using a 500 point Hamming window and
the smoothed sequence is shown in Figure 4.9(c). A weight function is derived from
the smoothed sequence using a nonlinear mapping function in such a way that the
samples corresponding to the speech regions are enhanced relative to the samples in

the nonspeech regions. The nonlinear mapping function is given by

1

P = = T @ (4.2)

52



where, P,, is value of the weight function value, P; is the smoothed peak strength
value (normalized in the range 0-1), § = 0.2, 7 = 0.04 are the slope parameters and
a = 0.05 is the offset which is the minimum value of the weight function. The weight

function derived using the mapping function is shown in Figure 4.9(d).
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Figure 4.9: (a) Degraded speech signal, (b) normalized peak strengths, (c) smoothed peak
strengths and (d) weight function to enhance the speech regions.

The LP residual of the degraded speech signal is processed using the weight function
to produce the modified LP residual. As the samples of the LP residual signal are less
correlated compared to the samples of the speech signal, modifying the LP residual
may introduce less distortion in the synthesized signal. The enhanced speech signal
is synthesized by exciting the time-varying filter using the modified LP residual. The
parameters of the filter are derived from the degraded speech signal. The proposed

algorithm is summarized in Table 4.2.

4.3.2 Experimental Results

A segment of speech signal collected over a severely degraded channel is shown in
Figure 4.11(a). The LP residual computed using a 10 order LP analysis is shown in
Figure 4.11(b). The Hilbert envelope of the LP residual is processed as discussed in

the previous section, to derive the weight function which is shown in Figure 4.11(d).
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Table 4.2: Proposed algorithm for enhancing the speech signal collected over a single
channel.

1. Preemphasize the degraded speech signal.
Compute LP residual (frame size = 20 ms,
frame shift = 10 ms and LP order = 10).
Compute Hilbert envelope of the LP residual.
4. Using Hilbert envelope of the LP residual

find the normalized peak strength values

(frame size = 30 ms for every sample shift).
5. Smooth the normalized peak strength values.
6. Compute the weight function using

b

P = trmor t o
7. Modify the LP residual using the weight function.
8. Synthesize speech from the modified LP residual.

The LP residual is processed using the weight function and the modified LP residual
is shown in Figure 4.11(e). The excitation in the speech regions are enhanced in the
modified LP residual.

The speech signal synthesized using the modified LP residual is shown in Figure 4.11(f).
The speech regions are enhanced in the synthesized speech. The narrowband spectro-
grams of the degraded and the corresponding enhanced speech signals are shown in
Figure 4.11. From the narrowband spectrograms we can infer that the energy of the
frequency components in the speech regions are unaltered and are attenuated signifi-
cantly in the nonspeech regions. The degraded signal and the corresponding enhanced
speech signal obtained by the proposed method are available for listening at

http://speech.cs.iitm.ernet.in/Main /result/enhance.html.

4.4 Summary

In this chapter a method for extraction of pitch in adverse conditions was proposed
using the information about the GC events. Hilbert envelope of LP residual was
used to represent the GC events. Pitch was extracted by performing autocorrelation
analysis on the mean subtracted Hilbert envelope frames. A method was proposed
for enhancing speech collected over a single channel. The proposed method exploits

the knowledge of the excitation source of speech production to identify the speech
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regions. The speech regions were enhanced by emphasizing the excitation in the speech
regions of the LP residual. The synthesized speech signal was found to be significantly
enhanced perceptually compared to the degraded speech signal. A summary of various
issues discussed in this chapter is given in Table 4.3.

In the next chapter we discuss some more applications of GC events in which the

speech data is collected over multiple microphones.

Table 4.3: Summary of the discussion with respect to applications of GC events for
single channel case.

Extraction of Pitch in Adverse Conditions

e Issues involved in the extraction of pitch
— Performance of existing algorithms degrades under adverse conditions.
e Proposed method for extraction of pitch

— Uses information about GC events.
— Autocorrelation analysis on Hilbert envelope of LP residual.

— Since the effect of phase is minimized in the Hilbert envelope, the proposed
method is suitable for adverse conditions also.

Speech Enhancement in Single Channel Case

e Issues involved in the enhancement of speech
— Difficult to perceive information from speech collected over a severely degraded
channel.
— The degraded speech needs to be processed for perceptual enhancement.

— Existing methods estimate the noise characteristics and subtract the same from
the degraded speech. But estimation of noise characteristics is difficult as it
varies over time.

e Proposed method for enhancement of speech

— Uses speech-specific knowledge to identify speech regions.

— Autocorrelation analysis on Hilbert envelope of LP residual to derive a weight
function.

— Multiply the LP residual with the weight function and synthesize speech from
the modified LP residual.
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strength values, (d) weight function, (e) modified LP residual and (f) enhanced speech signal.
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Chapter 5

APPLICATIONS OF GC EVENTS

FOR MULTICHANNEL CASE

In the previous chapter we discussed two applications namely, extraction of pitch and
enhancement of speech in single channel case. We explained how the knowledge of GC
events is useful in these applications. In this chapter we discuss three more applications
namely, time-delay estimation, speech enhancement in multichannel case and speech
enhancement in a multispeaker environment. In all these applications, speech from
the acoustical environment is collected simultaneously using multiple microphones.

We explain how the information of GC events is useful in these applications.

5.1 Introduction

A method of estimating time-delay between the speech signals collected at two mi-
crophone locations using the knowledge of GC events is presented. For time-delay
estimation, speech signals are normally processed using short-time spectral informa-
tion (magnitude or phase or both). The spectral features are affected by degradations
in speech caused by noise and reverberation. Features corresponding to the excitation
source of speech production mechanism are robust to such degradations. By that we
mean the relative spacing between GC events will not be affected by the degrada-

tions. Also the excitation source features are important mainly from the perception
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of point of view. The time-delay estimate can be obtained using the source features
extracted even from short segments (50-100 ms) of speech from a pair of microphones.
The proposed method for time-delay estimation is found to perform better than the
Generalized Cross-Correlation (GCC) approach.

A method is proposed for enhancing speech signal corrupted by background noise
and reverberation using the knowledge of the excitation source. The speech signal is
collected using a set of spatially distributed microphones. The first step in the pro-
cedure for speech enhancement in multichannel case is the estimation of time-delay
between a pair of microphones, which is obtained/computed using the information
about GC events. Addition of speech signals from several microphones, after compen-
sating for the delays, will give enhancement mainly against the background noise. The
coherently-added signal can be processed further for achieving enhancement against
reverberation. A weight function to highlight the high SNR regions is derived from
the excitation source information. The residual of the coherently-added speech signal
is multiplied with the weight function to enhance the high SNR regions. The weighted
residual is used to excite the time-varying all-pole filter to obtain an enhanced speech
signal. Performance of the proposed method is illustrated through spectrograms, sub-
jective and objective evaluations.

We also propose a method for enhancing the speech of an individual speaker from
the speech of multiple speakers using the knowledge of excitation source of speech pro-
duction. Speech in a multispeaker environment is collected simultaneously over two
spatially distributed microphones. The time-delay of the speech collected by a pair
of spatially separated microphones is different for each speaker. The time-delay at a
pair of microphones due to each speaker is estimated using the information around
GC events in the excitation source of voiced speech. The estimated time-delays are
used to reinforce the excitation information present in the residual signal, obtained
after removing the significant resonances of the vocal tract system. In the reinforced
signal corresponding to one speaker, the excitation information in the signals add up
coherently, and the excitation information of the other speakers add up incoherently.
This property is exploited to derive a weight function that enhances the character-

istics of excitation of one speaker relative to other speakers. The weight function is
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used to modify the excitation residual signal derived from the degraded speech signal
and the modified excitation signal is reused to synthesize the speech for the desired
speaker. The proposed method of enhancement is demonstrated through waveforms
and listening tests.

This chapter is organized as follows: A method for estimation of time-delay using
Hilbert envelope of LP residual is presented in Section 5.2. In Section 5.3 we discuss
about the enhancement of speech in multichannel case. Enhancement of speech de-
graded by speech from other speakers is a challenging task and a method for the same
is proposed in Section 5.4. Section 5.5 summarizes the applications discussed in this

chapter.

5.2 Time-Delay Estimation

Most of the existing methods for time-delay estimation rely on the spectral charac-
teristics of speech signal [47-50,52-54,100,101]. The spectrum of the received signal
depends on how the waveform is modified due to distance, noise and reverberation.
Therefore the spectra of the signals obtained at two different microphone locations
differ significantly. Compensating for the spectral side effects or enhancement of the
spectral components of speech have met with limited success, as there still will be a lack
of coherence in the filtered or spectral compensated signals from different microphones.

We propose a method that relies on some features of the excitation source of voiced
speech for estimating the time-delays [2,27,31,37,42,43,102,103]. The method is
based on exploiting the characteristics of excitation source especially for voiced speech.
The excitation source for voiced speech consists of impulse-like excitation around GC
events. The impulse-like excitation is robust to degradation in the sense that the
relative spacing of the epochs due to direct sound remains unchanged at different mi-
crophone locations. On the other hand, the impulse-like excitation due to reflected
sound occurs at random locations at the microphones. The impulse-like excitation
characteristics are captured using Hilbert envelope of LP residual of voiced speech.
The Hilbert envelopes can be added coherently to reinforce the direct sound and re-

duce relatively the effects of noise and reverberation. Thus the proposed method is
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better than the previous efforts because: (1) The vocal tract influence which changes
more rapidly is removed, (2) the Hilbert envelope tends to emphasize the instants of
significant excitation and (3) the instants of significant excitation from the Hilbert en-
velopes of different microphones can be added coherently to get a more reliable output.
For coherent addition of the Hilbert envelopes, time-delay between two microphone

signals needs to be estimated.

5.2.1 Significance of GC Events for Time-Delay Estimation

In the proposed method for time-delay estimation, the production characteristics of
speech are exploited to extract the relevant information from the degraded speech
signal received at a microphone. In speech, the response of the vocal tract system is
superimposed on a sequence of glottal excitation pulses. Since the waveform is affected
by the transmission medium, noise and the response of the room, the received speech
signal contains information about the vocal tract system corrupted by different types
of degradations at different microphones. It is difficult to determine the characteristics
of these degradations to compensate for their effects by processing the received signal.

The instants of significant excitation in a voiced segment are unique and their loca-
tions along the time scale do not vary with the transfer characteristics of the medium
and the microphones [102]. Noise and reverberation components show significant am-
plitudes in the extracted excitation component at instants other than the epochs due
to direct sound. The identification of the epochs due to direct sound is difficult, due to
the presence of reverberation component in the speech signal. It is important to note
that the effect of reverberation is different in different regions of a voiced segment [31].
For example, in the vowel region of a typical syllable-like unit the initial high energy
pitch periods are less affected by reverberation compared to the pitch periods that
occur later.

Figure 5.1 shows the signals received by a close speaking microphone (mic-0) and 3
other microphones (say, mic-1, mic-2 and mic-3) placed in an office room of dimension
3mx4mx3m with a reverberation time of about 200 ms. The waveforms are clearly
different from each other, and from the clean speech waveform obtained with a close

speaking microphone. The figure also shows the short-time (50 ms frame shown by
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dashed lines) spectra for each of the segments, to illustrate the differences in the short-
time spectral envelopes. Figure 5.1 shows the epoch locations for all the four signals.
It is obvious from the clean speech case (Figure 5.1(b)) that if the epoch locations can
be derived from the received signals, the problem of time-delay estimation is not only
trivial, but also the resulting estimation will be accurate. But the spurious epochs
due to noise and reverberation make it difficult to use the epoch locations directly for
time-delay estimation.

A better method to estimate the time-delay is to exploit the property that the
strength of excitation in voiced speech is large around the GC event. Figure 5.2 shows
the LP residual, its Hilbert transform and the Hilbert envelope for a segment of the
speech signal at the close speaking microphone (mic-0) and also for a segment of the
degraded speech signal at mic-1. The figure clearly illustrates the important property
of Hilbert envelope of a voiced speech segment, namely, the peak of the envelope occurs
around the GC event within each pitch period. Even for the degraded speech signal
at mic-1, the Hilbert envelope shows the largest peak around the GC event within
each pitch period. This important property of Hilbert envelope forms the basis for
the proposed method for estimating time-delay. While the amplitude of the Hilbert
envelope is high at the GC event, the amplitudes of the Hilbert envelope will also be
high at the epochs of the reflected sound in the reverberant speech. But these epochs
will be located at random instants. In the next section, we will show how the Hilbert
envelopes of the LP residual signals from different microphones can be used to estimate

the time-delay for each pair of microphones.

5.2.2 Time-Delay Estimation using GC Event Information

The instants corresponding to the direct signal will be coherent at different micro-
phone positions. On the other hand, the instants corresponding to the reverberation
components will be at random locations along the time scale. This can be seen from
Figure 5.3, where the Hilbert envelopes for signals from the three microphone positions
are time aligned and displayed. The effect of coherence of the direct components can
be seen when we add the delay-compensated Hilbert envelope signals from the three

microphones. It is important to note that the coherent addition in Figure 5.3(e) pro-
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Figure 5.1: Nature of speech signals at four different microphone locations (mic-0, mic-1,
mic-2 and mic-8). Figures (a), (d), (g) and (j) are waveforms of the speech segments at
the four microphone locations. Figures (b), (e), (h) and (k) are the extracted instants of
significant excitation corresponding to the four speech segments. Figures (c), (f), (i) and (1)
are the short-time spectra for the portions marked in the speech segments.

duces significant peaks at the epochs, whereas the incoherent addition in Figure 5.3(d)
produces several peaks at random locations.

For coherent addition, one needs the values of the time-delays. We propose a cross-
correlation method to determine the time-delays. Consider a frame of 50 ms from one
of the microphones, say mic-1 and compute the cross-correlation of Hilbert envelope
of the LP residual of this frame and the corresponding frame of 50 ms from the second
microphone, say mic-2. The cross-correlation of two sequences z(n) and y(n) is given
by

o0
rye(l) = D_y(n)z(n 1) (5.1)
—

The location of the peak in the cross-correlation corresponds to the delay. The time-
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Figure 5.2: Illustration of the characteristics of the Hilbert envelope. Figures (a), (b) and
(c) are the LP residual, its Hilbert transform and the Hilbert envelope for the speech signal
at mic-0. Figures (d), (e) and (f) are the LP residual, its Hilbert transform and the Hilbert
envelope for the speech signal at mic-1.

delay to be estimated is assumed to be much less (< 10%) than the size of the frame
(50 ms in this case) being considered. Figure 5.4 shows the cross-correlation function
of the Hilbert envelopes of segments of the two microphone signals. The delay is
indicated in number of samples from the center sample number, which is 400 in this
case.

The time-delay for each frame of 50 ms is computed with a shift of 10 ms between
successive frames, and the result is plotted in Figure 5.5(b). Note that the estima-
tion results in random delays, mostly for unvoiced segments. This is indicated by
segments corresponding to the low energy regions of the Hilbert envelope, as shown
in Figure 5.5(a). The energy of the Hilbert envelope is obtained for each frame of 50
ms by computing the mean squared values of the amplitudes of the envelope within
the frame. The normalized energy plot in Figure 5.5(a) is obtained by computing the
energy for each frame shifted by 10 ms and normalizing the energy values by dividing
them with the maximum value over the segment. The regions of the low normalized
values, say values below 0.25 in the Figure 5.5(a), correspond mostly to silence or noise

or unvoiced or low voicing regions. The low voicing regions are those regions where
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Figure 5.3: Effect of coherent and incoherent additions of the Hilbert envelopes. (a) Hilbert
envelope for the signal at mic-1. (b) Hilbert envelope for the signal at mic-2. (c) Hilbert
envelope for the signal at mic-3. (d) Result of incoherent addition of the Hilbert envelopes.
(e) Result of coherent addition of the Hilbert envelopes.

the strength of excitation around the glottal closure is not high. This is also indicated
by the lower values of the Hilbert envelope relative to the values in the high voicing
regions.

The estimation of the time-delay gets better when we consider longer frame sizes
as shown in Figures 5.5(c) and (d), for frame sizes of 200 ms and 500 ms, respectively.
The improvement in the delay estimate is indicated by fewer spurious or random delays
compared to the case of 50 ms frame. But using longer segments for delay estimation
may make it difficult to keep track of a moving source/speaker.

Figures 5.6 and 5.7 illustrate the performance of time-delay estimation using the
Hilbert envelope of the LP residual for two different types of degradation. The time-
delay estimation for different levels of reverberation are obtained by placing the mi-
crophones at different distances from the speaker. Note that for longer distances, the
SNR decreases due to the constant background noise. In Figure 5.7 the estimated
time-delays are plotted when the microphone is placed close to a room air conditioner
and a fan. A constant value of the time-delay is obtained for successive frames in the

regions of high energy values in all the plots in Figures 5.6 and 5.7.
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Figure 5.4: Cross-correlation function of the Hilbert envelopes of frames of size 50 ms (400
samples), corresponding to the signals at mic-1 and mic-2. The time-delay estimated between
mic-1 and mic-2 signals is 14 samples.

5.2.3 Comparison with the GCC method

The GCC (Ry,4,(7)) is computed as the inverse Fourier transform of the cross-spectrum
X (w)X5(w) of the received signals, scaled by a weighting function W(w) [53]. That

is,

Rosna(M) = [ W)X () X (@) de (52)

—o0
where X (w) and X,(w) are the Fourier transforms of the microphone signals 1 (¢) and
75(t). The weight function is chosen as W (w) = |X;(w)X3(w)|™'. This corresponds to
the use of phase transform for cross-correlation.

Since accurate estimation of the time-delays with smaller frame size helps in track-
ing a moving source, we consider a frame of 50 ms size with a shift of 10 ms to compare
the performance of time-delay estimation by the proposed method and by the GCC
method. Note that in the Hilbert envelope plot in Figure 5.2, there are large values
around the instants of glottal closure for the voiced segments, followed by small values
within each pitch period. Therefore, variance of sample values of the Hilbert envelope
in the voiced region will be large, compared to that in unvoiced segments where the
sample values are relatively more uniformly distributed, thus contributing to low vari-
ance. The variance of the sample values of the Hilbert envelopes is computed for each
frame of 50 ms shifted by 10 ms. Plots of the standard deviation of samples of the
Hilbert envelope against estimated time-delays for frames of 50 ms with a shift of 10 ms

are shown in Figure 5.8. The figure shows the plots for different pairs of microphones
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Figure 5.5: Characteristics of the estimated time-delay for different frame sizes. (a) Nor-
malized Hilbert envelope energy. Time-delays from analysis frames of size (b) 50 ms, (c) 200
ms, and (d) 500 ms, each with a shift of 10 ms.

to illustrate the effects of degradations as the signals at different microphones are not
of the same quality. One important point to be noted from these plots is that, even
in the low voiced regions (low standard deviation), the proposed method estimates
the delays accurately, whereas the GCC shows significant variations in the estimated
delays. Ideally all the points should lie along a vertical line at the delay value. So the
spread of points from the vertical line indicates degradation in the performance of the
method.

An objective measure for comparison of the performance could be the ratio (r) of
the number of points around the time-delay within £1 sample deviation to the total
number of points above a certain threshold of the value of the standard deviation of
the samples of the Hilbert envelope. Since lower values of the standard deviation corre-
spond mostly to nonvoiced regions, we can ignore the values below 0.25 for computing
this ratio. The values of r for the different cases are shown in Figure 5.8. The larger
the value of r, the better is the method for estimating the time-delay. From these

illustrations we can infer that the proposed method is superior to the GCC method.
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Figure 5.7: Characteristics of the estimated time-delay for speech degraded by different types
of noises, namely, (b) air-conditioning noise, (d) fan noise and (f) both air-conditioning and

fan noise. The microphones were placed close to the noise source, and at a distance of 6 feet
from the speaker. The microphones were placed close to the noise source. The normalized
Hilbert envelope energy plots are shown for each case in (a), (c) and (e), respectively.
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Figure 5.8: Quantitative comparison of the proposed time-delay estimation method with
GCC approach. Standard deviation of samples of the Hilbert envelope vs estimated time-
delay (in samples) are shown for different cases. (a) mic-1 and mic-3 signals. (b) mic-1 and
mic-2 signals. (c) mic-2 and mic-11 signals. (d) mic-1 and mic-1 signals. (e) mic-1 and
mic-15 signals. (f) mic-2 and mic-9 signals.
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5.3 Speech Enhancement in Multichannel case

When speech is transmitted in an acoustical environment like in an office room, it will
be degraded by background noise and reverberation [31,55-66,104-107]. Multichannel
case is more effective for enhancement compared to the single channel case, but requires
estimation of time-delays [58]. One simple method for enhancement in multichannel
case is addition of the speech signals, after compensating for their delays. Coherent
addition of speech signals from different microphones will provide enhancement mainly
against background noise. The improvement in enhancement is directly related to the
number of microphones used. For achieving significant enhancement, especially due
to reverberation, additional processing of the microphone signals is required. In this
work a method is proposed for enhancement using the GC event information, which

helps in reducing the effects of reverberation significantly.

5.3.1 Significance of GC Events for Speech Enhancement

A segment of clean speech is shown in Figure 5.9(a), which is collected over a micro-
phone placed close to the speaker. In this case the amount of degradation is negligible,
and hence it will have high values for SNR. A segment of speech collected over a mi-
crophone placed at a distance of about 9 feet in an office room of about 3m x 4m x
3m with a reverberation time of about 200 ms, is shown in Figure 5.9(b). Clearly this
speech signal is different compared to the clean speech signal in Figure 5.9(a). The
speech signal collected over a distance from the speaker may be characterized by the

following model.

zq4(n) = s(n) + z(n) + > bis(n — n;) (5.3)

i=1

where x4(n) is the degraded signal, s(n) is the signal component, z(n) is the background

noise component, b; is the relative amplitude of the reflection arriving after a delay of
n; samples and N is the number of reflections.

The background noise component is independent of speech, whereas the reverber-

ation component is dependent on the previous speech samples. The value of SNR at a

given instant in the speech signal depends on the values of the degrading component.

High SNR regions are places where the effect of degrading component is low. In other
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Figure 5.9: (a) Speech signal from a close speaking microphone and (b) degraded speech
from a microphone placed at a distance of 9 feet from the speaker.

places the degrading component may be comparable to the the signal component, and
hence these are low SNR regions. Generally the regions immediately after the onset of
syllables correspond to high SNR regions. Similarly within each pitch period, regions
immediately after the GC event are more likely to be high SNR regions [31].

A segment of clean speech and its LP residual are shown in Figures 5.10(a) and
5.10(b), respectively. Figures 5.10(c) and 5.10(d) show the corresponding speech and
the LP residual for the degraded case. When speech is degraded, the LP residual
contains random noise and reflected epochs, along with the regular epochs. The effects
of the reflected epochs are not predictable. If they occur in phase with the speech
epochs, then they will reinforce the strength of the excitation, otherwise they will
reduce the strength of the signal. When the reflected epochs arrive in between two
speech epochs, they cause reverberation. One way to minimize this effect is to enhance
the signal at the speech epochs relative to the signal at the reflected epochs. This can
be achieved by deriving a suitable weight function, which, when multiplied with the
LP residual of the degraded speech, enhances the signal at the speech epochs. To
derive a weight function for enhancing the high SNR regions, Hilbert envelope of the

LP residual is used as the excitation source information. Figure 5.11 shows the LP
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residuals and the Hilbert envelopes for clean and degraded speech signals.
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Figure 5.10: (a)-(b) Segments of clean speech and its LP residual, (c)-(d) corresponding
segments of degraded speech (mic-1) and its LP residual.

5.3.2 Speech Enhancement using GC Event Information

Speech was collected from 14 spatially distributed microphones placed in an office room
of dimension 3m X 4m X 3m with a reverberation time of about 200 ms. The delay
between every pair of microphones is computed using the excitation source information
as explained in the previous section. The coherently-added signal, obtained after

compensating for their delays is given by

Se1(n) = %[sl(n) + s9(n — T12) + e + sn(n —7min)] (5.4)

The coherent addition reinforces speech components and thus reduces the effect of the
background noise. However, the reverberant component is still present in the resulting
signal. The degree of enhancement achieved at this level depends on the number of
microphones used in the coherent addition. For instance, the enhanced speech signals
and their narrowband spectrograms, when signals from 2, 5, 10 and 14 microphones
are added, are shown in Figure 5.12. The clean speech and the degraded speech from

mic-1 are also shown in the figure. As can be seen from the narrowband spectrograms,
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Figure 5.11: (a)-(b) LP residual and its Hilbert envelope for clean speech, (c)-(d) LP residual
and its Hilbert envelope for degraded speech (mic-1)

there is a decrease in the background noise as we increase the number of microphones.
It is interesting to note that in the case where signals from 14 microphones are added,
even though the effect of background noise is reduced, the reverberation tails are still
present in the speech regions. This can be observed by comparing the spectrogram,
especially at low frequencies, with that of the clean speech shown in Figure 5.12(a).
The presence of reverberation tails is also clearly visible in the waveforms (compare
Figure 5.12(a) and Figure 5.12(f)). It is necessary to process the coherently-added
speech signal further to achieve enhancement with respect to reverberation.

For each of the microphone signals, LP residual and Hilbert envelope of the LP
residual are computed. The Hilbert envelopes for mic-1, mic-2 and mic-3 are shown in
Figures 5.13(a), 5.13(b) and 5.13(c), respectively. The coherent addition of the Hilbert
envelopes (Figure 5.13(d)) reinforces the epoch information, whereas the incoherent
addition will spread the epoch information (Figure 5.13(e)).

The coherently-added Hilbert envelope exhibits several interesting features. The
deviation among the samples of the Hilbert envelopes is high in the voiced speech
regions. Typically, voiced speech regions in continuous speech have a minimum du-

ration of 50 ms. Hence, by considering a block of 50 ms duration and a shift of one
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Figure 5.12: Speech and narrowband spectrograms for (a) Close speaking microphone,
(b) Distant microphone (say, mic-1), (c)-(f) Coherently-added signals from 2, 5, 10 and 14
microphones.
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Figure 5.13: Hilbert envelope of the LP residual of a segment of (a) mic-1 signal, (b) mic-2
signal, (¢) mic-3 signal. Results of (d) Coherent and (e) incoherent addition, of the Hilbert
envelopes of (a), (b) and (c).

sample, the mean and standard deviation of the coherently-added Hilbert envelope
samples in each block are computed. The standard deviation values are normalized
with the respective mean values as shown in Figure 5.14. In the normalized standard
deviation plot, the deviation of Hilbert envelope samples is high in the speech regions.
Further, the normalized standard deviation is high in the initial portions of the voiced
speech regions and it decreases towards the end of the voiced regions. This is because
the initial parts are high SNR regions. Towards the end of the voiced regions, the
levels of degrading components increase and hence they correspond to low SNR re-
gions. Another interesting property of the coherently-added Hilbert envelope is that,
the samples in each pitch period around the epochs have large deviation compared
to the samples away from the epoch. The mean, standard deviation and normalized
standard deviation for a segment of coherently-added Hilbert envelope are shown in
Figure 5.15, for a block size of 3 ms and a shift of one sample.

A weight function is derived by adding the two (long and short blocks) normalized
standard deviation values as shown in Figure 5.16. The combined deviation plot is
multiplied with the LP residual of the coherently-added signal. The residual of the

coherently-added signal along with the modified residual using the combined deviation
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Figure 5.14: (a) Result of coherent addition of Hilbert envelopes of the LP residuals of
mic-1, mic-2 and mic-3 signals, (b) mean values, (c) standard deviation values, and (d)
normalized standard deviation values of the resultant Hilbert envelope, computed for every
block of 50 ms size with one sample shift.

plot are shown in Figure 5.17. The excitation of speech components are significantly
enhanced in the modified residual. The modified residual is used to excite the time
varying all-pole filter derived from the coherently-added signal, to synthesize the en-
hanced speech signal. The clean speech, its degraded version, coherently-added signal
from three microphones and the enhanced speech, along with their narrowband spec-
trograms are shown in Figure 5.18. From this figure, it can be seen that the speech
signal is enhanced both with respect to background noise as well as reverberation.
This will be further confirmed by subjective and objective evaluations described in
the following sections. The degraded and the corresponding enhanced speech signals
obtained by the proposed method are available for listening at

http://speech.cs.iitm.ernet.in/Main /result/enhance.html.
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Figure 5.15: (a) Result of coherent addition of Hilbert envelopes of the LP residuals of mic-1,
mic-2 and mic-3, signals (b) mean values, (c) standard deviation values and (d) normalized
standard deviation values with respect to mean for every block of 3 ms frame size and one
sample shift for the coherently-added Hilbert envelope.
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Figure 5.16: (a) Normalized standard deviation plot derived using block size of 50 ms and
shift of 1 sample, (b) normalized standard deviation plot derived using block size of 3 ms
and shift of 1 sample and (c) weight function obtained by adding (a) and (b).

7



400 -

200 -

—200

—400 -

@

500 1000

i
1500

i
2000

2500

400 -

200 -

—200 ~

—400 -

(b)

i
500 1000
Time(ms)

i
1500

i
2000

2500
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Figure 5.18: Speech and is narrowband spectrograms for (a) close speaking microphone,
(b) distant microphone (say, mic-1), (c) coherently-added signals from 3 microphones, and
(d) enhanced signal by the proposed method.
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5.3.3 Performance Evaluation

Subjective Evaluation

Subjective evaluation is performed for assessing the quality of the enhanced speech.
The subjective tests were conducted with the help of 10 research scholars in the age
group of 21 to 35, who volunteered for the task. Each of the subjects were given a
pilot test about the perception of different types of speech signals like clean speech,
speech degraded by background noise and speech degraded by background noise and
reverberation. They were explained the effect of background noise and reverberation.
Once they were comfortable with judging, they were allowed to take the tests. The
tests were conducted in the laboratory environment by playing the speech signals
through headphones.

Two types of subjective tests were conducted. The first test was to judge the
amount of background noise present in the given coherently-added signal by comparing
with the degraded speech. Each of the coherently-added signal is processed further
by the proposed method to achieve enhancement against reverberation. The objective
of the second test was to judge the enhancement achieved against reverberation as
compared to the corresponding coherently-added signal.

In the first test, the subjects were asked to judge the enhancement for background
noise in each of the 13 different coherently-added signals, on a four point scaling as
given in Table 5.1. Reference signals were provided for each point of scaling and the
subjects were asked to rank each of the coherently-added signal to the nearest point.
The histograms of rankings are shown in Figure 5.19. As shown in the histograms, the
ranking for the speech signal increases as the number of microphones is increased for
enhancement. This indicates that the enhancement against background noise depends
on the number of microphones.

In the second test, the subjects have to judge the amount of reverberation present
in each of the enhanced speech, on a four point scaling as shown in Table 5.2. The
histograms of ranking for the 13 different enhanced signals are shown in Figure 5.20.
The ranking increases rapidly with the number of microphones. Also, it is interesting
to note that comparatively high ranking is achieved, using even 5 or 6 microphones.

This shows the robustness of the proposed method. It also shows that we can achieve
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Table 5.1: Ranking used for judging the quality of enhanced speech for background
noise obtained by coherently adding the signals.

Point | Quality of Speech
1. Sounds like degraded

2. Sounds slightly better than degraded
3. Sounds significantly better than degraded
4. Sounds like clean speech
@) (b) ©) (d) (e)
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Figure 5.19: Histograms of the rankings obtained for the subjective tests conducted to assess
the quality enhancement for background noise in case of the 13 coherently-added signals
obtained by adding degraded speech signals from (a) 2, (b) 3, ... (m) 14 microphones. The
ranking increases as the number of microphones is increased.

significant enhancement even with fewer microphones. It is also interesting to note
from the histogram plots in Figures 5.19 and 5.20 that the proposed method indeed
produces improvement over coherently-added speech signals.

Objective Evaluation

A new method is proposed for measuring the degree of enhancement objectively
based on the normalized error () and is termed as normalized error measure (n,) .
The normalized error (n) is the ratio of the residual energy to the signal energy [38,96].
N, is the total difference between 7 of the clean speech and 7 of the enhanced signal.

The more the amount of enhancement achieved, the closer will be the enhanced signal
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Table 5.2: Ranking used for judging the quality of enhanced speech obtained by pro-
cessing coherently-added signals further by the proposed method.

Point | Quality of Speech
1. Sounds like coherently-added
2. Sounds slightly better than coherently-added
3. Sounds significantly better than coherently-added
4 Sounds like clean speech

@) (b) © (d) (e)
10 10 10 10 10
5 5 5 5 5
o ) o o )
12 3 4 12 3 4 12 3 4 12 3 4 12 3 4
M @ (h) (O) @
10 10 10 10 10
5 5 5 5 5
o o o o o
12 3 a 1 2 3 a 12 3 4 1 2 3 a 12 3 4
(9] () (m)
10 10 10
S_L S_L 5_l
o o o
12 3 4 12 3 4 12 3 4

Figure 5.20: Histograms of the rankings obtained for the subjective tests conducted to assess
the enhancement against reverberation in case of the 13 different enhanced signals ((a) 2,
(b) 3, ... (m) 14 microphones) by the proposed method. The ranking increases rapidly and
significant amount of enhancement is achieved using fewer microphones (5 or 6).

to the clean speech and hence lower will be the value of 7,.

The normalized error 7 for every frame of 5 ms with one sample shift is computed
for each of the enhanced speech signals. 7, computed for each of the enhanced signals
is shown in Table 5.3. 7, for the enhanced signal derived from a given number of
microphones is always lower for the enhanced signal obtained by the proposed method
compared to the coherently-added signal. It may appear that weighting the residual
gives lower values for 7, in the proposed method. However, it is to be noted that the
ratio of the LP residual energy is taken with respect to the corresponding enhanced

speech signal. Spectral distance measures may not be useful in the present case, as
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the proposed method does not alter the spectral information.

Table 5.3: Normalized Error Measure (n,) for coherently-added speech signals and
enhanced speech signals by the proposed method.

1y, for 7y for
Speech from Coherently | Enhanced speech by
( # microphones) | added signal | proposed method

2 4611 4500
3 4157 4011
4 4764 4654
5 3909 3801
6 4322 4182
7 3630 3498
8 4266 4127
9 3352 3184
10 3721 3608
11 3113 2946
12 3519 3377
13 3160 2991
14 3265 3091
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5.4 Speech Enhancement in Multispeaker Environ-

ment

In a multispeaker environment the objective is to separate the speech component
corresponding to each speaker, while retaining the quality and intelligibility as much
as possible. The signal collected by a microphone in a multispeaker environment is a
mixture of speech signals from several speakers. Processing speech for enhancement in
such conditions is a challenging task, as the speech of the other speakers acts as noise,
against which the speech of the desired speaker needs to be enhanced. The difficulty
in achieving this enhancement is due to the similarity of the spectral characteristics
of the speech signals from different speakers. The difficulty is further compounded
by the fact that the spectral characteristics are modified by the response of the room
and also by the background noise. The extent of degradation depends on the relative
position of the microphone with respect to the speaker and also on the background
noise. The primary causes of degradation are room reverberation, background noise
and the distance of the speaker from the microphone.

Most of the speech message is carried through the voiced part of speech, espe-
cially when the microphone is far off from the speaker, say 2 meters or more. Even
though the spectral component of speech is severely degraded, the characteristics of the
quasi-periodic excitation are well preserved in the direct speech picked up by a distant
microphone. It is true that reflected and delayed speech signal is also added to the
direct speech signal. If the strength of the excitation is low, then, even voiced speech
will sound more like whispered speech and hence cannot be perceived at long (say 2
m or more) distances from the speaker. Note that in the case of reverberation, scaled
versions of the speech signal are added to the direct signal at random instants. These
random instants are different for microphones placed at different locations. Thus if
the delay between the direct speech signal components at two microphones is com-
pensated, then the strengths of the instants due to direct speech are reinforced, and
simultaneously the strengths due to reflected speech components are distributed in
time. It is also important to note that, since no two speakers can be at the same

location simultaneously, the delays due to the direct speech components between a
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pair of microphones from any two speakers are different. These properties of speech
production and propagation of sound in rooms form the basis for the proposed method
for speech enhancement from multispeaker speech.

Most of the multispeaker enhancement methods in the literature involve modifica-
tion of spectral features representing the vocal tract system [69-74,108]. They use the
knowledge of pitch to separate the individual speakers in multispeaker case. Hence
the performance of these methods depends on the accuracy of the estimated pitch.
Estimation of pitch from degraded speech is a difficult task in itself. Moreover, pitch
is only one feature of the excitation of the vocal tract system. In this work, we propose
a method of speaker separation from speech collected over multiple microphones, using
other important characteristics of excitation of voiced speech. In particular, we exploit
the characteristics of the strength of excitation at the GC events, and the robustness
of the relative spacing of the GC events in the speech signals collected at different
microphones. We use Hilbert envelope of the LP residual as a representation for the
sequence of impulses corresponding to the instants of significant excitation of the vocal
tract system. When these sequences are added coherently using the knowledge of the
time-delay of each speaker, the strengths of the excitation of the desired speaker are
enhanced relative to the strengths of excitation of other speakers. Using the knowledge
of the enhanced speaker characteristics in the coherently-added sequence of impulses,
a weight function is derived, which in turn is used to derive a modified excitation
signal. This modified excitation signal is used to synthesize speech using the vocal
tract system characteristics derived from the degraded speech signal. Enhancement in
the resulting speech is primarily due to enhancement of the excitation characteristics,

which are important perceptually.

5.4.1 Usefulness of GC Events for Speaker Separation

The large amplitude peaks of Hilbert envelope of LP residual occur mostly around
the GC events. Even if some of them do not occur exactly at the GC events, it is
not critical, as long as the intervals between the peaks due to successive GC events
remain the same. There could be some spurious peaks in the Hilbert envelope of the

residual. These are mostly due to the effects of noise and reverberation. The Hilbert
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envelope due to an impulse has a point property, in the sense that the peak of the
Hilbert envelope is due to the residual samples at that instant and at the instants
immediately adjacent to it. Therefore, peaks in Hilbert envelope of the LP residual
occur at the same relative instants due to the direct speech at all the microphones,
whereas the peaks in the Hilbert envelope due to noise and reverberation occur at
different instants at different microphones.

Their is a unique time-delay between the signals from two microphones for each
speaker. This delay is estimated from the microphone signals using the Hilbert en-
velopes of the LP residuals. The time-delays, estimated for the speech signals collected
over two microphones using a frame size of 50 ms and a frame shift of 10 ms, are shown
in Figure 5.21. In the recorded data, there is speech from two speakers (spkr-1 and
spkr-2). It can be seen that there are two prominent delay values (delay-1 and delay-2)
corresponding to each speaker. The random delay values in the plot generally corre-
spond to nonspeech regions. The two delays are obtained by summing the number of
evidences for each delay and then considering the two delays with highest number of
evidences.

is

10+ . . . |

Time-delay

o 50 100 150 200 250 300 350 400 450 500
Frame index

Figure 5.21: Time-delays computed using the Hilbert envelopes of two microphones for
every frame of 50 ms with a shift of 10 ms. The two main delay values correspond to the
two speakers.

The Hilbert envelopes of the LP residuals of speech signals from the two micro-
phones are added after compensating for the delays and the results are shown in

Figure 5.22. When the Hilbert envelopes are added after compensating for delay-1,
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the excitation source information of the corresponding speaker is reinforced in the
coherently-added signal. Similarly the excitation source information of the second
speaker is reinforced in the coherently-added signal using delay-2. This property of
reinforcement of the excitation information is exploited for separation of speech of

individual speakers.
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Figure 5.22: Hilbert envelopes derived from two microphone signals. Hilbert envelope of
the LP residual of (a) mic-1 signal, (b) mic-2 signal, (c) Coherently-added Hilbert envelope
using delay-1 and (d) Coherently-added Hilbert envelope using delay-2.

Note that the reinforcement of the excitation information of a given speaker in the
coherently-added Hilbert envelopes of the LP residuals can be best seen at the peaks
around the GC events. While it may be difficult to give an objective measure, one can
easily see from the plots of the coherently-added Hilbert envelopes that the peaks for
the desired speaker reinforce and the peaks for the other speaker are spread out. One
can determine the effect of coherence in the plots of the standard deviation for the four
cases shown in Figure 5.23. The standard deviation plot is obtained by computing it
for every 2 ms interval around every sample, corresponding to 17 samples. The choice
of 2 ms is not critical. Any small interval less than a pitch period but greater than
twice the delay is adequate. The standard deviation plots clearly show that the values
are significantly reduced in the regions where the addition of the peaks in the Hilbert

envelopes is incoherent. For the example shown in Figure 5.23, the coherent and
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incoherent regions are somewhat nonverlapping. On the other hand Figure 5.24 is an
illustration of a segment where there is significant overlap of the speech from the two
speakers. Even in this case, one can observe the coherent and incoherent regions, as

there is a significant reduction in the values of the standard deviation in the incoherent

regions.
1
o WJMHMM@UMJ\M | @
o L B PN LV
1 50 100 150 200 250
> TN I [ N [ L P W B | | ®
o A n
1 50 100 150 200 250
0.5} » » v v 4 (©)
o WWWWMWH
1 100 150 200 250
o WMMMM ] @
A s VN N N sy~ o
o N
100 150 200 250
O0.5F
0 WWWWMhWAWWWW )
_0.5 C I I I I
50 100 150 200 250

Time(ms)

Figure 5.23: Standard deviation plots computed using a frame size of 2 ms with a shift of
one sample for the Hilbert envelopes shown in Figure 5.22. Standard deviation of the Hilbert
envelope of (a) LP residual of mic-1 signal, (b) LP residual of mic-2 signal, (c¢) coherently-
added using delay-1, (d) coherently-added using delay-2 and (e) difference between the two
standard deviation plots shown in (c) and (d).

5.4.2 Speech Enhancement from Multispeaker Data

The proposed method of speaker separation exploits the characteristics of the coherently-
added Hilbert envelopes of the LP residuals of speech from a pair of microphones. For
example, by subtracting the standard deviation values of the coherently-added Hilbert
envelopes of both the speakers, we get the waveforms shown in Figures 5.23(e) and
5.24(e) for the two segments. The regions of significant excitation for the desired
speaker are indicated by the positive pulses, and for the other speaker, by the nega-
tive pulses. To derive the regions of significant excitation of the desired speaker, the

positive pulses of width greater than 1 ms and standard deviation difference values

38



O-SZJJMMWHMMU& , v ] ®
O Il Il
1 50 100 150 200 250
T T T T
O'SWMMMWM ’ ’ ] ®
0 Il L
1 50 100 150 200 250
O-SMJLMM\M » » ] ©
(0] i i
1 50 100 150 200 250
**L_ sl Al ' ' ] @
0 Il Il
50 100 150 200 250
0-57 T T T T
_0.57 L L L L
50 100 150 200 250

Time(ms)

Figure 5.24: Standard deviation plots computed using a frame size of 2 ms with a shift of one
sample for the Hilbert envelopes of a overlapping region. Standard deviation of the Hilbert
envelope of (a) LP residual of mic-1 signal, (b) LP residual of mic-2 signal, (¢) coherently-
added using delay-1, (d) coherently-added using delay-2, and (e) difference between the two
standard deviation plots shown in (c) and (d).

greater than the mean of the positive values are used. The choice of 1 ms is related
to the delay, as it is necessary to ignore the spurious positive regions. The choice of
the small positive threshold is to avoid spurious positive regions. To derive the re-
gions of significant excitation of the second speaker, similar logic is used for the plot
in Figure 5.23(e) to pick up regions of negative pulses. The positive and the negative
pulses for the case in Figure 5.23(e) are shown in Figures 5.25(b) and 5.25(c). The se-
quences of positive and negative pulses are smoothed using a 5-point mean smoothing
to avoid abrupt changes in the weight function. The width of the smoothing window
is not critical. In order to suppress the undesired speaker, it is preferable to have more
amplitude for the negative pulses. In this case a value of -4 is chosen. This value was
chosen after listening to the enhanced speech for different values of the amplitudes
for the negative pulses. While the chosen value is not critical, too small a value does
not reduce the level of the second speaker and on the other hand, too large a value
will produce distortion of the desired speaker. Ideally one should choose the nega-

tive weight value adaptively based on the strength of the GC event of the undesired
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speaker. In this work we have chosen a fixed threshold value of -4. The resulting plots
are shown in Figures 5.25(d) and 5.25(e). The final weight function is derived from
this plot by taking exponential of the sum of the plots in Figures 5.25(d) and 5.25(e),

and normalizing the maximum value to one. Figure 5.25(f) gives the desired weight

function.
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Figure 5.25: Illustration of the steps involved in deriving the weight function. (a) The plot
of difference of standard deviations shown in Figure 5.23(e) is reproduced here. (b) Positive
pulses indicate regions of significant excitation of the desired speaker. (c) Negative pulses
indicate regions of significant excitation of the undesired speaker. (d) Smoothed version of
(b). (e) Smoothed version of (c). (f) Normalized weight function derived using the positive
and negative pulses shown in (d) and (e).

This weight function is used to multiply the LP residual of the speech from mic-
1. The resulting modified residual is used to excite the time varying all-pole filter
obtained from the LP analysis. Thus we get the processed speech from mic-1, where
the desired speaker is enhanced. Similarly the speech from mic-2 is processed to
enhance the same speaker. Both these enhanced speech signals are coherently added
to obtain the enhanced signal of the desired speaker. This coherent addition at the
signal level helps to reduce the effect of background noise in the degraded signals. For
the enhancement of speech of the desired speaker no special attempt is made for the
unvoiced regions. Perceptually it may not be necessary to separate the speech of each

speaker in these regions. Since the weight values for the unvoiced region is less than
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the weight values for the undesired speaker, the unvoiced segments are also clearly
perceived, even though the speakers are not separated in those regions. The steps in

processing the two microphone signals for enhancement are summarized in Table 5.4.

Table 5.4: Steps in the proposed method for speech enhancement in multispeaker
environment

Sl. No. Description
1 Collect the speech signals (sampling frequency 8 kHz) from two speakers
over two spatially separated microphones in a live room.
2 Derive the (10** order) LP residuals from the speech signals.
Compute the Hilbert envelopes of the LP residuals.
4 Estimate the time-delays for each speaker using the cross-correlation
of the Hilbert envelopes.
5 Add the Hilbert envelopes using the estimated time-delays to produce
the coherently-added Hilbert envelope for each speaker.

w

6 Derive the weight function using the standard deviation plots from
the coherently-added Hilbert envelopes.

7 Derive the modified LP residual signal from each microphone signal.

8 Synthesize the enhanced speech for each microphone signal.

9 Coherently add the speech signals of the desired speaker derived
from both the microphone signals.

5.4.3 Experimental Results

To compare the results of the proposed method for enhancement with other meth-
ods, we consider an example (Case 1B) from Independent Component Analysis (ICA)
database prepared for evaluating new methods for multispeaker speech enhancement
in multichannel case [109]. The example consists of speech of two male speakers, col-
lected for 10 seconds over two microphones in a room of dimension 3.4m x 3.8m X
2m. The room was not completely anechoic, as it did have a short reverberation. In-
formation regarding distance between the speakers and the microphones was not given
in the description of the database. The outputs of the microphones and the processed
speech signals of each speaker are given in the database, and are used as reference for
comparison in this study. The two microphone signals are processed by the proposed
method to enhance the speech of each speaker. The signals from the individual micro-
phones, the enhanced speech signals of the speakers available in the database, and the

enhanced speech signals obtained by the proposed method are shown in Figure 5.26.
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The segments of the speech signals shown in Figures 5.26(d) and (f) are due to the
new method. The narrowband spectrograms for all the speech signals are also given
in Figure 5.26. From the spectrograms it is difficult to see the result of enhancement.
But the waveforms in Figures 5.26(d) and (f) clearly show the separation of the speak-
ers. Perceptually, the proposed method gives a significantly better suppression of the
undesired speaker and also better quality than the enhancement results given in the
database. Note that even though the spectrum is not manipulated, the enhancement
of the speaker is achieved purely by emphasizing the regions of excitation around the
GC events of the desired speaker and at the same time deemphasizing the regions
around the GC events of the undesired speaker.

Speech data from two speakers speaking simultaneously was collected from two
spatially separated (0.6 m) microphones in a laboratory. The microphones are at
distances of over 1 m from each of the speakers. The speech data for 20 seconds col-
lected from two male speakers is processed by the proposed method, and the results
are shown in Figure 5.27. The separation of the speakers is evident in the wave-
form plots. Speech from two female speakers, and one male and one female speakers
(each of 20 seconds) were also collected and processed by the proposed method. In
all the cases the speech of the desired speaker is found to be significantly enhanced
compared to the respective degraded signals. These results indicate that it is pos-
sible to separate multispeaker data collected at multiple microphones using the pro-
posed method. The wave files for these cases are available for listening at the website

http://speech.cs.iitm.ernet.in/Main /result /multispkr. html.

5.4.4 Subjective Evaluation

In this section, results of the listening tests are given. Mean Opinion Score (MOS)
rating method was used to asses the quality of the degraded and processed speech
signals [110]. In this method, subjects were asked to rate the speech under test on a
five-point scale given in Table 5.5 [110].

The subjects for this evaluation consisted of 25 graduate students who volunteered
for the task. All the subjects are familiar with speech processing as they have taken

a full semester course on speech technology. The evaluation was conducted by play-
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Table 5.5: Mean opinion score five-Point Scale.

Rating | Speech Quality | Level of Distortion
5 Excellent Imperceptible
4 Good Just perceptible but not annoying
3 Fair Perceptible and slightly annoying
2 Poor Annoying but not objectionable
1 Unsatisfactory | Very annoying and objectionable

ing the speech signals through a loudspeaker in the laboratory environment. Initially
the subjects were presented with degraded and the processed speech signals, different
from those used for evaluation, to give familiarity about the rating on the five-point
scaling. In the formal evaluation, the degraded speech signals from the two micro-
phones are presented followed by the enhanced speech signals. The subjects were
asked to give their rating for each case. The summary of their ratings is shown in the
form of histograms in Figure 5.28, for the example considered from the ICA database
(Figure 5.26). The rating is lowest for the degraded speech and highest for the speech
enhanced by the proposed method. The enhanced speech signals obtained by the pro-
posed method shows better rating compared to the enhanced speech signals given in
the database. The mean opinion scores are 3.03, 2.03 and 1.40 for the enhanced speech
signals (spkr-1 and spkr-2) by the proposed method, enhanced speech signals (spkr-1
and spkr-2) given in the database and degraded speech signals (mic-1 and mic-2),
respectively. Thus, this study show that the proposed method is effective for enhance-
ment of multispeaker speech, and the knowledge of the excitation source is indeed
useful for processing speech for enhancement. The summary of the ratings for the
data collected in the laboratory environment (three examples, namely, two male, two
female, one male and one female) is given in the histograms in Figure 5.29. The mean
opinion scores for the enhanced speech is 3.58 and it is 1.70 for the degraded speech.
This example illustrates the effectiveness of the proposed method for processing speech

collected in different environmental conditions.
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Figure 5.27: Speech waveforms of two male speakers collected in the laboratory. (a) mic-1
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Figure 5.28: Frequency histogram showing the frequency distribution of the scores given
to the quality of speech on a five-point scale for (a) degraded speech from mic-1, (b) de-
graded speech from mic-2, (c) enhanced speech of spkr-1 (given), (d) enhanced speech of
spkr-2 (given), (e) enhanced speech of spkr-1 (proposed) and (f) enhanced speech of spkr-2
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Figure 5.29: Frequency histogram showing the frequency distribution of the scores given to
the quality of speech on a five-point scale for (a) degraded speech from mic-1, (b) degraded
speech from mic-2, (c) enhanced speech of spkr-1, and (d) enhanced speech of spkr-2 for the
signals collected in the laboratory environment.
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5.5 Summary

In this chapter a method is proposed for estimating the time-delays from speech sig-
nals collected over spatially distributed microphones. The method uses the knowledge
of the excitation source, unlike the commonly used spectrum-based methods. Since
time-delays can be estimated accurately even from short segments of speech, it is also
possible to develop algorithms to track a moving speaker. A method for enhance-
ment of speech in multichannel case is proposed. The Hilbert envelope of the LP
residual signal is used for developing the method for enhancement. The resulting
coherently-added Hilbert envelope exhibits some important properties. Using these
properties a weight function is derived, which when multiplied with the LP residual of
the coherently-added signal, enhances the high SNR regions. The enhanced residual
is used to excite the time varying all-pole filter, which is derived from the coherently-
added signal, to synthesize speech signal. A method based on the knowledge of the
excitation source of speech production is also proposed for enhancing speech of the
desired speaker in a multispeaker environment. The enhancement is achieved by de-
riving a modified excitation sequence for each speaker and synthesizing the speech
signal using this sequence. It was found that in the synthesized signal, the speech of
the desired speaker is enhanced significantly compared to that of the other speaker. A
summary of the various issues discussed in this chapter is given in Table 5.6.

In Chapter 3, methods for the detection of GC events were discussed. In the
previous and this chapter, usefulness of GC events was illustrated in some applications.
In the following two chapters we discuss the detection of the VOP events and usefulness

of the VOP events in the detection of end-points.
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Table 5.6: Summary of the issues discussed with respect to the applications of GC
events for Multichannel case.

Time-Delay Estimation

e Issues in Time-Delay Estimation
— Existing methods use vocal tract system features, which are easily affected by
degradation.

— Long segments, typically 500-1000 ms are used for delay estimation to minimize
the effects of degradation. But considering long segments is not advisable for
applications like tracking moving speakers.

e Proposed method for Time-Delay Estimation

— Uses excitation source information of speech production, which is robust to
degradation, that is, the relative spacing between the GC events will not change
due to degradation.

— Hilbert envelope of the LP residual is used as the excitation source information.

— Cross-correlations of segments of size 50-100 ms are sufficient for estimating
the delay.

Speech Enhancement in Multichannel Case

e Issues in Speech Enhancement in Multichannel Case

— Estimation of time-delay using spectral features.

— Estimating characteristics of degradations and subtracting the same from the
degraded speech.

e Proposed method for the enhancement in multichannel case

— Time-delay estimation using excitation source information.
— Exploiting excitation source information derived from the GC events.

— Identify and enhance excitations of speech component.
Speech Enhancement in Multispeaker Environment

e Issues involved in speech enhancement in multispeaker environment

— Existing methods use vocal tract system features.
— Existing methods use the knowledge of pitch and estimating pitch in degraded
conditions is a difficult task in itself.

e Proposed method for the enhancement in multichannel environment

— Uses excitation source information based on the knowledge of GC events.

— Pitch information is not used, and only the fact that the relative spacing
between the GC events will not change, is exploited.
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Chapter 6

VOWEL ONSET POINT EVENT

FOR SPEECH ANALYSIS

In the previous three chapters, the proposed event-based approach was demonstrated
using GC events. Acoustic cues were proposed for the detection of GC events. A
method for automatic detection of GC events using group delay functions was dis-
cussed. The group delay based method detects GC events accurately. The Hilbert
envelope of the LP residual gives approximate information of the GC events. The
usefulness of GC events was demonstrated in applications like extraction of pitch,
enhancement of speech, time-delay estimation and enhancement of speech in multi-
speaker environment. The significantly improved performance in these applications
illustrates the potential of the proposed event-based approach. In this and the next
chapter, the event-based approach is demonstrated using VOP events. In particular,
this chapter discusses the issues involved in the detection of VOP events.

The organization of this chapter is as follows: Issues involved the detection of the
VOP events are discussed in Section 6.1. The acoustic descriptions of VOP events for
different categories of CV units are given in Section 6.2. Section 6.3 proposes a set of
acoustic cues for the detection of VOP events. Preparation of the reference database
using the proposed acoustic cues is discussed in Section 6.4. Section 6.5 gives an
algorithm for automatic detection of VOP events for isolated utterances of CV units.

An algorithm for the detection of VOP events in continuous speech is proposed in
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Section 6.5.2. In Section 6.6, a summary of the issues discussed in this chapter is

given.

6.1 Issues in the Detection of VOP events

Important information for the analysis of speech lies around the VOP event, and hence
a reliable algorithm for the automatic detection of the VOP event is essential. The
proposed algorithm needs to be evaluated against a reference database, containing
speech data with manually marked VOP events.

Careful observation of the characteristics of different CV units shows that there
are some categories of CV units which are difficult even for manual marking of VOP
event. The cues normally used for manual marking are the amplitude of the signal,
voicing level and pitch periodicity of the vowels. For difficult cases of CV units such
as voiced aspirated, nasal and semivowel CV units, it is necessary to use other cues
for manual marking. Even to select a set of acoustic cues, it is essential to know the
characteristics of the signal around the VOP event for each category of sound unit.
Hence a study of the characteristics of the signal around the VOP event is made to
obtain the acoustic description of the VOP event for each category of CV units.

In most of the methods described in the literature for the detection of VOP events,
the features of the vocal tract system are used. But there is significant information in
the excitation source features too, which may be exploited to determine the VOP event.
There are some sound units, especially in Indian languages, like unvoiced aspirated and
voiced aspirated sounds, in which the onset of vowel may be determined better using
the excitation source features, as there are very few changes in the characteristics of
the vocal tract system at the VOP event. Even though the onset of vowel is an instant
property, most of the existing methods treat the VOP event as a region property, and
hence the results are poor in resolution. The aim of this work is to develop a method
for accurate detection of VOP events, and also explore the usefulness of excitation

source features in the detection of VOP events.
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6.2 Acoustic Description of the VOP Events

Even though not exhaustive, the most frequently used 145 CV units of the Indian
language Hindi are chosen for this study. The 145 CV units may be broadly classified
into Stop Consonant Vowel (SCV) units, nasal, fricative, affricate and semivowel CV
units. The SCV units may be further classified depending on the type of vowel, Place
of Articulation (POA) and Manner of Articulation (MOA). In this study the MOA
criterion is used for classification. According to this criterion the SCV units can be fur-
ther divided into Unvoiced Unaspirated (UVUA), Unvoiced Aspirated (UVA), Voiced
Unaspirated (VUA) and Voiced Aspirated (VA) CV units. The different categories of
the 145 CV units are shown in Table 6.1. Note that the CV units are shown only for
the vowel ending /a/. Similar CV units exist for the vowel endings /i/, /u/, /e/ and
/o/. In this section the acoustic descriptions of the VOP event in each category of the
CV units are given. This description helps in the identification of suitable acoustic

cues for the detection of the VOP event.

Table 6.1: Categories of CV units in Hindi.

Category of Sub- Sound units
CV units | Category
SCV UVUA /ka/, /Ta/, [ta/, /pa/
UVA /kha/, /Tha/, /tha/, /pha/
VUA /ga/, /Da/, /da/, /ba/
VA /gha/, /Dha/, /dha/, /bha/
Nasal /na/, /ma/
Semivowel /ya/, [ra/, [la/, [va/
Fricative /sa/, /sha/, /ha/
Affricate /cha/, /Cha/, /ja /, /Jha/

For the UVUA CV units, the VOP event is characterized by the changes in the
source as well as the system characteristics. The change in the source is from the burst
release to the glottal vibration (quasi-periodic laryngeal source). The change in the
system characteristics is from total closure to wide opening. The consonant region
is characterized mainly by the burst region, and the vowel region is characterized by
quasi-periodic signal and regular formant contours.

The VOP event in the case of UVA CV units is characterized mainly by the change
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in the source characteristics. This is because, the change in the vocal tract shape
occurs at the onset of aspiration, which is ahead of the VOP event, and hence there
will be few changes in the system characteristics. The change in the source is from
the noise due to turbulent airflow at the glottis to the quasi-periodic glottal vibration.
The consonant region is characterized by burst and aspiration. The vowel region is
characterized by a quasi-periodic signal and regular formant contours.

For the VUA CV units, changes in both source and system characteristics occur
at the VOP event. The change in the system characteristics is from total closure
to wide opening. Even though the glottal vibration remains the same during the
production of consonant as well as vowel, its characteristics change due to loading
of the system on the glottis during the production of the consonant. The consonant
region is characterized by low voiced region and weak frequency formant structure.
The vowel region is characterized by high voiced region and regular formant contours.

The VOP event in the VA CV units is characterized by the changes mainly in the
source characteristics only. Major changes in the system characteristics occur at the
beginning of the aspiration region. In the initial part of the consonant, there is only
glottal vibration, superimposed by the additional noise source at the glottis in the
aspiration region. This is followed by change only due to the glottal vibration at the
VOP event. The consonant region is characterized by burst and aspiration. The vowel
region is characterized by high voiced region and regular formant contours.

In case of nasal CV units, the VOP event is characterized by changes in the source
and system characteristics. The change in the source characteristics is due to the
loading effect of system on the glottis. The change in the system characteristics is
from total closure to wide opening of the oral cavity accompanied by coupling and
decoupling of nasal cavity, respectively. The consonant region is characterized by
a comparatively low voiced region and low frequency formant structure. The vowel
region is characterized by high voiced region and regular formant contours.

The VOP events in fricative and affricate CV units may be characterized by the
changes in the source and system characteristics. The change in the source is from noise
due to turbulent airflow at a narrow constriction, to glottal vibration. The change in

the system characteristics is from narrow constriction to wide opening. The consonant
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region is characterized by a noise-like signal and high frequency formant structure due
to frication, followed by a quasi-periodic signal and regular formant contours in the
vowel region.

The VOP event in semivowel CV units is also characterized by changes in the
source and the system characteristics. The change in the source characteristics is due
to the loading effect of the system on the glottal vibration during the production of
the consonants. The change in the system characteristics is from partial opening to
wide opening. The amount of loading is less compared to other sound units like nasal
CV units, due to partial opening of the vocal tract system during the production of
the consonant. Semivowels are characterized by the formant contours both in the
consonant, as well as in the vowel region with transition at the VOP event.

To summarize, in all the categories of the CV units, there are changes in the exci-
tation source characteristics at the VOP event. Thus the knowledge of the excitation
source features may also be explored for detecting the VOP event. In VA, nasal and
semivowel CV units, the similarity in the characteristics of the signal in the consonant
and the vowel regions makes it difficult to detect the VOP event directly from the
signal. Hence there is a need for exploring a new set of acoustic cues which shows

significant change at the VOP event in these categories.

6.3 Acoustic Cues for the detection of the VOP

Events

In this study GC events (instants of significant excitation) are used as the pitch mark-
ers, and acoustic cues based on the GC events are explored [42,43]. These acoustic
cues will have good temporal resolution, consistency in representation and robustness.
The different acoustic cues considered are: (1) Formant transition (Fy.(t)), (2) epoch
intervals (F;(t)), (3) strength of instants (S;(¢)), (4) symmetric Itakura distance (1,(t))
and (5) ratio of signal energy to residual energy (S,(¢)). Among these, the cues Fi,.(t),
I,;(t) and S,(t) indicate changes in the vocal tract system characteristics and the cues

E;(t) and S;(t) indicate changes in the excitation source characteristics.
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6.3.1 Formant Transition

The acoustic cue formant transition (Fj.(t)) can be obtained from the plot of formant
contours (F;(t)) plot. In this study the method based on the instants of significant
excitation proposed in [2] is used for deriving the formant frequencies. Knowledge
of the instants of significant excitation enables us to choose the position and size of
the analysis frame within a pitch period in such a way that consistent results can be
obtained [2]. Frames of 3 ms duration immediately after the instants of significant
excitation are used for LP analysis.

The formant frequencies are derived from the roots of the prediction polynomial
A(z) =ag+ a1zt + ... +a,z? (6.1)

where ag, k = 0,1,2,....... p are the Linear Prediction Coefficients (LPCs) estimated
using the covariance method [46]. The covariance method gives better resolution com-
pared to the autocorrelation method when the frame size is small. Roots with a mag-
nitude above a certain threshold, say 0.8, and with absolute frequency above a certain
threshold, say corresponding to a frequency of 200 Hz, are considered as resonances
corresponding to formants [111] and other roots are ignored.

The Fj.(t) is significant during transition from consonant to vowel, that is, at
the VOP event. This is due to the change in the system characteristics occurring at
this point. Hence this can be used as an acoustic cue for detecting the VOP event.
Figure 6.1 shows the UVUA velar SCV /ka/ and its VOP event marked using Fy,(t)
cue. The VOP event is identified as the instant at which transition to the following

vowel begins.

6.3.2 Epoch Intervals

The distance between two successive instants of significant excitation is the epoch
interval (E;(t)). After extracting the instants, the F;(t) plot is obtained by plotting
the successive time intervals between the epochs. The E;(t) value varies randomly in
the case of unvoiced sounds, but remains nearly constant in the case of voiced sounds.
Hence this plot will have uniform contour for the voiced sounds. The beginning of

such a contour indicates the VOP event in case of CV units with unvoiced consonants.
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Figure 6.1: UVUA velar SCV /ka/. (a) Waveform, (b) instants of significant excitation and

(c) formant contours.

Hence E;(t) can be used as an acoustic cue for detecting the VOP events. Figure 6.2

shows the VOP event marking for the fricative CV /sha/ using the E;(¢) plot.
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Figure 6.2: Fricative CV /sha/. (a) Waveform, (b) instants of significant excitation and (c)
epoch intervals.

6.3.3 Strength of Instants

The strength of instants (S;(¢)), which indicates the strength of excitation, mainly
depends on the amount of loading of the vocal tract system on the source. The
strength of the instants for voiced sounds is generally higher compared to the strength

of the random instants present in the unvoiced sound. In particular, the strength of
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instants for vowels is higher compared to the strength of voiced consonants. Also S;(t)
shows a significant change at the transition from consonant to vowel for most of the
CV units. Hence S;(t) can be used as an acoustic cue for detecting the VOP event.
Figure 6.3 shows the nasal CV /mi/, the LP residual, Hilbert envelope of the LP
residual, the instants and the strength of the instants. The strengths at the instants
are obtained by picking the amplitude of the Hilbert envelope at the locations of the
instants. The figure also shows the manually marked VOP event using S;(t) as the

acoustic cue.
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Figure 6.3: Nasal CV /mi/. (a) Waveform, (b) residual, (c) Hilbert envelope of residual,
(d) instants of significant excitation and (e) strengths of instants.

6.3.4 Symmetric Itakura Distance

The change in system characteristics during the production of sound units will be
manifested as spectral change. The amount of spectral change or distortion can be
measured using the Itakura distance ([4(t)) [112]. The spectral change is significant
at the VOP event, and hence the I;(¢) can be used as an acoustic cue for detecting
the VOP event.

Given two frames, the symmetric Itakura distance is computed using the following

relations [113]:
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h2t) = S Ry (6:2)
a’ R2a1

doy (1) = 2222 6.3

21(1) o Ryy (6.3)

_ d12 (t) + d21 (t)

I4(2) 5

(6.4)

where a; and as are LPCs of framel and frame2, respectively, Ry and R, are the
signal autocorrelation matrices corresponding to a; and ag, di2(t) and do(t) are the
asymmetric Itakura distances and I4(t) is the symmetric Itakura distance.

In this study I,(t) values are computed at each instant by considering speech frames

of 3 ms at the given instant and at the next instant. Figure 6.4 shows the manually

marked VOP event for the UVUA velar CV /ka/ using I,(t) as the acoustic cue.
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Figure 6.4: UVUA CV /ka/. (a) Waveform, (b) instants of significant excitation and (c)
symmetric Itakura distances.

6.3.5 Ratio of Signal Energy to Residual Energy

Energy of the speech signal is generally higher in voiced regions as compared to the
energy in unvoiced regions. In the case of residual signal, the energy level may be
higher even in the unvoiced region. Therefore the ratio of the signal energy to the

residual energy (S,(t)) is low in the consonant region and high in the vowel region,
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thus indicating a significant change at the VOP event for some of the sound units.
For extracting this acoustic cue, short-time energies for 3 ms of the speech signal and
residual signal around each instant are computed. The ratio of these two short-time
energies is the required acoustic cue. The manually marked VOP event using this cue

is shown in Figure 6.5 for the fricative CV /ha/.
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Figure 6.5: Fricative CV /ha/. (a) Waveform, (b) instants of significant excitation and (c)
ratio of the signal energy to residual energy.

6.3.6 Summary of the Acoustic cues

With Fy,.(t) as the cue, the hypothesis is that the VOP is marked by the beginning of
formant contours. The categories of CV units for which VOP events can be marked
using this cue are UVUA, UVA, VUA, nasal, fricative, affricate and semivowel CV
units. This acoustic cue may not be suitable for the case of VA CV units, as the
formant transition begins in the consonant region itself. The beginning of uniform
contour in the F;(t) is useful for marking VOP event. This cue is suitable for UVUA,
UVA, VUA, fricative and affricate CV units. This cue may not be suitable for CV
units with high voiced consonants like VA, nasal and semivowel CV units, as the
uniform contour begins in the consonant region. The amount of change in the S;(t)
plot occurring at the VOP event is significant for UVUA, UVA, VUA, nasal, fricative
and affricate CV units. The amount of change may not be significant in some cases of

VA and semivowel CV units and hence marking VOP events is difficult. In I,(¢), the
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VOP event is associated with the instant having large spectral change at the beginning
of the vowel. Hence the I;(t) cue is suitable for UVUA, UVA, VUA, nasal, fricative,
and affricate CV units. The spectral change may not be large at the VOP event in
some cases of VA and semivowel CV units. The S,(t) cue shows significant change
at the VOP event in the case of CV units having unvoiced consonants. The possible
categories for which this cue is suitable are UVUA, UVA, fricative and affricate CV
units. The cue may not show significant change at the VOP event in some cases of
CV units with high voiced consonants.

The above description is tabulated in Table 6.2 for quick reference. The conclusions
that can be made from the above discussion are: The change occurring in an acoustic
cue at the VOP event depends on the type of CV unit. Any one acoustic cue is not
directly suitable for locating the VOP event for all the 145 CV units. All these acoustic

cues may be used together to mark the VOP event in a given CV unit.

Table 6.2: Summary of the acoustic cues for manual marking of VOP event.

Sl. No. | Acoustic | Hypothesis for Category of CV units
cue marking the VOP event | for which this cue
is suitable
1 F;.(t) | Beginning of UVUA, VUA, VUA,
formant transition nasal, fricative,
affricate, semivowel
2 E;(t) Beginning of uniform UVUA, UVA, VUA,
contour fricative, affricate,
3 S;(t) Significant change UVUA, UVA, VUA,
in S;(t) contour nasal, fricative,
affricate
4 I(2) Instant with UVUA, UVA, VUA,
large distortion nasal, fricative,
affricate
5 Sy(t) Significant change UVUA, UVA, VUA,
in S,(t) contour affricate, fricative

6.4 Preparation of Reference Database

To prepare the reference database, speech data was collected at a sampling frequency of

8 kHz for all the 145 CV units in a laboratory environment from three male speakers.
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For each CV unit, 12 utterances were collected per speaker. Thus, there are 1740
utterances per speaker and a total of 5220 utterances in the database. For each CV
unit, three utterances per speaker (a total of 1305 utterances) were randomly chosen
for evaluating the consistency in marking the VOP events using the proposed acoustic
cues. The consistency of marking the VOP events using multiple cues is evaluated on
the selected 1305 utterances, with the help of 11 subjects (including the author). The
subjects were instructed to mark the instant at which evidences due to two or more
acoustic cues coincide, as the VOP event. The results of the study is tabulated in
Table 6.3. The entires in the table are obtained by considering the deviation of each
subject’s marking with the author’s markings. The relatively poor performance in the
case of VA, nasal and semivowel CV units indicates the ambiguity in locating the VOP

events in such CV units.

Table 6.3: Results of marking the VOP events using all the acoustic cues by 11 speak-
ers, computed by considering the deviation of each subject’s markings with the author’s
markings, given in percentage. In the table, abbreviations NAS, FRI, AFF, SVOW
and AVG refer to nasals, fricatives, affricates, semivowels and average efficiency, re-
spectively.

SL.No. | DEV CV category (%) AVG
(ms) | UVUA | UVA | VUA | VA | NAS | FRI | AFF | SVOW | (%)
10 96.7 92.6 | 92.0 | 83.2 | 82.9 | 94.1 | 81.9 72.5 86.9
20 99.3 97.8 | 98.7 | 94.1 | 93.8 | 96.4 | 91.2 81.1 94.1
30 99.8 99.2 | 99.6 | 95.1 | 95.8 | 97.8 | 95.8 84.6 95.9
40 99.9 99.8 | 99.8 | 96.6 | 96.2 | 98.7 | 98.3 88.0 97.2
50 100 99.9 | 99.9 | 97.7 | 98.7 | 99.1 | 99.1 91.3 98.2
> 50 0 0.1 0.1 2.3 1.3 0.9 0.9 8.7 1.8

S| O | W N~

This study shows that using the proposed acoustic cues, the subjects are consistent
in marking the VOP events in most of the cases. It was found that the accuracy of
marking is high for sound units like UVUA, UVA, VUA, fricative and affricate CV
units and accuracy is low for other sound units like VA, nasals and semivowels. The
high accuracy can be attributed to the fact that the acoustic cues are able to locate
the start of the voicing better for the case of CV units with unvoiced consonants. The
manual marking of the VOP event is illustrated for the difficult cases like aspirated,

nasal, semivowel CV units in Figures 6.6 to 6.9 using the proposed cues.
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Finally, using the proposed acoustic cues, markings of the VOP events for all the

5220 utterances was performed by the author, for the reference database.
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Figure 6.6: UVA CV /khi/. (a) Waveform, (b) instants, (c) formant contours, (d) symmetric
Itakura Distance, (e) epoch intervals, (f) strength of instants and (g) ratio of the signal energy
to residual energy.
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Figure 6.7: VA CV /ghu/. (a) Waveform, (b) instants, (c) formant contours, (d) symmetric
Itakura distance, (e) epoch intervals, (f) strength of instants and (g) ratio of the signal energy

to residual energy.

2008 - T T quWW T T T T -
—-2000 - .
_4000 L Il Il Il Il Il Il Il Il Il Il ]

1 50 0 5 200 2 300 0 450 500
0.5 B
O Il Il It Il Il Il
50 100 150 200 250 300 350 400 450 500
4000 0 — 0 : PO——=92—-3 — ‘ ‘
2000 L Rt P RIS RS PEORSIREHHEHER I TE ' : i
o P . T Cieteetta eecen Qe e jo oo peesetecge ot i
50 200 250 300 350 400 450 500
Al ?; ZF% |
o Flecta [ [T ?T???‘PCP Poocrorerropeeere? @%@W@Pﬁ ¢ ‘
50 100 150 2oo 250 300 350 450 500
100 L * * B
50 | ;f**%zﬁé* ** Sk ’@H@K*#ﬁe’ﬁk—*—******** % ***_** e |
o i i i i i
50 100 150 200 250 300 350 400 450 500
1500 | ‘ ‘ ‘ E
1000 - TXFT B
500 i Wf\m e nna o) ?T T? TTTTT?????CP W’\m—\w o i i
50 150 250 300 350 450 500
aF =
2l oo il TTTTTTT TTTTTTTTTTH’m ]
0 L® s *Per o ‘
o 150 200 250 300 350 400 450 500

Time (ms)

@

(b)

©

(d)

(e

®

@

Figure 6.8: Nasal CV /mi/. (a) Waveform, (b) instants, (c) formant contours, (d) symmetric
Itakura distance, (e) epoch intervals, (f) strength of instants and (g) ratio of the signal energy

to residual energy.
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Figure 6.9: Semivowel CV /li/. (a) Waveform, (b) instants, (c¢) formant contours, (d)
symmetric Itakura distance, (e) epoch intervals, (f) strength of instants and (g) ratio of the
signal energy to residual energy.
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6.5 Automatic Detection of VOP Events

6.5.1 VOP events in Isolated Utterances of CV units

In the previous section, we discussed the preparation of the reference database of CV
units with manually marked VOP events using the proposed acoustic cues. While
preparing the reference database, significant changes occurring in the acoustic cues
are visually observed for a given utterance to mark the VOP event. But to use the
knowledge of the VOP event for any application, automatic detection of VOP event
is needed. In this section development of an algorithm for automatic detection of
the VOP event for isolated utterances of CV units is discussed. From the acoustic
description, it is known that the VOP event may also be characterized by changes in
the source characteristics. Hence, in this study, only S;(¢) is chosen as the acoustic
cue for developing an algorithm for automatic detection of the VOP event.

The speech signal is preemphasized and low pass filtered to 2.5 kHz (5 kHz sampling
frequency) to select only the high SNR regions. The LP residual is computed for
every frame of 20 ms with a shift of 10 ms using an LP order of 8. The instants of
significant excitation are computed from the LP residual. Also, Hilbert envelope of
the LP residual is computed. The S;(¢) values are obtained from the Hilbert envelope
using the knowledge of the instants.

At the next level, the instant at which there is a significant change in the strength
of excitation is to be detected. For this, a Gabor filter (modulated Gaussian pulse)
with parameters spatial spread of the Gabor filter o = 100, angular frequency of the
sinusoidal component w = 0.0114 and a filter length n = 800 is used [114]. The
parameters of the Gabor filter are chosen in such way that the negative part of the
window is larger than the positive part [1]. This is to ensure a peak only at the VOP
event. The Gabor filter is shown in Figure 6.10. The filter parameters are not crucial,
except that the general shape as in Figure 6.10 is to be maintained.

S;(t) is multiplied with the Gabor filter at each sampling instant, and the sum of
the product is noted as evidence for the VOP event at that instant. The plot of the
evidence is termed as the VOP FEvidence Plot. In the VOP evidence plot the relative

maxima occurs at the instants where the strength of the instants rises sharply and
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this maximum is detected as the VOP event. The algorithm is given in Table 6.4.
The S;(t) plot and the corresponding VOP evidence plot for UVA velar CV /khi/ are

shown in Figure 6.11.

Figure 6.10: Gabor window for o = 100, w = 0.0114 and n = 800.
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Figure 6.11: UVA CV /khi/ (a) Waveform, (b) strength of instants and (c) VOP evidences.

To evaluate the performance of the proposed algorithm, the reference database is
used. The efficiency is found out by computing the deviation between the hypothesized
VOP event and the manually marked VOP event. Performance of the algorithm for
each category of CV units for different deviations with respect to the manually marked
VOP event is given in Table 6.5. The performance is good for the CV categories in
which the consonant part is of the unvoiced type like UVUA, UVA and fricatives. The

performance seems to degrade for the CV categories the voiced consonants like VUA,
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Table 6.4: Algorithm for automatic detection of VOP events in isolated utterances of
the CV units.

1. Preemphasize input speech.
Select only high SNR portions of input speech
(up to 2.5 kHz) by low pass filtering.

3. Compute LP residual with 8* order LP analysis,
frame size of 20 ms and shift of 10 ms.

4. Find the instants of significant excitation for every
frame of 10 ms with one sample shift.

5. Compute Hilbert envelope of the LP residual.

6. Find the strength of instants.

7. Obtain the VOP event evidence plot from strength
of instants using Gabor filter.

8. Find the location of global maximum in the VOP
evidence plot, which is hypothesized as the VOP event.

VA, nasals, affricates and semivowels. The performance may be improved using the
evidence from the other acoustic cues.

For comparison, algorithms based on system features like energy derivative based
method and neural network based method are briefly discussed here [33,83]. In the
case of energy derivative based method the hypothesis is that the VOP event is the
point at which there is a significant increase in the energy of a CV utterance. This
point may be detected by computing the derivative of the short-time energy of the
speech signal, and locating the point at which the positive derivative is maximum. The
performance of the energy derivative based method for the CV units in the reference
database is shown in Table 6.6. The hypothesis for the neural network based method
is that the characteristics of the acoustic cues (signal energy, LP residual energy and
spectral flatness) are significantly different in the regions immediately before and after
the VOP event. A multilayer perceptron network is trained to detect the VOP event
by using the trends in these parameters at the VOP event. The performance of the
neural network based method for the same reference database is given in Table 6.6.

The performance of the proposed algorithm is comparable (even slightly better) to
the energy derivative and neural network methods [33,83]. For a deviation of + 30
msec, the proposed algorithm determines 88 % of the total 5220 VOP events correctly,
whereas the energy derivative method detects only 75.0 % and neural network method

detects 86.7 % of the VOP events.
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Table 6.5: Performance of the proposed algorithm based on excitation source informa-
tion for the detection of VOP event in isolated utterances of CV units. In the table

abbreviations DEV, NAS, FRI, AFF, SVOW and AVG refer to deviation, nasals,
fricatives, affricates, semivowels and average efficiency, respectively.

Sl.No. | DEV CV category (%) AVG
(ms) | UVUA | UVA | VUA | VA | NAS | FRI | AFF | SVOW | (%)
10 91.1 75.8 | 69.8 | 41.5 | 82.5 | 84.4 | 51.8 59.1 69.5
20 98.3 90.0 | 82.7 | 56.2 | 89.8 | 94.2 | 73.6 70.1 81.8
30 99.3 95.2 | 92.0 | 66.8 | 90.6 | 95.2 | 87.6 76.9 88.0
40 100 96.6 | 95.2 | 75.7 | 92.0 | 97.3 | 92.7 82.6 91.5
50 100 97.0 | 96.8 | 82.5 | 92.6 | 98.3 | 95.5 90 94.1
> 50 0.0 3.0 3.2 | 175 | 7.6 1.7 | 4.5 10 5.9

SO | W N =

Table 6.6: Average performance of energy derivative and neural network based meth-
ods for the detection of the VOP events in isolated utterances of 145 CV classes.

SlL.No. | Deviation | Energy Derivative Neural Network
(ms) based Method (%) | based Method (%)

1 10 51.5 68.5
20 65.4 78.7
3 30 75.0 86.7

6.5.2 VOP Events in Continuous Speech

To hypothesize the VOP events in continuous speech, the algorithm proposed for iso-
lated utterances of CV units may be used with slight modification. For continuous
speech finding S;(¢) is computation intensive, because computation of instants of sig-
nificant excitation from the residual is obtained by the group delay processing for
every sample shift. Alternatively, since Hilbert envelope of the LP residual represents
approximately the strength of instants, this can be used instead of S;(¢) for hypothe-
sizing the VOP event. The VOP event evidence is obtained from the Hilbert envelope
of the LP residual by multiplying it with the Gabor filter (¢ = 100, w = 0.0114, and
n = 800), and taking the sum of the product for every sample shift. In the VOP
evidence plot the peaks are located using a peak picking algorithm. Spurious peaks
are eliminated using characteristics of the shape of the VOP evidence plot, namely,
between two true VOP events, there exists a negative region of sufficient strength due

to the vowel region. The algorithm for the detection of VOP events in continuous
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speech is given in Table 6.7.

Table 6.7: Algorithm for detection of VOP events in continuous speech using excitation
source features.

1. Preemphasize input speech.
Select only high SNR portions of input speech
(upto 2.5 kHz) by low pass filtering.

3. Compute LP residual with 8" order LP analysis,
with a frame size of 20 ms and shift of 10 ms.

4. Compute Hilbert envelope of the LP residual

5. Obtain the VOP event evidence plot from Hilbert envelope
for every sample shift using Gabor filter.

6. Identify the peaks in the VOP event evidence plot using
peak picking algorithm.

7. For each peak, if there is no negative region with reference
to next peak, then eliminate such a peak as it is spurious.

8. Hypothesize remaining peaks as the VOP events.

The above procedure is illustrated for a Hindi sentence /antarAshtriyA bassevA
pichale mahIne shuru huyithi/. In this sentence there are 16 VOP events, as marked
in Figure 6.12(a) using the proposed acoustic cues. The Hilbert envelope and the
VOP evidence plots are shown in Figures 6.12(b) and (c), respectively. The output
of the peak picking algorithm is given in Figure 6.12(d), and the hypothesized VOP
events after eliminating the spurious ones are shown in Figure 6.12(e). Comparing the
manually marked VOP events and the hypothesized VOP events, it can be seen that
the algorithm has hypothesized 14 VOP events correctly within a deviation of + 20
ms, 2 VOP events are not detected and 1 is a spurious VOP event.

To study the effectiveness of the proposed algorithm, 25 sentences from five Hindi
news bulletins from five different speakers (2 male and 3 female) are chosen. For each
of these sentences, the VOP events are manually marked using the proposed acoustic
cues. There are 236 VOP events in the selected data. Out of the total 236 VOP events,
209 (88.5 %) are detected within a resolution of £+ 20 ms, 22 (9.32 %) are missing and
29 (12.3 %) are wrongly hypothesized.

To compare the performance of the proposed algorithm with that of the algorithm
based on system features, frame energies of band-pass speech (500-2500 Hz) for blocks
of 10 ms with every sample shift are computed. The band energy in the range 500-
2500 Hz typically represents the energy of the first two formants and it is assumed
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to represent the system features. The VOP event evidence plot is obtained from the
energies computed using the Gabor filter for every sample shift. The VOP events are
hypothesized from the VOP event evidence plot as explained earlier. The algorithm
is given in Table 6.8. The algorithm is illustrated for the utterance /antarAshtriyA
bassevA pichale mahIne shuru huyithi/. From Figures 6.12 and 6.13, we can see that
both the methods hypothesize the VOP events approximately at the same places.

Table 6.8: Algorithm for automatic detection of VOP events in continuous speech
using vocal tract system features.

1. Preemphasize input speech.
Select only high SNR portions (from 500 - 2500 Hz)
by band pass filtering.

3. Compute the frame energies for blocks of 10 ms
for every sample shift.

4. Obtain the VOP event evidence plot from the energies
for every sample shift using Gabor filter.

5. Identify the peaks in the VOP event evidence plot using
peak picking algorithm.

6. For each peak, if there is no negative region with reference
to next peak, then eliminate such a peak.

7. Hypothesize remaining peaks as the VOP events.

The performance of both the algorithms, that is, algorithm based on source as well
as spectral features is tabulated in Table 6.9. As given in the table, the performance

of both the algorithms are nearly the same.

Table 6.9: Performance of the proposed algorithm based on source features and the
algorithm based on system features for detection of the VOP events in continuous
speech. In the table the abbreviations HYPO, SPU and MISS represent hypothesized,
spurious and missing, respectively.

Method | Total | HYPO SPU MISS | VOPs in | VOPs in | VOPs in | VOPs in
VOPs | VOPs | VOPs | VOPs | + 10 ms | =20 ms | + 30 ms | + 40 ms
Source 236 243 29 22 182 209 213 214
feature (12.3%) | (9.3%) | (77.1%) | (88.5%) | (90.2%) | (90.6%)
System 236 237 24 23 186 210 211 213
feature (10.1%) | (9.7%) | (78.8%) | (89.0%) | (89.4%) | (90.2%)
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Figure 6.12: Hindi sentence /antarAshtriyA bassevA pichale mahlIne shuru huyithi/. (a)
Waveform with manual marked VOP events, (b) Hilbert envelope of the LP residual, (c)
VOP evidences, (d) output of peak picking algorithm and (e) hypothesized VOP events after

eliminating some spurious peaks.
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Figure 6.13: Hindi sentence /antarAshtriyA bassevA pichale mahlIne shuru huyithi/. (a)
Waveform with manual marked VOP events, (b) frame energies, (¢) VOP evidences, (d)

output of peak picking algorithm and (e) hypothesized VOP events using the energy of

speech signal.
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6.6 Summary

The acoustic description of the VOP event in different categories of CV units was given.
With the knowledge of this acoustic description, a set of acoustic cues based on the GC
events for detecting the VOP events was proposed. A reference database of CV units
with manually marked VOP events was prepared using the proposed acoustic cues.
An algorithm for automatic detection of the VOP event in isolated utterances of CV
units was proposed using the strength of instants as an acoustic cue. An algorithm for
the detection of VOP events in continuous speech is proposed using Hilbert envelope
of the LP residual. Summary of the various issues discussed in this chapter is given in
Table 6.10.

In the next chapter, usefulness of VOP events is demonstrated in the detection of

end-points of a speech utterance.
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Table 6.10: Summary of the issues with respect to detection of the VOP events.

VOP Event for Speech Analysis

e Issues in the detection of VOP events

— Difficult to detect the VOP events in VA, nasal and semivowel CV units.

— VOP event is an instant property, but the existing methods employ block
processing for the detection of VOP events.

— Existing methods mainly use vocal tract system features for the detection of
VOP events.

Acoustic description of VOP events

— Excitation source of speech production also contains significant information
about the VOP event.

Acoustic cues for the detection of VOP events

— Formant transition, Itakura distance and the ratio of signal energy to residual
energy indicate the changes in vocal tract characteristics.

— Epoch intervals and strength of instants indicate the changes in excitation
source characteristics.

Preparation of the reference database

— Instant where two or more acoustic cues show a significant change is marked
as the VOP event.

Automatic detection of VOP events

— Strength of instants is used as a cue for developing the algorithm.

— VOP evidence plot is computed from the strength of instants using the Gabor
filter

— Peaks in the VOP evidence plot (after eliminating spurious) are hypothesized
as the VOP events.
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Chapter 7

APPLICATION OF VOP EVENTS

The issues in the detection of VOP events were discussed in the previous chapter.
Acoustic cues for detection of VOP events were developed using the knowledge of GC
events. Methods for detection of VOP events using the excitation source information
derived from the GC events were proposed. This chapter discusses the significance of

VOP events in speech analysis.

7.1 Introduction

A method for detection of end-points of a speech utterance using the knowledge of VOP
events is proposed. An algorithm for the detection of VOP event for text-dependent
continuous speech is discussed. The VOP event helps in overcoming the difficulties
present in coming up with multiple thresholds followed in most of the existing end-
points detection algorithms. The VOP event of the first vowel is used as an anchor
point for further analysis to detect the beginning of the speech utterance. Similarly, the
VOP event of the last vowel is used as an anchor point for detecting the end point. The
performance of the proposed end-points detection algorithm is compared with that of
the existing energy-based approach by conducting text-dependent speaker verification
experiments. The speaker verification system using the knowledge of VOP events for
the detection of end-points shows a significant improvement in the performance.

The chapter is organized as follows: Section 7.2 gives a description of the speaker
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verification system using energy-based end-points detection algorithm. The VOP-
based end-points detection method is explained in Section 7.3. Section 7.4 concludes

with a summary of the issues discussed in this chapter.

7.2 Speaker Verification using Energy-based End-

points Detection

7.2.1 Speech Database

The speech database for this study was collected from 30 cooperative speakers (21
male and 9 female) over microphone as well as telephone channels. A typical telephone
channel has a passband of 300-3300 Hz. In addition to bandwidth limitation, telephone
channels may introduce noise and distortion to the spectral characteristics of speech
signals. The speech data is collected for 10 sentences of Hindi (an Indian language).
The number of words in these sentences vary from 5 to 7, and the durations of the
sentences from 2 to 3 seconds. Each of the 10 sentences was uttered 18 times by each
speaker. The data was collected in a laboratory environment in different sessions for
microphone and telephone cases. However, one set of all the 18 utterances for each
sentence by a speaker was collected in a single session. Thus, with this data, it is not
possible to obtain inter-session variability for the same channel. However, the effect of
inter-session variation can be studied along with the effect of inter-channel variation
by matching the microphone data with the reference templates for the telephone data

or vice versa. The speech data was sampled at 8 kHz and stored as 8 bit samples.

7.2.2 Speaker Verification System

The speaker verification system consists of four stages: Preprocessing, feature extrac-
tion, pattern classification and decision making. Preprocessing involves mainly the
detection of the end-points of a speech utterance. Correct detection of the end-points
increases the accuracy of aligning the reference and test utterances [115] [92]. An algo-

rithm based on the energy of the speech signal is used for detection of the end-points
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in the baseline system [90]. The speech signal is blocked into frames of 20 ms with a
frame shift of 5 ms. The energy of each frame is determined and mean and standard
deviation of these energies are computed. Ten percent of the sum of the mean and
standard deviation is taken as the threshold for a frame to be considered as a speech
frame. Starting from the first frame, the frame at which a block of at least 20 consec-
utive speech frames begins is marked as the begin point. Similarly starting from the
last frame and moving backwards, the frame at which a block of at least 20 consecutive
speech frames begins is marked as the end point.

Spectral information is extracted for each differenced and Hamming windowed
frame of the speech signal using LP analysis [96]. The spectral information is rep-
resented using Weighted Linear Prediction Cepstral Coefficients (WLPCC) and the
corresponding delta cepstral coefficients [96] [89]. A 10%" order LP analysis is used to
derive the 20 weighted linear prediction cepstral coefficients for each frame of 20 ms.
The delta cepstral coefficients are obtained by deriving the average slope of the contour
for each of the WLPCC from 7 successive frames [89]. Only the first 5 delta cepstral co-
efficients are considered, as it was experimentally found that the other delta coefficients
did not contribute much to the performance of the speaker verification system [34].
Thus the feature vector for each frame consists of 25 components (20 WLPCCs and
5 delta cepstral coefficients). We use this 25 dimension vector to represent segmental
features of speech.

Both the reference and test utterances are represented by a sequence of 25 dimen-
sion feature vectors. The reference and test utterances are matched using Dynamic
Time Warping (DTW) algorithm [116,117]. The matching score is the minimum dis-
tance, which is obtained along the optimal warping path of the DTW algorithm.

For each speaker, out of the 18 utterances for each sentence, 3 utterances are used
for creating reference templates. The remaining 15 utterances are used for conducting
the genuine speaker tests. Thus there are 45 genuine trial scores (15 x 3) for each
speaker. Hence the total number of genuine speaker tests per sentence for 30 speakers
is 1350 (30x 45). Imposter tests for each speaker are conducted by using the utterances
of the remaining 29 speakers in the database. For each speaker, three utterances of the

same sentence are taken for testing. Thus, there are 261 impostor trial scores (87 x 3)
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for each speaker for each sentence. Hence, the total number of imposter speaker tests
per sentence for 30 speakers is 2610 (30 x 87). Since there is data for ten sentences,
the total number of genuine speaker trials are 13500 (1350 x 10) and the total number
of impostor trials are 26100 (2610 x 10).

The performance of the speaker verification system is evaluated as follows: For
each speaker for each sentence, the genuine and the impostor scores are normalized
to the range from -1 to 1. The threshold is linearly varied from the -1 to 1 and at
each threshold the fraction of the False Acceptance (FA) and the fraction of the False
Rejection (FR) are noted. The point at which the FA and FR curves as a function of
the threshold meet, is the EER for that speaker. The average value of EER for all the
speakers and for all the sentences is given in Table 7.1. Analysis of the results shows
that most of the failure cases are due to errors in the detection of the end-points. The
baseline system which uses an energy-based approach for the end-points detection fails
mostly in the cases where the speech data is noisy, which happens especially in the
case of telephone speech. To minimize the errors in the end-points detection a method

based on the knowledge of VOP events is described in the next section.

Table 7.1: Performance of the text-dependent speaker verification system which uses
energy-based end-points detection.

End-points | Reference Test Equal Error
detection Patterns Patterns Rate
Energy Microphone | Microphone 5.80
Telephone Telephone 6.82
Telephone | Microphone 11.41

7.3 VOP-based End-points Detection

Detection of the end-points can be improved by using the knowledge of VOP events
[33,83,118]. The VOP events are obtained using Hilbert envelope of LP residual [119].
A segment of continuous speech, its LP residual and Hilbert envelope of LP residual are
shown in Figure 7.1. Also, the places of significant change in the strength of excitation

are probable candidates for the VOP events.
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Figure 7.1: (a) Speech segment, (b) LP residual and (b) Hilbert envelope of the LP residual.

Table 7.2 gives the algorithm, a modified version of the algorithm given in the
previous chapter, for detecting the VOP events. A speech utterance from the database
and its detected VOP events are shown in Figure 7.2. As shown in the figure, the
speech utterance has 8 VOP events. The proposed algorithm hypothesized all the 8
VOP events correctly. Additionally, one spurious VOP is also hypothesized. However
the spurious VOP event is in between the first and last VOP events and will not
degrade the performance of end-points detection. The heuristics used in the algorithm
ensures that no spurious VOPs are hypothesized either at the begin or at the end.
This is because the heuristics uses speech knowledge to eliminate spurious ones. It
was observed that the spurious ones that may occur either at the beginning or at the
end are mainly due to transients like clicks.

To evaluate the performance of the VOP detection algorithm, VOP events for
60 randomly chosen utterances from the database are manually marked using the
knowledge of Hilbert envelope of the LP residual. There are totally 480 VOP events.
For the same 60 utterances, the VOP events are detected automatically using the
proposed algorithm. It was found that 95.6% of the VOP events are correctly detected
within a deviation of £30 ms [119]. In the chosen 60 utterances, among the total

480 VOP events, 459 are correctly hypothesized, 21 are missing and 26 are spurious.
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Table 7.2: Algorithm for automatic detection of VOP events in text-dependent type
continuous speech

1. Preemphasize the input speech.
2.  Low pass (cut off freq 2.5 kHz) filter the speech signal.
3. Compute the LP residual using 10" order LP analysis, using a
frame size of 20 ms and a frame shift of 5 ms.
4. Compute Hilbert envelope of the LP residual.
5.  Obtain the VOP evidence plot from the Hilbert envelope
by passing the signal through a filter given by
2

g(n) = \/21?0— e 27 cos(wn)

where o is the spatial spread and w is the modulating frequency.
(0 = 100, w = 0.0114 and analysis window size = 800)

6. Find the maximum in the VOP evidence plot and identify the peaks
in the VOP evidence plot greater than 5% of the maximum as the
candidates for the VOP events.

7.  Eliminate the spurious peaks by checking for the presence of the vowel
region between two peaks, which is indicated by a negative region
in the VOP evidence plot.

8. In continuous speech two vowels cannot occur in less than 50 ms
duration. Hence eliminate peaks which are at a distance less than
50 ms with respect to their next peak.

9. Also in a text-dependent continuous speech case, the VOP events
cannot be at a distance more than 500 ms and eliminate such peaks
on either side of the neighborhood peaks.

10. Hypothesize the remaining peaks as the VOP events.

Among the missing VOP events, very few of them correspond to either the first or
the last VOP event of the utterance. These missing VOP events are the cases when
the strengths of the first vowel and the last vowel are comparable to that of the noise
level. These failures can be attributed to the VOP event detection algorithm, which
presently uses only the strength of the LP residual.

The first and the last VOP events are used to locate the end-points. The point 300
ms before the first VOP event is marked as the begin point of the speech utterance.
Similarly, the point 300 ms after the last VOP event is marked as the end point of the
utterance. Table 7.3 shows the performance of the text-dependent speaker verification
system using the VOP-based end-points detection method. It can be seen that the
performance of the system has improved significantly when the knowledge of the VOP

events is used for the detection of the end-points.
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Figure 7.2: Steps in the detection of VOP events. (a) Speech signal with manually marked
VOP events, (b) Hilbert envelope of LP residual, (¢) VOP evidence plot, (d) peaks as candi-

dates for VOP events and (e) hypothesized VOP events.

Table 7.3: Performance of the text-dependent speaker verification system which uses

VOP-based end-points detection.

End-points | Reference Test Equal Error
detection Patterns Patterns Rate
VOP Microphone | Microphone 2.54
Telephone Telephone 2.77
Telephone | Microphone 3.73

7.4 Summary

A robust method for detection of the end-points based on the knowledge of VOP events,
is proposed in this chapter, which is crucial for tasks like text-dependent speaker

verification system based on template matching. A summary of the various issues

discussed in this chapter is given in Table 7.4.
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Table 7.4: Summary of the discussion related to the application of VOP events.

Application of the VOP Events

e Issues in End-points Detection

— Existing methods use energy as the feature and multiple thresholds are em-
ployed in coming up with a decision on the end-points. The performance of
these methods will be poor for degraded speech.

e VOP-based End-points Detection

— Knowledge of VOP events is used for detecting the end-points.

— As the events are robust to degradations, the proposed method detects the
end-points accurately even in degraded speech.
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Chapter 8

SUMMARY AND CONCLUSIONS

8.1 Summary of the Work

In this thesis, an event-based approach for analysis and processing of speech is pro-
posed. The proposed approach is based on the nature of speech production. The events
are used as anchor points for processing speech and hence the proposed approach is
termed as Fvent-based Analysis of Speech. To discuss the various issues involved in
the proposed approach, two events, based on GC and VOP events are chosen for the
study. Two methods, namely, group delay approach and Hilbert envelope of the LP
residual, are used for the detection of GC events. Hilbert envelope of LP residual
gives approximate information about GC events. The group delay based approach
provides more accurate results. Throughout this work, whenever approximate infor-
mation about the GC events is sufficient, Hilbert envelope of LP residual was used
and for accurate analysis group delay based approach was used.

One accurate method for detection of the pitch is to locate the GC events and
obtain their successive time differences. In this work, Hilbert envelope of the LP
residual is used as a representation of the GC events. Since detection of peaks at the
GC events in the Hilbert envelope of the LP residual is a difficult task, especially in
adverse conditions, autocorrelation analysis is performed to find the values of pitch.
In case of speech collected over a severely degraded channel the samples in the Hilbert

envelope of the LP residual corresponding to the speech regions, in particular, regions
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around the GC events show high correlation, compared to the samples in the nonspeech
regions. This property is exploited to develop a method for enhancement of speech in
single channel case.

A method based on GC event information is proposed for time-delay estimation.
The cross-correlation of segments of Hilbert envelopes of the LP residuals from two
microphone signals show a prominent peak in the cross-correlation sequence. In mul-
tichannel case since there will be more than one signal, coherently adding the sig-
nals after compensating for time-delay will provide enhancement mainly against the
background noise. To provide additional enhancement against reverberation, Hilbert
envelopes of the LP residuals from the multiple microphones are coherently-added. In
the coherently-added Hilbert envelope, the samples around the GC events show high
deviation compared to other places. This property of the coherently-added Hilbert
envelope is used for developing a method for enhancement of speech in multichannel
case. One important point to be noted in the multispeaker environment is that, as the
speakers are spatially distributed, unique time-delay will be associated with respect
to each speaker. It is observed that when Hilbert envelopes of the LP residuals from
the microphones are coherently added with respect to a particular delay (say, delay-1),
then, some excitation instants are enhanced in the coherently-added Hilbert envelope.
Similarly, with respect to the other delay (say, delay-2), some other excitation instants
in the coherently-added Hilbert envelope are found to be enhanced. This behavior of
the samples in the coherently-added Hilbert envelopes is used for coming up with a
method for enhancement of speech in multispeaker environment.

In the studies related to VOP events, one of the important observations made is
that their is always a change associated with the characteristics of the excitation source
at the VOP event. Hence, methods for detection of VOP events using the excitation
source information are proposed. In this work a method for detection of end-point
based on the knowledge of VOP events is also proposed. After detecting the VOP
events, the first and last VOP events are used as anchor points for coming up with the

decision on the end-points.
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8.2 Major Contributions of the Work

The important contribution of the research work reported in this thesis is an event-
based approach for analysis and processing of speech. Events are used as anchor points
and careful analysis of the characteristics of the signal around the events is carried out
to develop methods for processing speech to achieve the desired objective in different
applications. The major contribution of the thesis is in developing methods for the

following:
e Detection of GC events
e Detection of VOP events using excitation source information
e Extraction of pitch in adverse conditions
e Enhancement of speech in single channel case
e Estimation of time-delay using excitation source information
e Speech enhancement in multichannel case
e Enhancement of speech in multispeaker environment

e End-points detection

8.3 Scope for Future Work

e Hilbert envelope of LP residual gives approximate location of GC events. A
more accurate and computationally efficient method for the detection of GC
events may be developed by first identifying the GC events approximately using
Hilbert envelope of the LP residual and performing the group delay analysis on

a small region of the LP residual around the approximate locations.

e The proposed method for the detection of VOP events uses only information
about the excitation source. The performance of this method may be improved

by incorporating additional information from the vocal tract system features.
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e The proposed method for enhancement of speech in single channel case enhances
the speech only at the gross level. Inside the detected speech regions, there are
high SNR components like the GC events. In the detected speech regions, further
enhancement can be done both at the excitation source level and the vocal tract

system level to improve perceptual quality of the processed signal.

e Time-delay estimation is done using only the knowledge of the excitation source
features. Approaches may be developed to combine time-delay values estimated
by the proposed method with the time-delay values from the spectral-based GCC

method to improve the performance of the combined method.

e Speech enhancement in multichannel case is achieved by enhancing the excita-
tions in the LP residual. It may be possible to improve the performance by a
better choice of the system parameters, which may be obtained by selecting the

high SNR regions immediately after the GC events for parameter estimation.

e Speech enhancement in multispeaker environment is achieved using the knowl-
edge of time-delays and the coherently-added Hilbert envelopes. We have made
no attempt to modify the parameters of the time varying filter. It may be possi-
ble to derive the parameters of the filter corresponding to each speaker using the
knowledge of the instants of significant excitation of the desired speaker. It is
also possible to obtain significant improvement in signal separation from a mul-
tispeaker environment if the speech data is collected from a number of spatially

distributed microphones.
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Appendix—A
SIGNIFICANCE OF EVENTS IN SPEECH
PERCEPTION

Studies have been conducted to know the activity taking place in the mammalian
auditory nerve fibers when speech sounds are presented to the auditory system [1,6-16].
It has been observed that mammalian auditory nerve fibers produce a maximum firing
at the onset of tone bursts of constant sound intensity [1]. This can be observed in the
Post-Stimulus Time (PST) histograms shown in Figure A.1, which are taken from [1]
for illustration. The histograms have been obtained with a large 21 dB intensity
increment applied at several time delays. As shown in the figure, the response of
the auditory nerve fiber is maximum at the onset of the tone, which indicates that

significant information for perception is present around the onset.
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Figure A.1: PST histograms of responses of an auditory-nerve fiber (taken from [1]).

The following are some of the important observations made with respect to the
auditory nerve fibers: High spontaneous fibers tended to be more active at the onset

of the syllable [13]. The range of auditory nerve fiber is larger at the onset of sound [11].
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The spectrum near the onset of the consonant is well preserved in the profiles of average
discharge rate versus characteristic frequency [14]. Many fibers track a formant from
its onset to its steady-state frequency [13]. The response of fibers to speech-like noise
bursts tend to show onsets with appreciable overshoot when the onset is abrupt [12]. A
signal undergoes some kind of special processing at an abrupt onset [15,16]. From these
observations it can be inferred that the onset of events and some regions around the
onset of events are important, which contain discriminatory information for perception.

Analysis of speech sounds using signal processing tools have also been made to
find out the acoustic features which contain discriminatory information for further
processing [17-21]. These studies show that features extracted from small regions
starting from the onset of events, both static and time-varying, contain important
information. For instance, static spectrum extracted from the onset of burst event
contains information about the place of articulation for stop sounds [20]. Time-varying
spectrum extracted from the onset of voicing also contains information about the place
of articulation [21].

Several perceptual studies by human subjects have been conducted to identify
which part of a given speech sound contains crucial information [22-26]. These studies
infer that discriminatory information for perception lies at discrete places and it is
concentrated near the onset of events. When regions around the onset of events are
deleted from the speech sounds, then it is found that the speech is less intelligible.

Thus regions around the events bear the discriminatory information for perception.
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Appendix—B
LINEAR PREDICTION ANALYSIS

Linear prediction (LP) analysis is a model based approach for analysis of speech signals
(38,96, 120]. Most of the non-model based methods for analyzing speech start by
transforming acoustic data into spectral form by performing a short-time spectrum
analysis of the speech wave. Although spectral analysis is a well known technique
for studying signals, its application to speech signals suffers from a number of serious
limitations arising from the nonstationary as well as the quasiperiodic properties of
the speech wave. As a result, methods based on spectral analysis often do not provide
a sufficiently accurate description of speech articulation. In contrast, LP analysis is a
model based approach in which speech is represented directly in terms of time varying
parameters related to the transfer function of the vocal tract and the characteristics
of the source function. By modeling speech wave itself, rather than its spectrum, the
problems occurring in the frequency domain methods are eliminated. For instance,
the traditional Fourier analysis methods require a relatively long speech segment to
provide adequate spectral resolution. As a result, rapidly changing speech events
cannot be accurately detected. Furthermore, because of the periodic nature of voiced
speech, little information about the spectrum between pitch harmonics is available;
consequently, the frequency domain techniques do not perform satisfactorily for high-
pitched female voices.
The Figure B.1 shows a model of speech production for LP analysis. It consists of
a time varying filter H(z) which is excited by either a quasi periodic or a random noise
source. The type of excitation determines the nature of speech sound that is, voiced or
unvoiced and the parameters of the filter determines the identity of the speech sound.
In LP analysis, the output signal s(n) is assumed to be a linear function of past
outputs, and present and past inputs, and hence the name linear prediction. Therefore
output s(n) is given by
p q
s(n) ==Y ars(n—k) + G bu(n—1) by =1 (B.1)
k=1 1=0

where a;, 1 < k < p, b, 1 <1 < g and the gain G are the parameters of the filter.
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Figure B.1: Model of speech production for LP analysis

For speech analysis an all pole model is considered. For this case, the signal s(n)

is assumed as a linear combination of past values and some input u(n). That is
p
s(n) = =Y ags(n — k) + Gu(n) (B.2)
k=1

The transfer function of the filter is given by

. G
1+ agzk

H(z) (B.3)

Given a particular signal s(n), the problem is to determine the Linear Predictor Co-
efficients (LPC) ({ax}) and the gain G in some manner. The LPCs are determined
by minimizing the mean squared error over an analysis frame. The coefficients are

obtained by solving the set of p normal equations

S aR(n k)= R0, n=l--p (B.4)
where N
R = X ssln=k). k=l (©5)

are the autocorrelation coefficients and {s(n)} are the speech samples.

If s(n) is the present sample, then it is predicted by the past p samples [96] as,

§(n) = — i axs(n — k) (B.6)

where {ay} are the LPCs computed by the LP analysis.
The difference between the actual and predicted sample value is termed as predic-

tion error or residual, which is given by
P
e(n) = s(n) — 3(n) = s(n) + >_ axs(n — k) (B.7)
k=1
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The residual is obtained by passing the speech signal through the inverse filter A(z),
which is given by,
p
Alz) =14 apz™ (B.8)
k=1

As the vocal tract system information is modeled by the linear prediction coefficients
({ax}), the LP residual mostly contains information of the excitation source.

As we are operating directly on the speech signal in the time domain, even in high
pitched female voices as long as the LP order is less than pitch period, it is possible to
estimate the filter parameters. In case of noise/degraded speech and also for sounds
not conforming to the all-pole model, the estimation of filter parameters will be poor.
This results in large error in the LP residual. However, in the present work as we are
further processing the LP residual, accurate estimation of the filter parameters is not

very critical.
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Appendix—C
HILBERT TRANSFORM RELATIONS

A signal can be either real or complex. All naturally generated signals are real in
nature. In some applications, it is desirable to develop a complex signal from the given
real signal. For instance, a complex signal helps in obtaining values of amplitude, phase
and instantaneous frequency of the signal unambiguously. A complex signal can be
generated from a real signal by employing a Hilbert transformer that is characterized
by an impulse response .

If s(t) is the real signal, then the Hilbert transform of s(¢) defined as §(t) is obtained

by convolving s(t) with .

5(t) = l/°° 1) g (C.1)

TJooo (t—7)
The inverse Hilbert transform, by means of which the original signal s(¢) is recovered

from 35(t) is defined by

s(t) = 1/OO 1) g (C.2)

T Jeoo (t —7)
The funcations s(t) and §(¢) are said to constitute a Hilbert transform pair. The Hilbert
transform is different from the Fourier transform in that it operates exclusively in the
time domain.
From the convolution theorem it is known that the convolution of two functions
in the time domain is equal to the multiplication of their Fourier transforms in the
frequency domain.

For the time function, =, we have

Tt?

% = —jsgn(f) (C.3)

where sgn(f) is the signum function, defined in the frequency domain as

1, f>0
sgn(f)=¢ 0, f=0 (C.4)
-1 f<0

The Fourier transform S(f) of 4(t) is given by

S(f) = —jsgn(£)S(f) (C.5)
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The complex signal of s(t) is defined as
si(t) = s(t) +j3(1) (C.6)

where, §(t) is the Hilbert transform of s(¢). The complex signal is also termed as

analytic signal. The Fourier transform of s, (¢) is given by
Si(f) = S(f) + 5(=isgn(£)S(f) (C.7)
Si(f) = S(f) + sgn(£)S(f) (C.8)

Using the definition of sgn(f), we readily find that

25(f), >0
S(f)=¢ S(0), f=0 (C.9)
0 f<0

where S(0) is the value of S(f) at frquency f = 0. This means that the complex
function has no frequency content (that is Fourier transform value) for all negative
frequencies.

Hilbert Envelope:

Hilbert envelope of a signal s(t) is defined as
So(t) = 1/s2(t) + §%(¢) (C.10)

Hilbert Transform Relations for the DFT:

As discussed above one approach for developing the Hilbert transform relations is from
the properties of analytic functions. Another approach is to use the properties of even
and odd functions and causal sequences. Any sequence can be expressed as the sum
of an even sequence and an odd sequence. Specifically, with s.(n) and s,(n) denoting

the even and odd parts of s(n), then

s(n) = se(n) + 54(n) (C.11)
where,
se(n) = ls(n) + s(~n)] (C.12)
and
soln) = 3l5(n) + s(~n)] (C.13)



Also, s(n) is causal, if s(n) is zero for n < 0.
Equations (C.11)-(C.13) apply to an arbitrary sequence whether or not it is causal
or whether or not it is real. However, if s(n) is causal, then it is possible to recover

s(n) from s(n) and to recover s(n) for n # 0 from s,(n). Thus, for causal sequences

25¢(n), n>0
s(n) =19 s.(n), n=0 (C.14)
0 n <0
and
o { 2s,(n), >0 } o)
0 n<0
Equivalently, if we define
2, n>0
up(n) =< 1, n= (C.16)
0 n <0
then
s(n) = se(n)u4(n) (C.17)
and
s(n) = so(n)u(n) + s(0)d(n) (C.18)

We note that s(n) can be completely recovered from s¢(n). On the other hand, s,(n)
will always be zero at n = 0, and consequently s(n) can be recovered from s,(n) only
for n # 0.

We can relate the real and imaginary parts of the DFT with a suitable definition
of causality. A causal periodic sequence is one for which s(n) = 0 for N/2 < n < N.
That is s(n) is identically zero over the last half of the period. Because of this, it shall

be clear that for causal peridic sequence

28,(n), n=1,2,. ... (N/2) — 1
8(n) =< 3.(n), n=0,N/2 (C.19)
0, n=(N/2)+1.. (N —1)

and

o) — { 25,(n), n=1,2,...(N/2)—1 } 20
0 n=(N/2)+1,.n(N=1)
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Equivalently, if we define 4y (n) as a periodic sequence

1, n=0,N/2
in(n) =42, n=12 ... L (N/2) =1 (C.21)

5(n) = 8e(n)tun(n) (C.22)

and

3n) = Bufn)in () + 5(0)3(n) + (3 )30 — ) (C.23)

We note that §(n) can be completely recovered from $.(n). On the other hand, $,(n)
will always be zero at n = 0 and n = N/2, and consequently $(n) can be recovered

from §,(n) only for n # 0 or n # N/2.
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