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ABSTRACT

Keywords : Video content analysis; video segmentation; shot boundarydetection;

color features; early fusion; late fusion; compressed features; video classi�cation; edge-

based features; autoassociative neural networks; event detection; hidden Markov model.

The objective of this research work is to address some issuesin segmentation

and classi�cation of video, which are two important tasks involved in organization,

retrieval and access of digital videos. The goal of video segmentation is to partition a

given video sequence into smaller meaningful units, based on temporal changes in the

video sequence. The main issues in video segmentation are the choice of featuresthat

are robust to illumination and camera/object motion, and measure of dissimilarity

for detecting temporal discontinuities. In this thesis, wepropose methods for shot

boundary detection using signi�cant changes in color features and compressed features.

We propose a novel technique for shot boundary detection based on the late fusion of

evidence obtained from signi�cant changes in color histogram features. We also propose

an algorithm for simultaneous detection of abrupt and gradual transitions, on the

basis of dissimilarity between two sets of frames separatedby a margin that excludes

the region around transition. Second order statistics derived from features extracted

around the shot boundaries are used for validation. Bidirectional processing of video

is explored in order to reduce the number of missed shot boundaries. Finally, decision

due to the proposed late fusion is combined with that due to the traditional early

fusion, which relies on the extent of overall change in colorfeatures for detecting shot

boundaries. Since the color histogram features do not represent the spatial distribution

of color, we use color coherence vector as a feature. Additionally, the sparseness of

distribution of color coherence feature vectors is exploited by nonlinear projection

of the feature vectors on to a lower dimension space. This projection is implemented



using autoassociative neural network (AANN) models. Experimental results show that

the proposed methods, in combination with color features, can e�ectively detect both

abrupt and gradual transitions, and are less sensitive to the threshold applied to the

dissimilarity measure. The compressed features have also been found to be e�ective

for shot boundary detection.

The problem of video classi�cation is addressed in the context of sports video cate-

gorization. Key issues involved are theselection of featuresfor adequately representing

class-speci�c information, and developing e�cient modeling techniques to capture in-

formation present in the features. We propose to model class-speci�c distributions

of two edge-based features, namely, edge direction histogram and edge intensity his-

togram, using autoassociative neural network (AANN) models. The complementary

nature of these features is demonstrated by combining evidence from the individual

features. Also, combination of evidence due to di�erent classi�ers results in an improve-

ment in the performance of classi�cation. We propose a novelmethod for classi�cation

of sports videos based on events detected from each category, using the framework of

hidden Markov models. The detected events which denote signi�cant changes in a

temporal sequence, can be viewed as features at a higher level. The sequence of events

also act as signature for a given class. The classi�cation system is also able to decide

whether a given video clip belongs to one of the prede�ned categories or not.

In summary, this thesis proposes new methods for video segmentation based on

combination of early and late fusion of evidence, and a method for simultaneous de-

tection of abrupt and gradual transitions for shot boundarydetection. A nonlinear

projection of feature vectors from a high dimension sparse feature space to a lower

dimension space is proposed, using autoassociative neuralnetwork (AANN) models.

The thesis also proposes new edge-based features and AANN models for video classi-

�cation, along with a method for combining evidence from di�erent classi�ers. A new

method is proposed for classi�cation of sports videos basedon events in each sports

category using the framework of hidden Markov models.
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CHAPTER 1

INTRODUCTION TO VIDEO CONTENT ANALYSIS

The amount of multimedia data has grown signi�cantly in the past few years. This

growth is primarily due to advances in data acquisition, storage, and communication

technologies, aided by advances in processing of audio and video signals. Video has

played an important role in this growth, more so in terms of its volume. There is

a need to organize large collections of digital videos for e�cient access and retrieval.

Techniques are needed to organize digital videos into compact and meaningful entities,

that human beings can relate to. Such a task is known as video content analysis, which

refers to understanding the meaning of a video document. Theobjective of this thesis

is to address issues in two important tasks of video content analysis, namely, video

segmentation and video classi�cation. Video segmentationinvolves partitioning a video

sequence into several smaller meaningful units, based on temporal discontinuities in

the video sequence. Video classi�cation, on the other hand,is the task of categorizing

a given video clip into one of the prede�ned classes.

The need for automatic algorithms for video content analysis is motivated by the

large volume of video data. While human beings are adept at deriving meaningful

information from video data, it is a challenging problem to automate this task due

to our inability to articulate our perceptual ability in the form of an algorithm. Yet

a methodical approach is needed to address the problem of video content analysis.

In Section I, we briey describe various tasks involved in automatic video content

analysis. This places in perspective, the role of video segmentation and classi�cation

in video content analysis. In Section II, we discuss certainissues related to video

segmentation and classi�cation that are addressed in this thesis. Section III outlines

the organization of the thesis.
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1.1 TASKS INVOLVED IN VIDEO CONTENT ANALYSIS

The objective in video content analysis is to develop techniques to automatically parse

video, audio, and text to identify meaningful composition structure of video and to

extract and represent content attributes of video sequences. A typical video content

analysis (VCA) scheme involves �ve primary tasks: feature extraction, video structure

analysis, abstraction, video classi�cation and indexing.A block diagram illustrating

these tasks and their interrelationship is shown in Fig. 1.1.

Fig. 1.1: Process diagram for video content analysis.

1.1.1 Feature extraction

A feature is de�ned as a descriptive parameter that is extracted from an image or a

video sequence [1]. The e�ectiveness of video content analysis depends on the e�ec-

tiveness of features/attributes used for the representation of the content. Based on the

complexity and use of semantics, features can be classi�ed into low-level and high-level

features [2].

Low-level features (also known as primitive features) suchas color, texture, shape,
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object motion (for video), spatial location of image elements (both for image and

video), and pitch (for audio) can be extracted automatically. However, these features

may not be meaningful from the point of view of human perception. High-level features

(also known as logical, semantic features) involve variousdegrees of semantics depicted

in images and video. The features at this level can be objective or subjective. Objective

features describe physical objects in images and action in video. Subjective features are

concerned with abstract attributes. They describe the meaning and purpose of objects

or actions. An event such as a goal in a game of soccer is an example of subjective

feature. Interpretation of complex objects or actions, andsubjective judgment are

required to capture the relationship between video contentand abstract concepts.

An important issue is the choice of suitable features for a given task. E�ective

video content analysis can be achieved by collaboratively using low-level and high-level

features. We can use low-level features to segment a video sequence into individual

shots and generate representative key frames for each shot.These key frames can then

be used for classi�cation and indexing of videos.

1.1.2 Structure analysis

Video structure analysis is the process of extracting temporal and structural informa-

tion from the video. It involves detection of temporal boundaries and identi�cation

of meaningful segments of a video. A video sequence can be viewed as a well orga-

nized document and can be parsed into logical units at the following di�erent levels of

granularity:

� Frame level: A frame represents a single image in a video sequence.

� Shot level: A shot is a sequence of frames recorded contiguously from a single

camera and representing a continuous action in time or space.

� Scene level: A scene is a continuous sequence of shots having a common

semantic signi�cance.

� Sequence/story level: A sequence/story is composed of a set of scenes.
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1.1.2.1 Shot segmentation

Shots are the physical basic layers in video, whose boundaries are determined by

editing points or where the camera switches on or o�. Shots are analogous towords

or sentencesin text documents. The choice of shot as the basic unit for video content

indexing provides the basis for constructing a video-table-of-contents. An important

issue is the e�ective detection of di�erent types of shot boundaries.

1.1.2.2 Scene segmentation

The level immediately higher than the shots is called scene.A scene is a continuous

sequence of shots having a common semantic signi�cance. Theprocess of detecting

video scenes is analogous to paragraphing in parsing of textdocument and requires a

higher level of content analysis. Since a scene is a logical unit, it is often di�cult to

specify a basis on which a sequence of shots can be grouped together to form a scene.

1.1.2.3 Story segmentation

A story comprises of a set of scenes. Story segmentation needs more semantic un-

derstanding of video content. Scenes or stories in video areonly logical layers of

representation based on subjective semantics, and no universal de�nition and rigid

structure exists for scenes and stories. Hence, grouping a sequence of shots into scene,

and grouping a set of scenes into a story require a priori information about the nature

of the video program.

1.1.3 Video abstraction

Video abstraction is the process of creating a presentationof the content of a video,

which should be much smaller than the original video but which preserves the essential

message of the original video. This abstraction process is similar to the extraction of

keywords or summaries from text documents. That is, we need to extract a subset
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of video data such as key frames or highlights as entries for shots, scenes or stories

from the original video. Abstraction is especially important given the vast amount of

video data. Video abstraction helps to enable a quick browsing of a large collection of

video data and to achieve e�cient content representation and access. Combining the

structural information extracted from video parsing and key frames extracted during

video abstraction, we can build a visual table of contents ofa video program.

1.1.4 Video classi�cation

Classi�cation of digital videos into various genres or categories is an important task,

and enables e�cient cataloging and retrieval with large video collections. E�cient

searching and retrieval of video content have become more di�cult due to increas-

ing amount of video data. Semantic analysis is a natural way of video classi�cation,

since videos of di�erent categories are expected to di�er insemantics. However, rep-

resentation of semantics is a challenging task, since it is not rigidly structured and

hence, subjective. Therefore, the problem of video classi�cation is typically addressed

through extraction and modeling of low-level features.

1.1.5 Indexing for retrieval and browsing

The structural and content attributes derived during feature extraction, video pars-

ing, abstraction and video classi�cation processes, are often referred to as metadata.

Based on this metadata, we can build video indices and table-of-contents. However, a

universal solution for video indexing for all video categories is very di�cult to achieve.

Some of the existing video browsing and retrieval systems are discussed in Appendix

A.
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1.2 ISSUES ADDRESSED IN THIS THESIS

The previous section briey described the various issues involved in video content anal-

ysis. This research work focuses on features for video segmentation (which is a part

of structure analysis of video) and video classi�cation. The problem of shot boundary

detection is addressed in video segmentation. This problemdeals with the detection of

temporal discontinuities in video sequences, where the sequence of frames between two

successive discontinuities forms a shot. The key issues arethe choice of the features for

representation of images, the choice of a similarity/distance metric and an algorithm

that is general enough for detection of both abrupt discontinuities and gradual transi-

tions. We address these issues on the basis of signi�cant changes exhibited by a small

subset of color features. A novel approach for detection of shot boundaries is proposed

based on the late fusion of evidence obtained from the signi�cant changes. We also

examine the e�ect of dimension reduction of feature vectorson the performance of

shot boundary detection.

The problem of video classi�cation is addressed in the context of sports videos.

Sports videos present a good test case for evaluating algorithms for video classi�cation,

since di�erent sports share certain common aspects while retaining their individual

identities. An important issue is the representation of video frames, so that resul-

tant features adequately capture class-speci�c information. Here, edge-based features,

namely, edge direction histogram and edge intensity histogram are examined, since

di�erent sports are distinctly characterized by edge information. Another issue is the

development of e�ective modeling techniques to capture theinformation present in

the features. These models can either be based on the estimation of probability den-

sity function of feature vectors, or based on the estimationof temporal information

present in the sequence of feature vectors. Our approach to this problem is twofold.

Firstly, the use of autoassociative neural network models is motivated by their ability

to capture the density of feature vectors without making assumptions about the shape

of the density function. The second approach to video classi�cation is based on the
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notion of events in di�erent sports categories. The events denote signi�cant changes

in video sequences, and can be viewed as features for representation of class-speci�c

information. The events are not prede�ned, but instead, they are hypothesized from

the changes inherent in the video sequence, using a framework based on hidden Markov

models. The hypothesized events are then used to classify a given sports video. The

algorithms for video segmentation and classi�cation are veri�ed o�ine, using video

data collected from broadcast channels.

1.3 ORGANIZATION OF THE THESIS

An overview of the existing approaches to video segmentation and classi�cation is

presented in Chapter 2. Some research issues are identi�ed in both these tasks which

are addressed in this thesis. In Chapter 3, a novel techniquecalled late fusion is

proposed for detecting shot boundaries in video sequences.The basis for this method is

the signi�cant change exhibited by a few color components over a sequence of frames. A

one-pass algorithm for simultaneous detection of abrupt and gradual transitions is also

proposed. The sparsity of distribution of color features presents a case for dimension

reduction of feature vectors. In Chapter 4, shot boundary detection is performed using

feature vectors with reduced dimension. A nonlinear projection of feature vectors from

a high dimension sparse feature space to a lower dimension space is performed using

autoassociative neural network (AANN) models. In Chapter 5, the problem of video

classi�cation is addressed by estimating class-speci�c densities of edge-based features,

using AANN models which are nonparametric. A new method for classi�cation of

sports videos based on events in each sports category is proposed in Chapter 6, using

the framework of hidden Markov models. Chapter 7 summarizesthe research work

carried out as part of this thesis, highlights the contributions of the work and discusses

directions for future work.
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CHAPTER 2

OVERVIEW OF APPROACHES FOR VIDEO

SEGMENTATION AND CLASSIFICATION

This chapter reviews some of the existing approaches to video segmentation and video

classi�cation. The problem of shot boundary detection is briey described in Section

2.1. The three important components of algorithms for shot boundary detection,

namely, features for representation of video frames, similarity/distance metric, and

the algorithm for change detection, are discussed in terms of the commonly made

choices for these components. The existing algorithms for shot boundary detection

are then reviewed. In Section 2.2, the existing approaches to video classi�cation are

reviewed, with particular focus on the classi�cation of sports videos. Some research

issues arising out of the review of existing methods are identi�ed, which are addressed

in this thesis.

2.1 EXISTING METHODS FOR VIDEO SHOT BOUNDARY DETEC-

TION

Automatic segmentation of video is the �rst step for organizing a long video sequence

into several smaller meaningful units. A typical structureof video is shown in Fig. 2.1.

The smallest basic unit is a shot. A shot in a video is a contiguous sequence of video

frames recorded from a single camera operation, representing a continuous action in

time and space. Relevant shots are typically grouped into a higher level unit called a

scene. Each scene is a part of a story. Browsing these scenes unfolds the entire story,

enabling users to locate their desired video segments quickly and e�ciently.
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Fig. 2.1: Common video structure

Shot boundary detection is the most basic temporal video segmentation task, as

it is intrinsically linked to the way that video is produced. It is a natural choice for

segmenting a video into more manageable parts. This is because video content within

a shot tends to be continuous, due to the continuity of both the physical scene and

the parameters (motion, zoom, focus) of the camera that images it. Therefore, in

principle, the detection of a shot change between two adjacent frames requires the

computation of an appropriate continuity or similarity metric. However, this premise

has three major complications.

The �rst one is to de�ne a continuity metric for video in such a way that it

is insensitive to gradual changes in camera parameters, lighting and physical scene

content, easy to compute, and discriminant enough to be useful. For this purpose,

one or more scalar or vector features from each frame can be extracted and distance

functions can be de�ned in the feature domain. Alternatively, the features themselves

can be used either for clustering the frames into shots or fordetecting shot transition

patterns. The second complication is deciding which valuesof the continuity metric
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correspond to a shot change and which do not. This is nontrivial, since the variation of

feature within certain shots can exceed the respective variation across shots. Decision

methods for shot boundary detection include �xed thresholds, adaptive thresholds

and statistical detection methods. The third complicationis the fact that not all shot

changes are abrupt. Using motion picture terminology, changes between shots can be

gradual and can belong to the following categories, some of which are illustrated in

Fig. 2.2:

1) Cut: This is the case of an abrupt change, where one frame belongs to the

disappearing shot and the next one to the appearing shot.

2) Dissolve: In this case, the last few frames of the disappearing shot temporally

overlap with the �rst few frames of the appearing shot. During the overlap,

the intensity of the disappearing shot decreases from normal to zero (fade out),

while that of the appearing shot increases from zero to normal (fade in).

3) Fade: Here, �rst the disappearing shot fades out into a black frame, and then

the black frame fades into the appearing shot.

4) Wipe: This is a set of shot change techniques, where the appearing and

disappearing shots coexist in di�erent spatial regions of the intermediate video

frames, and the region occupied by the former grows until it entirely replaces

the latter.

5) Other transition types: Certain special e�ects are also used in motion pictures.

They are, in general, very rare and di�cult to detect.

2.1.1 Components of shot boundary detection algorithms

An important component of shot boundary detection algorithms is the set of features

extracted from a video frame or from a region of the frame. Another component is

the similarity measure that is used to detect the presence ofa shot boundary. We

present below the di�erent choices that can be made for each component, along with

their advantages and disadvantages. A shot boundary detection algorithm can then

10



(a)
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Fig. 2.2: Examples of di�erent types of shot transitions: (a) Cut, (b) fade,
(c) dissolve and (d) wipe.
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be designed by suitably choosing each component.

2.1.1.1 Features used for representation of video frame

Almost all shot change detection algorithms reduce the large dimensionality of the

video domain by extracting a small number of features from one or more regions of

interest in each video frame. Such features include the following:

1) Luminance/color: The simplest feature that can be used to characterize an

image is its average grayscale luminance. This, however, issusceptible to

changes in illumination. A more robust choice is to use one ormore statistics

(e.g., averages) of the values in a suitable color space [3{5], like hue saturation

value (HSV).

2) Luminance/color histogram: A richer feature for an image is the grayscale

or color histogram. Its advantage is that it is discriminant, easy to compute,

and mostly insensitive to translational, rotational, and zooming camera motions.

For these reasons, it is widely used [6], [7]. However, it does not represent the

spatial distribution of color in an image.

3) Image edges:Another choice for characterizing an image is its edge infor-

mation [5], [8]. The advantage of this feature is that it is su�ciently invari-

ant to illumination changes and several types of motion, andis related to the

human visual perception of a scene. Its main disadvantage iscomputational

cost, noise sensitivity, and when not post-processed, highdimensionality.

4) Features in transform domain: The information present in the pixels of an

image can also be represented by using transformations suchas discrete Fourier

transform, discrete cosine transform and wavelets. Such transformations also

lead to representations in lower dimensions. Disadvantages include high comp-

utational cost, e�ects of blocking while computing the transform domain coe�-

cients, and loss of information caused by retaining only a few coe�cients.
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5) Motion: This is sometimes used as a feature for detecting shot transitions,

but it is usually coupled with other features, since motion itself can be highly

discontinuous within a shot (when motion changes abruptly)and is not useful

when there is no motion in the video.

2.1.1.2 Spatial domain for feature extraction

The size of the region from which individual features are extracted plays an important

role in the overall performance of algorithms shot change detection. A small region

tends to reduce detection invariance with respect to motion, while a large region might

lead to missed transitions between similar shots. In the following, we will describe

various possible choices:

1) Single pixel: Some algorithms derive a feature for each pixel such as lumi-

nance and edge strength [5]. However, such an approach results in a fea-

ture vector of very large dimension, and is very sensitive tomotion, unless

motion compensation is subsequently performed.

2) Rectangular block: Another method is to segment each frame into

equal-sized blocks and extract a set of features (e.g., average color or orienta-

tion, color histogram) from these blocks [3], [4]. This approach has the advanta-

ge of being invariant to small motion of camera and object, aswell as being

adequately discriminant for shot boundary detection.

3) Arbitrarily shaped region: Feature extraction can also be applied to arbitrar-

ily shaped and sized regions in a frame, derived by spatial segmentation algo-

rithms. This enables the derivation of features based on themost homoge-

neous regions, thus facilitating a better detection of temporal discontinuities.

The main disadvantage is the high computational complexityand instability of

region segmentation.

4) Whole frame: The algorithms that extract features (e.g., histograms) from

the whole frame [7], [9], [10] have the advantage of being robust with respect
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to motion within a shot, but tend to have poor performance at detecting the

change between two similar shots.

2.1.1.3 Measure of similarity

To evaluate discontinuity between frames based on the selected features, an appropriate

similarity/dissimilarity metric needs to be chosen. A widevariety of dissimilarity

measures has been used in the literature [7,11]. Some of the commonly used measures

are Euclidean distance, cosine dissimilarity, Mahalanobis distance and log-likelihood

ratio. Another example of commonly used metric, especiallyin the case of histograms,

is the chi-square metric. Information theoretic measures like mutual information and

joint entropy between consecutive frames are also proposedfor detecting cuts and

fades [12].

2.1.1.4 Temporal domain of continuity metric

Another important aspect of shot boundary detection algorithms is the temporal win-

dow that is used to perform shot change detection. In general, the objective is to

select a temporal window that contains a representative amount of video activity. The

following cases are typically used:

1) Two frames: The simplest way to detect discontinuity between frames is

to look for a high value of the discontinuity metric between two successive

frames [4], [9], [13], [14]. However, such an approach can fail to discrimi-

nate between shot transitions and changes within the shot when there is signi�-

cant variation in activity among di�erent parts of the video or when certain

shots contain events that cause brief discontinuities (e.g., photographic ashes).

It also has di�culty in detecting gradual transitions.

2) N-frame window: One technique for alleviating the above problems is to

detect the discontinuity by using the features of all frameswithin a suitable

temporal window, which is centered on the location of the potential discontinu-
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ity [4], [5], [10], [15].

3) Interval since last shot change:Another method for detecting a shot boundary

is to compute one or more statistics from the last detected shot change up

to the current point, and to check if the next frame is consistent with them,

as in [3], [7]. The problem with such approaches is that thereis often great

variability within shots, such that statistics computed for an entire shot may

not be representative of its end.

2.1.1.5 Shot change detection method

Having de�ned a feature (or a set of features) computed from each frame and a sim-

ilarity metric, a shot change detection algorithm needs to detect where these exhibit

discontinuity. This can be done in the following ways:

1) Static thresholding: This involves comparing a metric expressing the sim-

ilarity or dissimilarity of the features computed on adjacent frames against a

�xed threshold [7]. This performs well only if video contentexhibits similar

characteristics over time. The threshold needs to be adjusted for each video.

2) Adaptive thresholding:Here, the threshold is varied depending on a statistic

(e.g., average) of the feature di�erence metrics within a temporal window, as

in [9] and [15].

3) Probabilistic detection: For a given type of shot transition, probability den-

sity function of the similarity/dissimilarity metric is es timated a priori, using

several examples of that type of shot transition. Then an optimal shot change

estimation is performed. This technique is demonstrated in[3] and [4].

4) Trained classi�er: Another method for detecting shot changes is to formulate

the problem as a classi�cation task where blocks of frames are labeled as one

of the two classes, namely, \shot change" and \no shot change,". This involves

training a classi�er (e.g., a neural network) to distinguish between the two

classes [10].
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2.1.2 Speci�c algorithms for shot boundary detection

Early work on video shot boundary detection mainly focused on abrupt shot transi-

tions. A comprehensive survey, comparison and performanceevaluation of existing

shot boundary detection algorithms can be found in [6, 16{19]. In [4], shot detec-

tion techniques are reviewed and a statistical detection technique based on motion

feature is proposed. Color histogram is a commonly used feature for detecting gradual

transitions [20{23]. Luminance [24, 25], chromaticity [11], motion [4] and edge [16]

information have also been used for shot boundary detection. Saraceno et al. [26]

classify audio into silence, speech, music or noise and use this information to verify

shot boundaries hypothesized by image-based features. Boreczky et al. [27] segment

the video by using audio-visual features and hidden Markov models (HMM) to hy-

pothesize the various shot transitions. The problem of shotboundary detection is

approached by Hanjalic [4] using a probabilistic approach.For detecting abrupt tran-

sitions, adjacent frames are compared, while for gradual transitions, frames separated

by the minimum shot length are compared. The a priori likelihood functions of the dis-

continuity metric are obtained using manually labeled data. Thus, di�erent likelihood

functions are estimated for each type of shot transition.

Gradual transitions are generally more di�cult to detect due to camera and object

motion. Detection of gradual transitions, such as fades anddissolves is examined

in [20{22]. The approach proposed by Lienhart [10] detects dissolves with a trained

classi�er (a neural network), operating on either YUV colorhistograms, magnitude of

directional gradients, or edge-based contrast. The classi�er detects possible dissolves

at multiple temporal scales and merges the results using a winner-take-all strategy.

The classi�er is trained using a dissolve synthesizer, which creates arti�cial dissolves

from any available set of video sequences. The performance is shown to be superior

when compared to simple edge-based dissolve detection methods.

Cernekova et al. [7] perform singular value decomposition (SVD) on the RGB color

histograms of each frame to reduce the dimensionality of feature vector to ten. Ini-
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tially, video segmentation is performed by comparing the angle between the feature

vector of each frame and that of the average of feature vectors of the current segment.

If their di�erence is higher than a static threshold, a new segment is started. Segments

whose feature vectors exhibit large dispersion are considered to depict a gradual tran-

sition between two shots, whereas segments with small dispersion are characterized as

shots. The main problem with this approach is the static threshold applied on the

angle between vectors to detect a shot change, especially inthe case of large intrashot

content variation and small intershot content variation. Independent component anal-

ysis is also used in [11] to search for prominent basis functions in the feature space,

and thereby reduce the dimension of the feature vector to two. An iterative clustering

algorithm based on adaptive thresholding is used to detect cuts and gradual transi-

tions. The reduction in dimension of feature vectors does not result in an appreciable

degradation in the performance of shot boundary detection.

Boccignone et al. [15] approach the problem of shot boundarydetection using the

attentional paradigm for human vision. The algorithm computes for every frame, a set

(called a trace) of points of focus of attention in decreasing order of saliency. It then

compares nearby frames by evaluating the consistency of their traces. Shot boundaries

are hypothesized when the above similarity is below a dynamic threshold.

Lelescu and Schonfeld [3] present a statistical approach for shot boundary detec-

tion. They extract the average luminance and chrominance for each block in every

frame and then perform principal component analysis (PCA) on the resulting feature

vectors. The eigenvectors are computed based only on the �rst M frames of each

shot. The resulting projected vectors are modeled by a Gaussian distribution whose

mean vector and covariance matrix are estimated from the �rst M frames of each

shot. A change statistic is estimated for each new frame using a maximum likelihood

methodology (the generalized likelihood ratio) and, if it exceeds an experimentally

determined threshold, a new shot is started. Since eigenvectors, mean and covariance

of the projected vectors are estimated using the �rst few frames in each shot, the esti-

mates may not be representatives of the end of the shot, more so in the case of shots
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with considerable interframe variations.

A measure de�ned by Li et al. [13] is the joint probability image (JPI) of two

frames. The JPI is a matrix whose [i , j ] element is the probability that a pixel with

color i in the �rst image has color j in the second image. Di�erent types of shot

transitions such as dissolve and fade are observed to have speci�c patterns of JPI.

Also, a one dimensional projection of the JPI called the joint probability projection

vector, and a scalar measure of dispersion of the JPI, calledjoint probability projection

centroid (JPPC), are derived, and observed to be useful for shot boundary detection.

Another approach is to use di�erent algorithms for each typeof transition, as

in [5]. Here, two algorithms are designed, one for dissolvesand fades and the other

for wipes. Speci�cally, B-spline interpolation techniqueis used to determine the pres-

ence of fade/dissolve within a temporal window. Further, fades are distinguished

from dissolves by additionally checking if the interframe standard deviation is close

to zero. Wipes are detected, based on the regular movement ofthe wipe's edge. For

this purpose, two-dimensional wavelet transform of interframe di�erence is computed

to enhance directionality, from which locations of strongest edges in four di�erent

directions (horizontal, vertical, and the two diagonals) are computed.

A signal processing approach to detection of cuts in video sequences is proposed

in [28] using phase correlation as a measure of similarity between adjacent frames.

Phase correlation is shown to be robust to illumination changes and noise.

Information theoretic measures are proposed in [12] for detecting shot boundaries.

Mutual information and joint entropy between two successive frames is calculated for

each of the RGB components, for detection of cuts, fade-ins and fade-outs.

The approach proposed in [29] is based on mapping the interframe distance values

on to a multidimensional space, while preserving the temporal sequence (or frame

ordering information). It is shown that detection of boundaries is less sensitive to the

choice of threshold in the multidimensional space.

In [30], di�erent types of transitions are observed in di�erent temporal resolutions.

Temporal multi-resolution analysis is applied on the videostream, and video frames
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within a sliding window are classi�ed into groups such as normal frames, gradual

transition frames and cut frames. Then the classi�ed framesare clustered into di�erent

shot categories.

It is a di�cult task to compare the e�ectiveness of di�erent a lgorithms for shot

boundary detection, since the performance depends on the choice of features, similarity

metric, the algorithm for boundary hypothesis and the videodata chosen for evalua-

tion. One attempt is made in [19] where di�erent methods are qualitatively evaluated

on the basis of features used, frame di�erence measures, dimensionality of features,

criticality of temporal window size and thresholds, and theability of the methods to

detect di�erent types of shot boundaries.

A survey of core concepts underlying the di�erent schemes ofshot boundary detec-

tion is presented in [17], while a comprehensive comparisonof di�erent shot boundary

detection algorithms is discussed in [16].

2.1.3 Issues addressed in shot boundary detection

An observation arising out of the review of the existing approaches is that an algorithm

with only one type of feature and/or similarity metric is not general enough to detect

di�erent types of shot transitions. Moreover, the choice ofwindow a�ects the resolution

of detection of shot boundary. Finally, most of the algorithms are sensitive to the

threshold used on similarity/distance metric. In this thesis, we attempt to address

these issues both at the level of features and at the level of the algorithm for shot

boundary detection. Our approach to observe signi�cant changes in only a few color

features is motivated by the need to derive multiple evidence for detection of shot

boundaries. In order to detect di�erent types of shot boundaries using a single general

algorithm, we propose a bidirectional processing scheme that exploits the behavior of

image frames in the neighbourhood of shot boundaries. This is in contrast to existing

approaches that compare a given frame against statistics derived from a window of

previous frames. The sparseness of distribution of color feature vectors is exploited

19



by deriving features of reduced dimension using a nonlinearautoassociative neural

network for compression. While any algorithm is not entirely robust to thresholds used

on similarity/distance metric, our objective is to reduce the criticality of threshold so

that the proposed algorithm performs optimally over range of threshold values.

2.2 REVIEW OF APPROACHES TO VIDEO CLASSIFICATION

Many approaches have been proposed for content-based classi�cation of video data.

The problem of content-based classi�cation of video can be addressed at di�erent levels

in the semantic hierarchy as shown in Fig. 2.3. For instance,video collections can be

videos

cartoon commercial sports news music

basketball tennis football volleyball cricket

segment 1 segment 2 . . .

highest level

next level

finer level

(playing field) (player) (graphics) (audience) (studio)

. . .

. . .

segmentN

Fig. 2.3: Video classi�cation at di�erent levels

categorized into di�erent program genres such as cartoon, commercials, sports, news,

and music. Then, videos of a particular genre, such as sports, can be further classi�ed

into subcategories such as basketball, tennis, football and cricket. A video sequence

of a given subcategory can then be segmented, and these segments can be classi�ed

into semantically meaningful classes. For example, football video sequences can be
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segmented into shots and these shots are further classi�ed as belonging to `playing

�eld', `player', `graphics', `audience', and `studio' classes.

The general approach to video classi�cation involves the extraction of visual fea-

tures based on color, shape, and motion, followed by the estimation of class-speci�c

probability density function of the feature vectors [31,32].

In [33], a criterion based on the total length of edges in a given frame is used. The

edges are computed by transforming each block of 8� 8 pixels using discrete cosine

transform (DCT), and then processing the DCT coe�cients. A rule based decision is

then applied to classify each frame into one of the prede�nedsemantic categories.

Another edge-based feature, namely, the percentage of edgepixels, is extracted

from each keyframe for classifying a given sports video intoone of the �ve categories,

namely, badminton, soccer, basketball, tennis, and �gure skating [34]. The k-nearest

neighbour algorithm was used for classi�cation.

Motion is another important feature for representation of video sequences. In [35],

a feature called motion texture is derived from motion �eld between video frames,

either in optical ow �eld or in motion vector �eld. These features are employed in

conjunction with support vector machines to devise a set of multicategory classi�ers.

The approach described in [36] de�nes local measurements ofmotion, whose spatio-

temporal distributions are modeled using statistical nonparametric modeling. In [37],

sports videos are categorized on the basis of camera motion parameters, in order to

exploit the strong correlation between the camera motion and the actions taken in

sports. The camera motion patterns such as �x, pan, zoom and shake are extracted

from the video data.

Motion dynamics such as foreground object motion and background camera motion

are extracted in [38] for classi�cation of a video sequence into three broad categories,

namely, sports, cartoons and news.

Transform coe�cients derived from discrete cosine transform (DCT) and Hadamard

transform of image frames are reduced in dimension using principal component anal-

ysis (PCA) [39]. The probability density function of the compressed features is then
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modeled using a mixture of Gaussian densities.

Dimension reduction of low level features such as color and texture, using PCA,

has been attempted in [40,41], for reducing spatio-temporal redundancy.

Another approach described in [42] constructs two hidden Markov models, from

principal motion direction and principal color of each frame, respectively. The decisions

are integrated to obtain the �nal score for classi�cation.

Apart from statistical models, rule-based methods have also been applied for clas-

si�cation. In [43], a decision tree method is used to classify videos into di�erent genres.

For this purpose, several attributes are derived from videosequences, such as the length

of video clip, number of shots, average shot length and percentage of cuts. A set of

decision rules is derived using these attributes.

Another class of algorithms focuses on deriving temporal information from video

sequences. Typically, these algorithms are speci�c to detection of prede�ned events in

videos within the context of a given application.

In [44], features indicating signi�cant events are selected from video sequences.

These features include a measure of motion activity and orientation of edges, which

help in detection of crowd images, on-screen graphics and prominent �eld lines in

sports videos. The evidence obtained by di�erent feature detectors are combined

using a support vector machine, which then detects the occurrence of an event.

In [45], an HMM based framework is suggested to discover the hidden states or

semantics behind video signals. The objective is to arrive at a sequence of semantics

from a given sequence of observations, by imposing temporalcontext constraints. The

framework is then applied to detect prede�ned events in sports categories such as

basketball, soccer and volleyball.

Another approach [46] models the spatio-temporal behaviour of an object in a

video sequence for identifying a particular event. The gameof snooker is considered

and the movement of snooker ball is tracked using a color based particle �lter. A few

events are prede�ned in terms of actions, where an action canbe a white ball colliding

with a colored ball, or a ball being potted. An HMM is used to model the temporal
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behaviour of the white ball, along with algorithms for collision detection.

A symbolic description of events is provided in [47], where events are described

in terms of rules using fuzzy hypotheses. These hypotheses are based on the degree

of belief of the presence of speci�c objects and their interrelations, extracted from

the video sequence. The method involves the extraction of main mobile objects in

video sequences, also called fuzzy predicates. The input isde�ned on the set of fuzzy

predicates, while the output is a fuzzy set de�ned on the events to be recognized. The

association between the fuzzy predicates and the set of events is represented using a

neurofuzzy structure. The approach is tested on soccer video sequences for detecting

some predetermined events.

In [48], a multilayer framework based on HMMs is proposed fordetection of events

in sports videos, on the basis that sports videos can be considered as rule based

sequential signals. At the bottom layer, event HMMs output basic hypotheses using

low-level features. The upper layers impose constraints onthe prede�ned events in

basketball.

The deterministic approach to event detection is compared with probabilistic ap-

proach, in [49]. While the former depends on clear description of an event and explicit

representation of the event in terms of low-level features,the latter is based on states

and state transition models whose parameters are learnt through labeled training se-

quences. It is shown, through automatic analysis of football coaching video, that the

probabilistic approach performs more accurately while detecting events, mainly due

to their ability to capture temporal patterns and yet, absorb small spatio-temporal

variations. Thus, a common feature of most of these approaches is the use of HMM in

a traditional framework, for detection of prede�ned events. While the detected events

are used for indexing, retrieval and generation of summary/highlights, they are rarely

used for classi�cation of video sequences.
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2.2.1 Issues addressed in video classi�cation

The existing approaches to video classi�cation can thus be broadly categorized into

those which model the class-speci�c probability density function of feature vectors,

and those which model temporal information present in the sequence of images. While

features based on color and its distribution in image frames, and motion, have been

explored for classi�cation, we note that the potential of edge-based features is not

fully realized. Since we address the problem of video classi�cation in the context of

sports, edge-based features play an important role in characterizing entities such as

sports areas and motion of players and objects. We propose the use of edge direction

histogram and edge intensity histogram, where the former isalso used for spatially

localizing edge information within an image. We also propose the use of autoassociative

neural network models for estimating the distribution of edge-based features. These

are nonlinear and nonparametric models that do not make assumptions on the shape

of probability density function of feature vectors.

Methods that model temporal information in video sequencesfocus on the detec-

tion of events in video sequences. These are prede�ned events that require manual

e�ort to identify frame sequences containing those events.Moreover, the detected

events are used mostly for indexing and retrieval, and not for classi�cation. In this

context, we note that the events being speci�c to sports categories, can be used as

features to classify a given video into one of those categories. We propose a novel

method to identify and match events in video sequences, using a framework based on

hidden Markov models. Here, the events are not prede�ned, but hypothesized based

on the sequence latent in a given video. Once the events are identi�ed, they are further

used for classi�cation of a given video into one of the sportscategories.
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2.3 SUMMARY

In this chapter, some of the existing approaches to video segmentation and classi�-

cation were reviewed. The key components of video shot boundary detection are the

features used to represent images, and the measure of similarity/distance used to hy-

pothesize a shot boundary. The survey suggests that there isa need for robust features

and algorithms which are general enough to detect di�erent types of shot transitions.

In this thesis, we propose novel algorithms for shot boundary detection to address this

issue, and also examine the e�ectiveness of features of reduced dimension. In video

classi�cation, most algorithms are still based on low-level features, since deriving more

meaningful information at a higher level is a challenging task. We explore, low-level

edge-based features, and higher level features based on thenotion of events for the task

of sports video classi�cation. We also study the e�ect of combining evidence obtained

from multiple features and classi�ers, on the performance of classi�cation.
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CHAPTER 3

VIDEO SHOT BOUNDARY DETECTION BY

COMBINING EVIDENCE FROM EARLY AND LATE

FUSION TECHNIQUES

Video segmentation is the �rst step in the analysis of video content for indexing,

browsing and retrieval. Segmentation of video can be done atvarious levels such as

shots, scenes and stories. Video shot boundary detection involves a low-level temporal

segmentation of video sequences into elementary units called shots. Detection of shot

boundaries provides a base for all video abstraction and high-level video segmentation

methods. A shot is usually conceived in the literature as a series of interrelated con-

secutive frames captured contiguously by a single camera operation and representing

a continuous action in time and space [19]. The transition between two shots can be

either abrupt or gradual. An abrupt transition (hard cut) occurs between two con-

secutive frames, where as gradual transitions (fades, dissolves and wipes) are spread

over several frames. Gradual transitions are harder to detect because the di�erence

between consecutive frames is smaller and gradual transitions can occur even within

a shot.

In this chapter, we briey describe the traditional method of shot boundary de-

tection, which is an early fusion algorithm. Early fusion refers to the combination

of evidence due to all the components of a feature vector for detecting shot bound-

aries. In Section 3.1, we propose two modi�cations to early fusion algorithm. The

�rst modi�cation is to compute the dissimilarity between fr ames which are separated

by a margin, aimed at simultaneous detection of cuts and gradual transitions. The
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second modi�cation is to perform a bidirectional processing of video, aimed at reduc-

ing the miss rate. Performance measures for evaluating algorithms for shot boundary

detection are described in Section 3.2. A novel method for shot boundary detection,

called late fusion is proposed in Section 3.3, which is basedon evidence due only to

those components of the feature vector that change signi�cantly. The merits of early

and late fusion techniques are combined to improve the performance of shot boundary

detection, as described in Section 3.4. The performance of the proposed algorithms is

evaluated on broadcast video data, that includes both abrupt and gradual transitions.

Section 3.5 summarizes the study.

3.1 SHOT BOUNDARY DETECTION BY EARLY FUSION

Shot boundary detection involves testing, at every frame index n of a given video of

length Nv frames, the following two hypotheses:

H 0 : A shot boundary exists at frame indexn.

H 1 : No shot boundary exists at frame indexn. (3.1)

Let X = f x 1; x 2; : : : ; x n ; : : : ; x N v g be the sequence of feature vectors of dimension

p representingNv frames in a video. Testing of the hypotheses at the frame index

n involves computation of a dissimilarity value,d[n], between two sequences ofN

feature vectorsXL = f x n� 1; x n� 2; : : : ; x n� N g and XR = f x n ; x n+1 ; : : : ; x n+ N � 1g to

the left and right of n, respectively. The value ofN can vary from one frame to a few

frames (corresponding to less than one or two seconds). If the dissimilarity value is

greater than a threshold� [n] (either �xed or adaptive), the hypothesisH 0, that a shot

boundary exists at frame indexn, is chosen.

Some of the commonly used dissimilarity measures include Euclidean distance,

cosine dissimilarity, Mahalanobis distance and log-likelihood ratio. Mahalanobis dis-

tance and log-likelihood ratio are based on probability distributions, and hence are

superior to a simple metric like Euclidean distance. But they are usually limited to
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second order statistics. Also, they are constrained by the amount of data (number of

image frames) available to estimate the parameters of the distributions. Such distance

measures are not suitable for detecting gradual transitions, although the number of

spurious shot boundaries hypothesized is relatively less.In contrast, measures such

as Euclidean distance and cosine dissimilarity can be computed between successive

frames or between two sequences of frames, thereby making them suitable for both

abrupt and gradual transitions. However, when these distances are computed between

successive frames, the number of spurious shot boundaries hypothesized is typically

greater than that due to Mahalanobis distance or log-likelihood ratio. The objective

is to use a dissimilarity measure that detects both abrupt and gradual transitions and

also minimizes the number of spurious shot boundaries. Euclidean distance with an

adaptive threshold based on the standard deviation computed over past few frames is

similar to the use of Mahalanobis distance with a �xed threshold. In view of this, we

use Euclidean distance as the dissimilarity measure with anadaptive threshold com-

puted using the variance of a few frames before the frame at which the hypothesis is

tested. Let d[n] = D(x n ; x n� 1), where D denotes the Euclidean distance between two

adjacent feature vectorsx n and x n� 1. If � L [n] denotes the standard deviation ofN

frames to the left ofn, then the dynamic threshold is computed as� [n] = � � � L [n],

where � is a constant scaling parameter.

We now propose a one-pass algorithm which detects cuts and gradual transitions

simultaneously. Two modi�cations are proposed to the traditional method described

above. These are: (1) Simultaneous detection of cuts and gradual transitions, by

computing the dissimilarity measure between two feature vectors separated by a margin

of M frames, and (2) bidirectional processing of the video for reducing the miss rate.

3.1.1 Simultaneous detection of cuts and gradual transitio ns

The dissimilarity value computed between two adjacent blocks of frames (where the

block size can vary from one frame to a few frames) has good evidence to detect cuts,
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but fails to detect a signi�cant number of gradual transitions. Figs. 3.1(a) and (b)

show the variation of three components of the feature vectors as a function of time,

in the vicinity of a shot boundary, for a cut and a gradual transition, respectively.

The three-dimensional feature vector shown for illustration is obtained by nonlinear

compression of 512-dimensional color histogram. The issueof dimension reduction is

discussed in Chapter 4. The dissimilarity values computed between adjacent frames

are shown in Figs. 3.1(c) and (d), by solid lines. Also plotted using dotted lines are

the dynamic thresholds, computed as described above. A shotboundary is hypoth-

esized, where the dissimilarity value exceeds the dynamic threshold. It can be seen

from Fig. 3.1(d) that the dissimilarity values between the adjacent frames is not sig-

ni�cant enough compared to the dynamic threshold, and hencethe gradual transition

is missed. In order to detect gradual transitions simultaneously with cuts, we pro-

pose to compute the dissimilarity value between frames separated by a margin of, say

M frames. The dissimilarity value and the dynamic threshold are now computed as

d[n] = D(x n ; x n� M ) and � [n] = � � � L [n � M ]. The basis for computing dissimilarity

value between frames separated by a margin is that the framesin the region of grad-

ual transition do not contribute signi�cantly to the dissimilarity. Thus, by excluding

frames in the region of gradual transition, a signi�cant dissimilarity value is obtained.

Suppose, if frames in the transition region are excised out,then a gradual transition

would resemble an abrupt change. Thus, by comparing frames with a margin greater

than the typical duration of a gradual transition, the proposed modi�cation treats the

detection of cuts and gradual transitions alike. Figs. 3.1(e) and (f) show the dissimilar-

ity values computed between two frames separated by a marginof M = 20 frames. It

can be seen from the �gures that the evidence for the gradual transition is comparable

with that of the cut, and hence can be detected simultaneously with a cut. While

the choice of a margin helps in detection of gradual transitions, it does not a�ect the

detection of cuts.
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Fig. 3.1: Shot boundary detection without and with margin. Contours of
three (3) components of feature vectorx n , for (a) a typical cut and (b)
a gradual transition. (c) and (d) Dissimilarity valuesd(x n ; x n� 1) without
margin, corresponding to (a) and (b), respectively, shown in solid line. The
dynamic threshold� � � L [n] with � = 4 andN = 10 is shown by a dotted line.
(e) and (f) Dissimilarity valuesd(x n ; x n� M ) with a margin ofM = 20, corre-
sponding to (a) and (b), respectively. The dynamic threshold � � � L [n � M ]
with � = 4 is shown by a dotted line.

30



3.1.2 Bidirectional processing of video

Signi�cant variations in the frames (and hence in the features) just before the shot

boundary, results in a high threshold that causes several genuine shot boundaries to

be missed. This is a typical problem with methods that process the video only in the

forward direction (left to right). This can be overcome by processing the video in the

reverse or backward direction (right to left) as well. One such case is shown in Fig. 3.2.

The distance and the threshold values computed in the forward direction are given by

df [n] = D(x n ; x n� M ) and � f [n] = � � � R [n � M ]. These are same as discussed in

Section 3.1.1. The distance and the threshold values in the reverse direction are given

by db[n] = D(x n� 1; x n+ M � 1) and � b[n] = � � � R [n + M � 1], where� R [n + M � 1]

denotes the standard deviation ofN frames to the right of the frame whose index is

(n + M � 1). It can be easily veri�ed that db[n] and � b[n] are just the shifted versions

of their counterparts in the forward direction, df [n] and � f [n]. Hence, it is su�cient

to compute the dissimilarities and the threshold values only in the forward direction.

The evidences due to forward and backward processing appearas two edges (rising

and falling respectively) of the distance plot, as is apparent in Fig. 3.1(e). The new

condition for hypothesizing a shot boundary at the frame index n becomes

df [n] > � f [n] j db[n] > � b[n] (3.2)

where \j" denotes the logicalOR operation. This modi�ed condition, that uses the

evidence from either side of a shot boundary, reduces the miss rate, but at the same

time can increase the number of false alarms.
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Fig. 3.2: Bidirectional processing of video for shot boundary detection. (a)
Contours of three (3) dimensions of feature vectorx n , for a cut at n = 83
with signi�cant variation to the immediate left of the transition. (b) The
dissimilarity valuedf [n] (solid line) and the threshold� f [n] (dashed line).
Forward processing fails to detect the shot boundary (marked `x'). (c) The
dissimilarity valuedb[n] (solid line) and the threshold� b[n] (dashed line).
Backward processing detects the shot boundary.
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3.2 PERFORMANCE EVALUATION

3.2.1 Data set

The performance of shot boundary detection algorithms is evaluated on a database of

approximately 21
2 hours of news, wild life documentaries and sports video sequences.

The database contains a total of 618 cuts and 170 gradual transitions, the details of

which are given in Table 3.1. The video clips were captured ata rate of 25 frames

per second, at 320� 240 pixel resolution, and stored in audio video interleave (AVI)

format.

Table 3.1: Video data used for shot boundary detection experiments.

Clip ID Duration (min) # frames # cuts # graduals

BBC 23 33,895 155 28

CNN 24 36,000 76 72

NDTV 27 32,673 135 7

Wild Life 20 30,068 137 21

Sports 15 22,899 115 42

Overall 109 1,55,535 618 170

3.2.2 Features

An image histogram refers to the probability mass function of the image intensities.

This is extended for color images to capture the joint probabilities of the intensities of

the three color channels, namely, red (R), green (G), and blue (B). More formally, the
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color histogram is de�ned by

hA;B;C (a; b; c) = N � P r(A = a; B = b; C = c); (3.3)

whereA , B and C represent the three color channels R,G and B, respectively,and N is

the number of pixels in the image. Computationally, the color histogram is formed by

discretizing the colors within an image and counting the number of pixels of each color.

In our experiments, a 512-dimension RGB color histogram, obtained by quantizing the

3-D color space into an 8� 8 � 8 grid, is used as the feature vector.

3.2.3 Performance metrics

The performance of the shot boundary detection task is measured in terms of recall

(R) and precision (P) criteria, given by

R =
Nc

Nm
; (3.4)

and

P =
Nc

Nc + N f
; (3.5)

where Nm is the total number of actual (or manually marked) shot boundaries, Nc

is the number of shot boundaries detected correctly, andN f is the number of false

alarms. A good performance requires both recall and precision to be high, i.e., close

to unity. The choice of the threshold factor� is crucial. A small value of� improves

the recall, while reducing the precision at the same time. A large value of� has the

reverse e�ect on recall and precision. A compromise betweenrecall and precision is

obtained by using a measure combining the recall and precision, given by

F1 =
2 � R � P

R + P
: (3.6)

Ideally, F1 should be close to unity.
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3.2.4 Results and discussion

The performance of forward and backward processing using the early fusion algorithm

is given in Table 3.2. The optimal threshold factor� opt corresponds to bestF1 measure.

Table 3.2: Performance (in terms ofR, P and F1) of shot boundary detection
using forward and backward processing of video by early fusion.

Forward processing Backward processing

Clip ID � opt R P F1 � opt R P F1

BBC 10.0 0.881 0.926 0.903 8.0 0.902 0.942 0.921

CNN 8.0 0.878 0.909 0.893 6.5 0.892 0.904 0.898

NDTV 12.5 0.768 0.908 0.832 6.5 0.873 0.780 0.824

Wild Life 9.5 0.852 0.912 0.881 6.5 0.858 0.844 0.851

Sports 11.0 0.867 0.897 0.881 9.0 0.844 0.854 0.849

Overall 9.5 0.854 0.889 0.871 6.5 0.890 0.820 0.853

It is to be noted here that the optimal threshold factor is di�erent for di�erent clips,

and also for forward and backward directions of the same clip. Performance after

combining the evidence obtained using forward and backwardprocessing is given in

Table 3.3. It is seen that the OR logic improves the performance, while the AND logic

reduces the optimalF1 value to 0.59. This is mainly due to a high probability that one

of the two sides of a shot boundary has a large variance among the feature vectors.

3.3 SHOT BOUNDARY DETECTION BY LATE FUSION

The early fusion technique described in the previous section was based on the overall

change in color histogram between adjacent frames in a videosequence. The dimension
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Table 3.3: Performance (in terms ofR, P and F1) of shot boundary detection by
combining the evidence obtained using forward and backwardprocessing of video.

Combined (OR) Combined (AND)

Clip ID � opt R P F1 � opt R P F1

BBC 10.0 0.937 0.918 0.927 3.0 0.881 0.592 0.708

CNN 8.0 0.953 0.898 0.925 3.0 0.736 0.407 0.524

NDTV 9.5 0.901 0.837 0.868 3.0 0.852 0.531 0.654

Wild Life 9.5 0.902 0.878 0.889 3.0 0.863 0.583 0.696

Sports 13.0 0.878 0.940 0.908 3.0 0.700 0.240 0.358

Overall 10.0 0.908 0.882 0.895 3.0 0.817 0.465 0.592

of color histogram, 512 in this case, was chosen to provide adequate representation to

each color component. However, not all components of the color histogram feature

vectors are populated for a given frame of video. Secondly, not all components of the

color histogram change signi�cantly in the neighbourhood of a shot boundary. It is

observed that in general, a small number of color bins undergo a signi�cant change

when there is shot boundary. Figs. 3.3 (a) and (b) show the probability and cumulative

distributions of the number of bins changing signi�cantly at the actual shot boundaries,

for a threshold factor of� =5. It can be seen from Fig. 3.3 (b) that around 50% of the

shot boundaries have 50 or less number of bins changing signi�cantly (approximately

10% of the total number of bins) and around 82% of the shot boundaries have 100 or

less number of bins (approximately 20%) changing signi�cantly. Hence we see that a

shot boundary can be detected by observing a signi�cant change in a small number of

bins.
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Fig. 3.3: (a) Probability distribution of shot boundaries in terms ofthe number
of color bins changing signi�cantly. (b) Cumulative distribution of (a).

At the same time, if all components of the color histogram areconsidered for the

computation of dissimilarity, as is the case in early fusion, even a small contribution

from each component results in a large value of the overall dissimilarity. This is typi-

cally the case when frames in a video sequence change gradually due to object/camera

motion and intensity variations, even when there is no shot boundary. To overcome

the problem of false hypothesis due to small changes accumulated over a large number

of bins, we propose to use the number of bins changing signi�cantly as a measure to hy-

pothesize a shot boundary. We call this as late fusion technique, since the components

of color histogram are �rst observed for signi�cant change,and only then included in

the process of decision making. The condition for hypothesizing a shot boundary is

exactly same as the early fusion technique outlined in the previous section, except that

it is applied on individual bins separately. If the numberx of bins voting for a shot

boundary exceeds a thresholdK , a shot boundary is hypothesized. The performance of

the late fusion technique is given in Table 3.4. The optimal threshold factorK opt cor-

responds to bestF1 measure. We observe from the table that less than 20 components

of the color histogram are su�cient for detection of shot boundaries, provided that
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Table 3.4: Performance (in terms ofR, P andF1) of shot boundary
detection by late fusion of decisions along individual dimensions.

Video category K opt R P F1

BBC 19 0.930 0.911 0.920

CNN 12 0.865 0.914 0.889

NDTV 17 0.930 0.841 0.883

Wild Life 17 0.880 0.880 0.880

Sports 12 0.900 0.976 0.936

Overall 15 0.888 0.877 0.882

these components change signi�cantly in the vicinity of a shot boundary. Also, com-

parison of Tables 3.3 and 3.4 indicates that the performanceof late fusion algorithm

is comparable to that of early fusion (when OR logic is used for combination).

3.4 COMBINING EVIDENCES FROM EARLY AND LATE FUSION

TECHNIQUES

The early fusion technique computes the net changes in all the bins or dimensions,

which can be signi�cantly large although the change in the individual bins is small.

This can lead to false hypotheses of shot boundaries therebybringing down the per-

formance. The late fusion technique provides robustness against such cases which are

typically caused by illumination changes and camera/object motion. At the same time,

it fails to detect genuine boundaries which have similar color content on either side.

Thus, early fusion relies on the extent of overall change, while late fusion relies on the

number of signi�cant changes. The inherent advantages of these two techniques can be

exploited by combining evidence due to these two methods. The performance of the
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shot boundary detection task, when the shot boundaries hypothesized by early fusion

are validated (equivalent to logical AND operation) by the late fusion method, is given

in Table 3.5. It can be seen that there is signi�cant improvement in performance as

compared to that of the two techniques individually.

Table 3.5: Performance (in terms ofR, P andF1) of shot boundary
detection after combining early and late fusion techniques.

Video category � opt K opt R P F1

BBC 3.5 18 0.9720 0.9329 0.9521

CNN 5.5 3 0.9527 0.9276 0.9400

NDTV 6.5 14 0.9225 0.9225 0.9225

Wild Life 4.5 10 0.9454 0.8964 0.9202

Sports 6.0 5 0.9889 0.9175 0.9519

Overall 5.5 8 0.922 0.921 0.921

Another signi�cant advantage of combining these two techniques is that the crit-

icality of the choice of threshold factors� and K is reduced. It can be seen from

Figs. 3.4 (a) and (b), that the F1 measure drops signi�cantly on either side of the

optimal threshold factors � and K , for early and late fusion techniques, respectively.

Fig. 3.5 shows that for the combination of early and late fusion, theF1 measure remains

high (around 0.9) over a wide range of� values, for a chosen value ofK . Similar trend

is observed when theK values are varied for a �xed value of� , as shown in Fig. 3.6.

For a �xed value of early fusion threshold factor� =5.0, the overall recall, precision

and F1 values for the entire data set are plotted as a function of thelate fusion thresh-

old factor K in Fig. 3.7. Thus, we see that there is a greater exibility inthe choice

of the threshold factors.
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Fig. 3.4: Performance curves for �ve di�erent video clips as a function of
the threshold factor. (a) Early fusion technique:F1 vs � and (b) late fusion
technique:F1 vs K .
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Fig. 3.5: Performance curves for the combination of early and late fusion
techniques.F1 values as a function of early fusion threshold factor� , for �ve
di�erent video clips, and for two di�erent values of late fusion threshold factor
K , (a) 5 and (b) 10.
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Fig. 3.6: Performance curves for the combination of early and late fusion
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�ve di�erent video clips, and for two di�erent values of early fusion threshold
factor � , (a) 5 and (b) 10.
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The missed shot boundaries are mainly due to lack of evidence(insigni�cant change

in color information, such as cuts within a war footage). Features other than color

or intensity information, like edge changes that provide complementary information,

need to be used to reduce the miss rate. The false detections fall into two categories:

signi�cant changes in captions, graphics or animation and signi�cant camera/object

motion within a shot. Strictly speaking, the former should not be considered as false

alarms as they indeed correspond to events within a shot, while it is always di�cult

to eliminate the latter.

3.5 SUMMARY

In this chapter, we proposed a novel method called late fusion of evidence, for de-

tection of shot boundaries. The basis for this method lies inthe signi�cant change

occurring in a small number of color features, in the neighbourhood of a shot boundary.

The technique is robust to illumination changes and camera/object motion within a

shot. Also, modi�cations to the existing early fusion algorithm were suggested. These

modi�cations, namely, processing with a margin and bidirectional processing, make

e�ective use of statistics derived from frames in the neighbourhood of shot bound-

aries. These modi�cations were shown to improve the performance of shot boundary

detection. The evidence due to late fusion has been combinedwith the evidence due

to early fusion to exploit the advantages of both the methods. It was also observed

that such a combination reduces the criticality of the choice of threshold, by yielding

good performance over a range of threshold values.
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CHAPTER 4

VIDEO SHOT BOUNDARY DETECTION USING

FEATURES OF REDUCED DIMENSION

The problem of detection of shot boundaries in video sequences was discussed in the

previous chapter, using color histogram as a feature for representation of images. It

has been observed that color histogram is sparse, that is, many of the components/bins

of color histogram are either small or zero. This sparsenessindicates that only a few

components of color histogram are signi�cant, and hence, there is a case for reducing

the dimension of color histogram feature vector. Secondly,color histogram does not

reect the spatial distribution of colors in an image. Thus,a representation based on

color histogram may fail to di�erentiate between two imageswhich are distinct, but

have similar color distributions. Hence, a representationis needed that can capture

the spatial distribution of colors. In this chapter, we use color coherence vector as a

feature for representation of images. The color coherence vector (CCV) is a histogram-

based feature that incorporates information about the spatial distribution of color as

well [50]. While the CCV provides additional information for shot boundary detection,

it also increases the dimensionality of the feature vector.This can be countered by

transforming the high dimension sparse feature space into alow dimension space, while

preserving most of the signi�cant information.

There are several choices for providing linear or nonlinearmapping for dimension

reduction. Our choice for nonlinear principal component analysis (NLPCA) using

autoassociative neural network (AANN) models is motivatedby its superior scaling

properties, less computational cost, and its ability to capture higher order relations

in the data [51, 52]. The nonlinear transformation of the feature vectors to a low di-
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mension space preserves information useful for shot boundary detection, and helps to

provide better visualization. Hence, we propose the use of autoassociative neural net-

work (AANN) models for nonlinear compression of color coherence feature vectors. We

discuss the e�ect of compression of color coherence vectorson the performance of shot

boundary detection. This approach to dimension reduction is compared with those

based on singular value decomposition (SVD) and independent component analysis

(ICA).

This chapter is organized as follows: In Section 4.1, the extraction of color coher-

ence vector (CCV) from a frame of video is described. In Section 4.2, AANN models

and their ability to perform nonlinear compression of feature vectors are discussed.

Also, singular value decomposition (SVD) and independent component analysis (ICA)

are briey described in the context of compression. Section4.4 provides the descrip-

tion of the proposed shot boundary detection algorithm. In Section 4.5, experimental

results of the shot boundary detection algorithm are discussed. Section 4.6 summarizes

the study.

4.1 COLOR COHERENCE VECTORS

Color histograms are used to compare images in many applications. Their advan-

tages are ease of computation, and insensitivity to small changes in camera viewpoint.

However, color histograms lack spatial information, so images with very di�erent ap-

pearances can have similar histograms. For example, the images shown in Fig. 4.1

have similar color histograms, despite their rather di�erent appearances [50,53].

Many applications require simple methods for comparing pairs of images based on

their overall appearance. For example, a user may wish to retrieve all images similar

to a given image from a large database of images. Color histograms are a popular so-

lution to this problem, and are used in systems like QBIC [54]and Chabot [55]. Color

histograms are computationally e�cient, and generally insensitive to small changes

in camera position. However, a major limitation is that a color histogram provides
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Fig. 4.1: Two images with similar color histograms.

no spatial information; it merely describes which colors are present in an image, and

in what proportions. In addition, color histograms are sensitive to both compression

artifacts and changes in overall image brightness. To overcome the lack of spatial infor-

mation, we describe a histogram-based method that incorporates spatial information

for representing images. We classify each pixel in a given color bin as either coherent

or incoherent, based on whether or not it is part of a large similarly-colored region.

A color coherence vector (CCV) stores the number of coherentas well as incoherent

pixels with each color. By separating coherent pixels from incoherent pixels, CCVs

provide �ner distinctions than color histograms. Intuitively, we de�ne a color's coher-

ence as the degree to which pixels of that color are members oflarge similarly-colored

regions. We refer to these signi�cant regions as coherent regions, and observe that

they are of importance in characterizing images. CCVs prevent coherent pixels in one

image from matching incoherent pixels in another. This allows �ne distinctions that

cannot be made with color histograms.
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4.1.1 Computation of color coherence vector

Color coherence vector is obtained by splitting the number of pixels in each color bin

into two parts, coherent and incoherent. The coherent part gives the count of pixels

that lie within a neighbourhood of the same color, and the remaining pixels form the

incoherent part. By tracking the coherent and incoherent parts separately for each

color bin, CCVs provide a �ner distinction between images than color histograms.

Thus, CCV can detect some additional shot boundaries which may otherwise be missed

by color histogram.

The high resolution RGB color space is quantized into a smaller number of color

bins, so as to reduce some of the uctuations in color intensities over adjacent frames

from the same scene. The CCV for a frame of video can be computed by constructing

connected components or graphsG = f G1; G2; : : : ; GN g linking all adjacent pixels of

same color. A connected componentGi 2 G is a maximal set of pixels such that for

any two pixels p � (x1; y1); q � (x2; y2) 2 Gi , there is a path in Gi between p

and q. A path in Gi is a sequence of pixelsp1; p2; :::; pn such that each pixel is inGi

and any two sequential pixelspj and pj +1 are adjacent to each other. Two pixels are

considered to be adjacent, if one pixel is among the eight closest neighbours of the

other. Each connected component is of a speci�c color, can beof varying size, and

can be computed in linear time. For each connected componentGi associated with

the kth color, the count � k and � k of coherent and incoherent pixels , respectively, are

updated as follows:

If jGi j >  then

� k = � k + jGi j

else

� k = � k + jGi j

where  is a constant that denotes the minimum size of a coherent neighbourhood,

and jGi j denotes the size of the graphGi . Thus, if the color space is quantized into

m=2 bins, a CCV ofm dimensionsf (� 1; � 1); :::; (� m=2; � m=2)g is obtained.
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4.2 APPROACHES TO DIMENSION REDUCTION

In this section, we discuss three di�erent approaches to reduce the dimension of color

coherence feature vectors. The �rst approach, based on singular value decomposition,

attempts to uncover the geometrical structure formed by feature vectors in the input

space. The input feature vectors are projected onto orthonormal basis vectors, which

in turn are derived from the input data itself. In contrast, independent component

analysis attempts to derive basis vectors which need not be orthogonal, but are sta-

tistically independent. Finally, autoassociative neuralnetwork models are discussed,

which attempt to capture nonlinear principal components ofthe input feature space

and thereby help reduce the dimension of the feature vectors.

4.2.1 Singular value decomposition

The singular value decomposition (SVD) of anM � N matrix A is any factorization

of the form A = U�V T , where U is an M � M column-orthogonal matrix, V is an

N � N column-orthogonal matrix, and� is anM � N diagonal matrix with nonnegative

elements, given by� = diag
�
� 1; � 2; � � � ; � R

�
where � 1 � � 2 � � � � � � R � 0 and R

is the rank of the matrix A. The values� i , i = 1; 2; � � � ; R are the singular values,

and the �rst of R columns ofV and U are called the right and left singular vectors,

respectively.

Let ai denote an M -dimensional feature vector derived fromi th image frame,

where i = 1; 2; � � � ; N , and N denotes the number of frames in the video sequence.

The matrix A is constructed by arranging the feature vectorsai , i = 1; 2; � � � ; N ,

along the columns. The column vectors ofA are projected onto the orthonormal basis

formed by vectors of the left singular matrixU . The row vectors ofA are projected

on to the orthonormal basis formed by vectors of the right singular matrix V T . Let

M be the dimension of the feature vectors andN be the number of feature vectors.

By performing SVD, vectors from theM -dimensional feature space are projected onto

a K -dimensional (K < R � M ) re�ned feature space, by preserving onlyK singular
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vectors corresponding to theK largest singular values of� . A given M -dimensional

feature vectorai can be compressed into aK -dimensional feature vector~ai as

~ai =
�
aT

i u1 aT
i u2 � � � aT

i uK
� T

; (4.1)

whereu1; u2; � � � ; uK are the �rst K column vectors ofU and T denotes the transpose

operator.

4.2.2 Independent component analysis

Independent component analysis (ICA) is a statistical and computational technique,

which uses higher order statistics for revealing hidden factors that underlie sets of ran-

dom variables, measurements or signals [56]. ICA is a linearnonorthogonal transform

which separates the independent source signals from their linear mixtures without

knowing the mixing matrix.

Independent component analysis de�nes a model for the observed multivariate

data, which is typically given as a large database of samples. In the model, the

data variables are assumed to be linear or nonlinear mixtures of some unknown latent

variables, and the mixing system is also unknown. The latentvariables are assumed

non-Gaussian and mutually independent and they are called independent components

of the observed data. These independent components, also called sources or factors,

can be estimated using ICA. The ICA technique aims to �nd a linear transform for

the input data using a basis as statistically independent aspossible. While principal

component analysis (PCA) tries to obtain a representation based on uncorrelated

variables, ICA provides a representation based on statistically independent variables.

The features produced by PCA are mutually uncorrelated. However, ICA not only

decorrelates the data but also reduces higher-order statistical dependence of data.

Let x denote anN -dimensional vector ands denote an M -dimensional vector,

whose components are theM statistically independent non-Gaussian source signals.

The ICA model can be expressed as

x = As; (4.2)
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whereA is anN � M mixing matrix with linearly independent columns. The objective

is to estimate the demixing matrixW using only the observed signalsx. The matrix

W is applied on the observed signal such that the components ofthe output vector y

are as statistically independent as possible, where

y = Wx = WAs : (4.3)

The rows of the output vectors are the independent components. The basis func-

tions learned by ICA form the columns of matrixA . An input feature vector can be

compressed by projecting it onto a few independent components.

4.2.3 Autoassociative neural network models

Autoassociative neural network models are multilayer feedforward neural network mod-

els that perform a nonlinear identity mapping of the input space [52,57]. The network

architecture of these models may have more than one hidden layer, and the input and

output layers have the same number of processing units. One of the hidden layers

known as the bottleneck layer or the compression layer has a dimension lesser than

the input layer. These networks can be trained using backpropagation learning al-

gorithm [52] so as to reconstruct the input data at the outputlayer. The vectors at

the outputs of the compression layer represent projectionsof the input feature vec-

tors onto signi�cant basis functions learnt by the network [58]. This characteristic of

AANN model was exploited extensively for linear and nonlinear compression of input

data [59].

The principal component analysis (PCA) projects the input feature vectors onto

the �rst few directions of maximum variances, so that the error due to the represen-

tation is optimal in the mean squared sense. This linear transformation uses only the

second order correlations in the data, and cannot capture some of the class discrimina-

tive information which is signi�cant for pattern recognition tasks. Nonlinear principal

component analysis (NLPCA), typically implemented by neural network models, pro-

vides a nonlinear generalization of PCA [51, 58, 60]. AANN models and kernel PCA
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(KPCA) methods have been commonly used for NLPCA [52]. In thekernel PCA,

eigenanalysis is performed in a feature space nonlinearly related to the input space,

and whose dimension is directly proportional to the number of input patterns. For a

large number of patterns, kernel PCA results in a kernel matrix of large dimension. In

such cases, eigenanalysis becomes computationally intensive. Also, from the studies

of dimension reduction using AANN models for recognition ofconsonant-vowel units

of speech, it is shown that nonlinear compression using AANNmodels is superior to

linear compression by PCA [61]. Hence, AANNs are an attractive tool for nonlinear

compression of input feature vectors.

A �ve layer AANN model for performing nonlinear compressionis shown in Fig. 4.2.

It has m nodes in the input layer, p nodes in the compression (third) layer, andm
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Fig. 4.2: Five layer AANN model used for nonlinear compression of pattern vectors.

nodes in the output layer. The second and fourth layers of thenetwork have more

units than the input layer. The compression layer has fewer units than the input and

the output layer. The activation functions of the units in the second and fourth layers

are nonlinear. The activation functions of the units in the third layer may be linear
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or nonlinear. Once the network has been trained, them-dimensional input vector is

transformed to ap-dimensional (p < m) vector at the compression layer. The output

values of the units in the compression layer give a reduced dimension representation of

the input vector. These reduced dimension vectors are used to detect shot boundaries.

4.3 VISUALIZATION OF EVIDENCE AT THE SHOT BOUNDARY

In our approach, the RGB color space is discretized into 125 (5 � 5 � 5) colors leading

to a 250-dimensional color coherence vector for each frame.The dimension of the fea-

ture vector is reduced using an AANN model whose structure is250L 375N pN 375N 250L,

where L denotes linear units andN denotes nonlinear units. The integer values de-

note the number of units in that particular layer. A video frame is now represented

by a point in the p-dimensional (p = 3) space and allows for better visualization. The

frames with similar color patterns will be mapped close to each other. Thus, in the

neighbourhood of an abrupt shot transition, frames on each side result in the formation

of two distinct clusters. Such a case is shown in Fig. 4.3(a),where each frame is rep-

resented by a 3-dimensional feature vector, obtained aftercompression using AANN

model. The distance between the clusters or the margin of separation depends on the

nature of frames in the neighbourhood of the abrupt shot boundary. On the other

hand, a gradual transition between two shots, when viewed ina 3-dimensional space,

consists of two dense clusters connected by a path, as shown in Fig. 4.3(b). Except for

this path from one to cluster to another, a gradual transition is similar to an abrupt

one. This reinforces the logic behind the choice of a margin of frames, in the one-pass

algorithm discussed in Section. 3.1.1.

4.4 SHOT BOUNDARY DETECTION USING COMPRESSED FEATURES

In this section, we examine the e�ectiveness of compressed feature vectors for detection

of shot boundaries. For this purpose, the compressed feature vectors are �rst used in
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Fig. 4.3: (a) Cluster patterns for abrupt transition in the low dimension space.
(b) Cluster patterns formed during gradual transition in the low dimension space.

the framework of the early fusion algorithm described in theprevious chapter. That

is, early fusion along with two modi�cations, namely, one-pass processing and bidi-

rectional processing, is performed using the 3-dimensional feature vectors. We briey

revisit these modi�cations in this section, and then address two issues, of validation

and categorization of shot boundaries.

Shot boundary detection involves testing a hypothesis, at every frame indexn of a

given video, whether a shot boundary exists or not. LetX = f x 1; x 2; : : : ; x n ; : : : ; x N v g

be a sequence of feature vectors, each of dimensionp representingNv frames in the

video. Testing of the hypotheses at the frame indexn involves computation of a dissimi-

larity value d[n] between two sequences ofN feature vectorsXL = f x n� 1; x n� 2; : : : ; x n� N g

and XR = f x n ; x n+1 ; : : : ; x n+ N � 1g to the left and right of n, respectively. If the dis-

similarity value d[n] is greater than a threshold� [n] (either �xed or adaptive), the

hypothesis that a shot boundary exists, is chosen.

An adaptive threshold is computed using the variance of a fewframes before the
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frame at which the hypotheses is tested. Letd[n] = D(� L ; � R), where D(� L ; � R)

denotes the Euclidean distance between the vectors� L and � R and where� L and � R

denote the means of feature vectors inXL and XR , respectively. If � L [n] =
p

jj � L jj

represents the amount of variability within a block ofN frames to the left ofn, then

the dynamic threshold is computed as� f [n] = � � � L [n], where � L is the covariance

matrix of the feature vectors in XL , and � is a scaling parameter that controls the

dynamic threshold.

The �rst set of shot boundaries is hypothesized using the dynamic threshold based

technique described above with a window size ofN = 1. In order to reduce the number

of misses, the video is also processed in the reverse (or backward) direction, which is

equivalent to comparing the dissimilarity value with� b[n], the amount of variability to

the right of n. The condition for hypothesizing a shot boundary thus becomes

df [n] > � f [n] j db[n] > � b[n] (4.4)

where df [n] and db[n] are the distance values computed in the forward and reverse

(or backward) directions, respectively. The use of `OR' (j) logic in the bidirectional

processing of the video increases the number of false hypotheses, which are reduced

by validating the hypothesized boundaries using the same condition as in Eq. 4.4, but

with a larger window size, sayN =10. This modi�ed condition, that uses the evidence

from either side of a shot boundary, reduces the miss rate, but at the same time

can increase the false alarms. The hypothesized shot boundaries need to be further

validated to reduce false detections. An algorithm is now proposed for the same.

4.4.1 Validation of shot boundaries

Let n be the frame index at which a shot boundary is hypothesized. The dissimilarity

values between each of theN frames f x n ; x n+1 ; � � � ; x n+ N � 1g to the right of n and

� L [n � M ], the mean ofN frames to the left of (n � M ), are computed. The hypothe-

sized shot boundary is validated if at leastN=2 of theN dissimilarity values are greater

than � f [n]. If the validation fails, then a similar process is repeated in the reverse direc-
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tion. Hence, the condition for validating a shot boundary atthe frame indexn becomes

N � 1X

k=0

h(df [n + k]) > N= 2 j
N � 1X

k=0

h(db[n � k]) > N= 2 (4.5)

where

h(df [n + k]) =

8
<

:

1; if df [n + k] > � f [n]

0; if df [n + k] � � f [n]
(4.6)

and

h(db[n � k]) =

8
<

:

1; if db[n � k] > � b[n]

0; if db[n � k] � � b[n]:
(4.7)

This majority logic, apart from validating the shot boundary, eliminates spurious

changes typically caused by bright ashes over a couple of frames.

4.4.2 Categorization of shot boundaries into cuts and gradu al transitions

The cuts are identi�ed from gradual transitions using the information that the variance

of frames on either side of a cut is small compared to that of a gradual transition. In

order to do this, the center of a transition is computed by picking the point of maximum

variance aroundn. Two ratios of standard deviations on either side of the detected

shot boundary are computed as

vL = � C [n]=� L [n];

and

vR = � C [n]=� R [n]; (4.8)

where� L [n], � R [n], and � C [n] are the standard deviations of theN frames to the left,

to the right, and around n, respectively. The shot boundary is categorized as a cut if

either of the ratios is greater than a predetermined threshold, i.e., if

vL > � j vR > � (4.9)
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In our experiments,N = 10 and � = 2 are used. In addition, every cut should validate

both the conditions in (4.4) and (4.5) for a margin ofM = 1 frame.

The entire process of hypothesizing a shot boundary is summarized in Table 4.1.

Table 4.1: Summary of the algorithm.

1. Compute them dimension color coherence vector for each frame of the

video sequence.

2. Compress them dimension CCVs top dimension vectors.

3. At each frame indexn, test the hypotheses in (3.1) using (4.4).

4. If H0 is tested positive, go to step 5 to further validate the shot boundary.

Else, incrementn by one and go to step 3.

5. Validate the hypothesized shot boundary as per (4.5).

6. If the shot boundary is successfully validated, proceed to step 7. Else,

increment n by one and go to step 3.

7. Identify if the shot boundary is a cut by testing the conditions in (4.4)

and (4.5) with a margin of M = 1, along with the condition in (4.9).

4.5 EXPERIMENTAL RESULTS

The performance of the proposed shot boundary detection algorithm is evaluated on

a database of video sequences given in Chapter 3, usingrecall (R), precision (P) and

F1 performance measures as described in previous chapter.

The performance of shot boundary detection using feature vectors of reduced

dimension is discussed in this section. Table 4.2 lists the performance, when 3-

dimensional feature vectors, obtained using AANN models, are used for shot boundary

detection. For comparison, the performance due to early fusion algorithm is listed in
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Table 4.2: Performance (in terms ofR, P and F1)
of shot boundary detection using feature vectors of
reduced dimension (p=3) obtained from AANN.

Video category R P F1

BBC 0.912 0.864 0.887

CNN 0.903 0.855 0.878

NDTV 0.894 0.841 0.866

Wild Life 0.915 0.867 0.890

Sports 0.854 0.785 0.870

Table 4.3. It is observed that the compression of feature vectors leads to a reduction in

performance, since dimension reduction invariably results in some loss of information.

However, the reduction in performance is not very signi�cant, indicating the degree of

sparsity of the input (uncompressed) feature vectors. Comparison of Table 4.2 with

Table 4.4 and Table 4.5 indicates that compression using AANN models results in

better performance of shot boundary detection, than using SVD or ICA. This can be

attributed to the ability of AANN models to learn nonlinear basis functions, compared

to the linear basis represented by SVD and ICA. Table 4.6 compares the e�ect of di-

mension reduction of feature vectors on the detection of abrupt (cuts) and gradual

transition. The slightly poorer performance in the case of gradual transitions is at-

tributed to the lack of evidence available in the reduced dimension feature vectors. In

contrast, the dissimilarity metric computed using uncompressed feature vectors show

greater evidence for detecting gradual transitions, due tocontributions of di�erent

components of the feature vector. For cuts, however, the dissimilarity metric com-

puted from only three dimension is enough for detection, primarily due to the extent

of change in each dimension.
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Table 4.3: Performance (in terms ofR, P and F1)
of shot boundary detection by early fusion, using un-
compressed feature vectors (250 dimension).

Video category R P F1

BBC 0.942 0.926 0.934

CNN 0.935 0.889 0.911

NDTV 0.912 0.846 0.877

Wild Life 0.908 0.882 0.894

Sports 0.892 0.934 0.912

Table 4.4: Performance (in terms ofR, P and F1)
of shot boundary detection using feature vectors of
reduced dimension (p=3) obtained from SVD.

Video category R P F1

BBC 0.888 0.813 0.846

CNN 0.892 0.812 0.849

NDTV 0.877 0.798 0.835

Wild Life 0.879 0.800 0.837

Sports 0.854 0.785 0.818
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Table 4.5: Performance (in terms ofR, P and F1)
of shot boundary detection using feature vectors of
reduced dimension (p=3) obtained from ICA.

Video category R P F1

BBC 0.810 0.715 0.759

CNN 0.794 0.729 0.757

NDTV 0.771 0.700 0.733

Wild Life 0.740 0.680 0.708

Sports 0.713 0.660 0.685

Table 4.6: Performance (in terms ofR, P andF1) of shot boundary
detection for cut and gradual transitions for the value ofp = 3 using
AANN models of compression.

Video Cuts Graduals

category R P F1 R P F1

BBC 0.942 0.886 0.913 0.882 0.843 0.862

CNN 0.934 0.878 0.905 0.872 0.832 0.851

NDTV 0.926 0.854 0.888 0.862 0.828 0.826

Wild life 0.935 0.878 0.906 0.895 0.856 0.874

Sports 0.918 0.862 0.887 0.875 0.832 0.852
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4.6 SUMMARY

In this chapter, the task of temporal segmentation of video sequence into shots was

performed using feature vectors of reduced dimension. The choice of color coherence

vector as feature is based on its ability to represent spatial distribution of color in-

formation. Feature vectors of reduced dimension obtained using AANN models were

observed to perform better shot boundary detection than those due to SVD and ICA,

primarily due to the ability of AANN models to represent nonlinear basis functions

from the given data. The reduction in dimension of feature vectors does not result in

signi�cant decrease in the performance of shot boundary detection, due to the spar-

sity of distribution of color coherence vectors. We have also proposed algorithms for

categorizing a shot boundary as an abrupt or a gradual transition, and for validating

the detected shot boundaries, which help in improving the overall performance of shot

boundary detection.
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CHAPTER 5

CLASSIFICATION OF SPORTS VIDEOS USING

EDGE-BASED FEATURES

In the previous chapters, we proposed methods for detectionof shot boundaries in video

sequences. Having detected the shot boundaries in a video, the relevant shots can be

grouped to form more meaningful units of video. Such units need to be categorized

on a basis that enables e�cient cataloging and retrieval with large video collections.

This requires e�ective methods for classi�cation of video into di�erent genres.

The objective of video classi�cation is to classify a given video clip into one of

the prede�ned video categories. In this chapter, we addressthe problem of sports

video classi�cation for �ve classes, namely, cricket, football, tennis, basketball and

volleyball. Sports videos represent an important application domain due to their

commercial appeal. Classi�cation of sports video data is a challenging problem, mainly

due to the similarity between di�erent sports in terms of entities such as playing

�eld, players and audience. Also, there exists signi�cant variation in the video of a

given category collected from di�erent television programs/channels. This intra-class

variability contributes to the di�culty of classi�cation o f sports videos.

Content-based video classi�cation is essentially a pattern classi�cation problem [62]

in which there are two basic issues, namely, feature extraction, and classi�cation based

on the selected features. Feature extraction is the processof extracting descriptive

parameters from video, which will be useful in discriminating between classes of video.

The classi�er operates in two phases: Training and testing phase. Training is the

process of familiarizing the system with the video characteristics of a given category,

and testing is the actual classi�cation task, where a test video clip is assigned a class
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Fig. 5.1: Block diagram of video classi�cation task.

label. A block schematic of video classi�cation task is shown in Fig. 5.1. If there is

more than one system for the task based on di�erent features (representations) and/or

classi�ers, one may combine the evidence from di�erent systems. Hence, an automatic

video classi�cation system needs to accomplish the following major tasks:

� Extracting appropriate features from the given video data.

� Generating a model for each class of video.

� Developing a decision logic for classifying a test video.

� Combining the evidence obtained from di�erent features or classi�er method-

ologies.

In this work, we study the e�ectiveness of edge-based features, namely, edge di-

rection histogram and edge intensity histogram, for sportsvideo classi�cation. We

demonstrate that these features provide discriminative information useful for the in-

tended task. Three classi�er methodologies, namely, autoassociative neural networks

(AANN), hidden Markov models (HMMs), and support vector machines (SVMs) are

used for modeling the sports categories. Evidences from thetwo edge based features

are combined using a linear weighting rule. The applicationof this framework is

demonstrated on �ve sport genre types, namely, cricket, football, tennis, basketball
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and volleyball. Also, evidences from multiple classi�ers are combined using a linear

weighted combination, for improving the classi�cation performance. Finally, the per-

formance of the classi�cation system is examined for test videos which do not belong

to any of the above �ve categories.

This chapter is organized as follows: In Section 5.1, the extraction of edge direction

histogram and edge intensity histogram for representing visual features inherent in a

video class is described. Section 5.2 gives a brief introduction to the classi�er method-

ologies used for video classi�cation. Section 5.3 describes the combination of evidence

from multiple classi�ers. Section 5.4 describes experiments on video classi�cation of

the �ve sports categories, and also discusses the performance of the system. Section

5.5 summarizes the study.

5.1 EXTRACTION OF EDGE-BASED FEATURES

Edges constitute an important feature to represent the content of images. Human

visual system is sensitive to edge-speci�c features for image perception. In the context

of sports video classi�cation, images that contain the playing �eld are signi�cant for

distinguishing among the classes of sports. This is because, each sport has its own

distinct playing �eld where most of the action takes place. Also, the interaction among

subjects (players, referees and audience) and objects (ball, goal, basket) is unique to

each sport. A few sample images of each sports category are shown in Fig. 5.2. The

corresponding edge images are shown in Fig. 5.3. Each playing �eld has several dis-

tinguishing features such as lines present on the playing �eld, and regions of di�erent

textures. The subjects are also prominent in the images and help in distinguishing

between di�erent sports. From Fig. 5.3, we can observe that edge features are im-

portant for representing the sports video content and carrysu�cient information for

human beings to distinguish among classes. These observations suggest that features

derived to represent the edge information can be of signi�cant help in automatically

di�erentiating among various categories of sports.
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(a) (b)

(c) (d)

(e)

Fig. 5.2: Sample images from �ve di�erent sports video categories: (a) Basketball, (b)
cricket, (c) football, (d) tennis and (e) volleyball.
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(a) (b)

(c) (d)

(e)

Fig. 5.3: Edge images corresponding to the �ve images shown in Fig. 5.2, for the sports
categories: (a) Basketball, (b) cricket, (c) football, (d)tennis and (e) volleyball.
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We have considered two features that can be derived to represent edge informa-

tion, namely, edge direction histogram and edge intensity histogram. Edge direction

histogram is one of the standard visual descriptors de�ned in MPEG-7 [63] for image

and video, and provides a good representation of nonhomogeneous textured images.

This descriptor captures the spatial distribution of edges. Our approach to compute

the edge direction histogram is a modi�ed version of the approach described in [63].

A given image is �rst segmented into four subimages. The edgeinformation is then

calculated for each subimage using Canny algorithm [64]. The range of the edge direc-

tions (0o � 180o) is quantized into 5 bins. Thus, an image partitioned into 4 subimages

results in a 20-dimensional edge direction histogram feature vector for each frame of

a video clip. Fig. 5.4 shows 20-dimensional edge direction histograms for �ve di�erent

categories. Each histogram is obtained by averaging the histograms obtained from in-

dividual frames of a clip. The clips were selected randomly from �ve di�erent classes.

The �gure shows that the pattern of edge direction histogramis di�erent for di�erent

classes and that the selected features carry discriminative information among di�erent

video classes.

We have also considered the distribution of edge intensities to evaluate the degree

of uniformity of edge pixels. This feature is derived from the magnitude information

of the edge pixels. The range of magnitudes (0� 255) is quantized into 16 bins, and

a 16-dimensional edge intensity histogram is derived from each frame of a video clip.

Fig. 5.5 shows 16-dimensional edge intensity histogram for�ve di�erent categories.

Each histogram is obtained by averaging the histograms obtained from individual

frames of a clip. The clips were selected randomly from �ve di�erent classes. From

Figs. 5.4 and 5.5, we observe that edge direction histogram carries more discriminative

information among the classes than edge intensity histogram.
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Fig. 5.4: Average edge direction histogram feature vectors of 20 dimension for sample
clips selected randomly from the �ve di�erent classes: (a) Basketball, (b) cricket, (c)
football, (d) tennis and (e) volleyball.
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Fig. 5.5: Average edge intensity histogram feature vectors of 16 dimension for sample
clips selected randomly from the �ve di�erent classes: (a) Basketball, (b) cricket, (c)
football, (d) tennis and (e) volleyball.
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5.2 CLASSIFIER METHODOLOGIES

Once the features are extracted, the next step is to model thebehaviour of features for

performing classi�cation. In this work, we have consideredthree classi�er methodolo-

gies for our study, namely, autoassociative neural networks (AANN), hidden Markov

models (HMMs), and support vector machines (SVMs). We have chosen autoasso-

ciative neural networks (AANN) to model the video content, due to their ability to

capture distribution of feature vectors [65] based on the examples presented to the net-

work. Given the temporal nature of video, and hidden Markov models (HMMs) [66]

being e�ective tools for modeling time-varying patterns, we have chosen HMM as one

of the classi�er models for our study. We have also chosen support vector machines

(SVMs) [67] for their inherent discriminative learning ability and good generalization

performance. In the following subsections, a brief introduction to the three classi�er

methodologies is presented. Detailed description of the three classi�er methodologies

is given in Appendices B, C, and D.

5.2.1 AANN models for estimating the density of feature vect ors

Autoassociative neural network (AANN) models are feedforward neural networks, per-

forming an identity mapping of the input space [57] [52]. From a di�erent perspective,

AANN models can be used to capture the distribution of input data [65]. The distri-

bution capturing ability of the AANN models is discussed in detail in Appendix B.

In this study, separate AANN models are used to capture the distribution of feature

vectors of each sports video category. A �ve layer AANN modelis shown in Fig. 5.6.

The structure of the AANN model used in the present studies is20L 40N 6N 40N 20L,

whereL denotes linear units andN denotes nonlinear units. This structure is arrived

at experimentally to maximize the classi�cation performance. The activation function

of the nonlinear unit is a hyperbolic tangent function. The network is trained using

error backpropagation learning algorithm for 500 epochs [57]. One epoch denotes the

presentation of all the training examples (of a given class)to the neural network ex-
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Fig. 5.6: Structure of �ve-layer AANN model used for video classi�cation.

actly once. The number of epochs is chosen using cross-validation for veri�cation, to

obtain the best performance for experimental data.

The block diagram of the proposed sports video classi�cation system based on

edge direction histogram is shown in Fig. 5.7. For each videocategory, an AANN

model based on edge direction histogram is developed. The category whose model

provides the strongest evidence for a given test clip is hypothesized as the category

of the test clip. A similar classi�cation system is developed based on edge intensity

histogram. Thus, the edge direction histogram and edge intensity histogram feature

vectors extracted from the training data of a particular sports category are used to

train two AANN models for that category, one model corresponding to each feature

type. The AANN models are trained using backpropagation learning algorithm in

the pattern mode [57] [52]. The learning algorithm adjusts weights of the network

to minimize the mean squared error obtained for each featurevector. Once the two

AANN models are trained, they are used as a model for that particular sports category.

A test video clip is processed to extract edge direction histogram and edge intensity
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Fig. 5.7: Block diagram of the proposed video classi�cation system using
edge direction histogram features. Categories 1 to 5 are cricket, football,
tennis, basketball and volleyball, respectively.

histogram features. These features are presented as input to AANN models of all

the categories. The output of each model is compared with itsinput to calculate

the squared error for each frame. The errorEk for kth frame is transformed into a

con�dence value by using the relationCk = exp( � Ek ). A given test clip is presented to

an AANN model to obtain a con�dence valueC = 1
N

P N
k=1 Ck for that model, whereN

is the total number of frames in the test clip. For each category, two con�dence values

are obtained, one from each AANN model. These two scores are combined using linear

weighted average rule to obtain a combined scorêC given by

Ĉ = w � Cd + (1 � w) � Ci ; (5.1)

whereCd and Ci denote the con�dence scores obtained from AANN models whichare

trained on edge direction histogram and edge intensity histogram respectively. The

term w (0 � w � 1) denotes the weight assigned to the score due to edge direction

histogram. The value ofw is chosen to maximize the classi�cation performance for the

given data set. Thus, for each test video clip, �ve scores areobtained. The category
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whose model gives the highest con�dence value is hypothesized as the sports category

of the test clip. Experimental results are discussed in Section 5.4.

5.2.2 Hidden Markov models

The hidden Markov model (HMM) consists of �nite number (N ) of states. At each

time step the system is at a given state and at the next time step the state is updated

according to a probability distribution that depends only on the previous state. Addi-

tionally, at a given state a symbol is generated according toa probability distribution

that depends on that state. The most likely parameters for the HMM that generate a

given training set are estimated [68]. Given a model� and an observation sequenceO,

the probability P(O=� ) that this observation sequence is generated by the model� is

calculated as a sum over all possible state sequences. E�cient computation of P(O=� )

is described in Appendix C. The hidden Markov model toolkit (HTK) [69] was used

for developing class-speci�c models. The choice of number of states (N = 7) and

number of mixtures (M = 1) per state is made empirically corresponding to the best

classi�cation performance. During testing phase, given the features of a test video clip,

the HMM outputs the log probability, representing the a posteriori probability that

the given clip belongs to that particular class. The test methodology is similar to the

block schematic shown in Fig. 5.7. Experimental results arediscussed in Section 5.4.

5.2.3 Support vector machines for video classi�cation

Support vector machines (SVMs) provide a new approach to pattern classi�cation

problems with underlying basis in statistical learning theory, in particular the principle

of structural risk minimization [70]. The SVM models learn to separate the boundary

regions between patterns belonging to two classes by mapping the input patterns

onto a high dimensional space, and seeking a separating hyperplane in this space. The

separating hyperplane is chosen in such a way as to maximize its distance (margin) from

the closest training examples. More details about SVMs can be found in Appendix
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D. We consider SVM models for classi�cation due to their ability to generalize from

limited amount of training data, and also due to their inherent discriminative learning

[52]. The SVMTorch-II tool [71] was used for developing class-speci�c SVM models.

When a given feature vector corresponding to a test clip is presented to an SVM

model, the result is a measure of the distance of the feature vector from the hyperplane

constructed as a decision boundary between a given class andthe remaining classes.

The performance of pattern classi�cation depends on the type of kernel function

chosen. Possible choices of kernel function include polynomial, Gaussian and sigmoidal

functions. In this work, we have used Gaussian kernel, sinceit was empirically observed

to perform better than the other two. This class of SVMs involves two parameters,

namely, the kernel width � and the penalty parameterP. In our experiments, the

value of the parameter� is taken as the dynamic range of the features. The value

of the parameter P is chosen corresponding to the best classi�cation performance.

SVMs are originally designed for two-class classi�cation problems. In our work, multi-

class (M = 5) classi�cation task is achieved using one-against-restapproach, where an

SVM is constructed for each class by discriminating that class against the remaining

(M � 1) classes. The test methodology is similar to the block schematic shown in

Fig. 5.7. Experimental results are discussed in Section 5.4.

5.3 COMBINING EVIDENCE DUE TO MULTIPLE CLASSIFIERS

It has been shown in the literature [72{75] that combinationof evidence obtained

from several complementary classi�ers can improve the performance of classi�cation.

There are a few reasons justifying the necessity of combining evidence from multiple

classi�ers/features:

1. For a pattern recognition application, there exist a number of classi�cation

algorithms developed from di�erent theories and methodologies. For a speci�c

problem, each of these classi�ers could reach a certain degree of success, but

none of them may be good enough to be employed in practice.
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2. Often there are numerous types of features which could be used to represent

and recognize patterns. These features are also represented in very diversi�ed

forms, and it is hard to lump them together to design one single classi�er to

make the decision.

3. Di�erent features may represent complementary sources of information about a

given class. Hence, combination of evidence due to di�erentfeatures may help

in improving classi�cation.

There are numerous types of features that can be extracted from the same raw data.

Based on each of these features, a classi�er or di�erent classi�ers can be trained for

the same classi�cation task. As a result, we need schemes to combine the results from

these classi�ers to produce an improved result for the classi�cation task. The output

information from various classi�cation algorithms can be categorized into three levels:

1. Abstract level: Classi�er outputs a unique label.

2. Rank level: Classi�er ranks all labels in a queue with the label at the top

being the �rst choice.

3. Measurement level: Classi�er attributes to each class a measurement value

that reects the degree of con�dence that a speci�c input belongs to a given

class.

Among the three levels, the measurement level contains the highest amount of infor-

mation, while the abstract level contains the lowest. Hence, we have considered the

measurement level for our work. Firstly, the evidence due totwo di�erent features,

namely, edge direction histogram and edge intensity histogram are combined using the

rule of linear weighting, as described in Eq. 5.1. At the nextlevel, evidence obtained

from three di�erent classi�ers are combined using linear weighting. The outcome of

such a combination of evidence is discussed in the next section.
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5.4 RESULTS AND DISCUSSION

5.4.1 Data set

Experiments were carried out on about 512 hours of video data (1000 video clips,

200 clips per sports category, and each clip of 20 seconds duration) comprising of

cricket, football, tennis, basketball and volleyball video categories. The video clips

were captured at the rate of 25 frames per second, at 320� 240 pixel resolution, and

stored in AVI format. The data were collected from di�erent TV channels in various

sessions to ensure variety. For each sports video category,100 clips were used for

training, and the remaining 100 clips were used for testing.

5.4.2 Performance of di�erent classi�ers

The performance of AANN based classi�cation system using edge direction histogram

(EDH), edge intensity histogram (EIH), and combined evidence from EDH and EIH

is given in Table 5.1. The performances of classi�cation systems based on HMMs

and SVMs are given in Tables 5.2 and 5.3, respectively. From the results, it can be

observed that the classi�cation performance is poorer for video clips of cricket and

football categories, compared to those of tennis, basketball and volleyball categories.

This is because, in the latter three categories, the playing�elds have well de�ned lines

and they appear in a majority of frames of a video clip. Moreover, a few speci�c camera

views dominate the broadcast. For example, such a view may cover the full court in

tennis or volleyball. Thus, a large area of an image frame comprises of the playing �eld.

On the other hand, in cricket and football categories the camera view tends to change

from one position to another depending on the action. Thus, continuous motion along

with lack of well manifested edge-speci�c information results in poorer classi�cation.

It is also evident that edge direction is a stronger feature for discriminating between

the classes, compared to edge intensity. One can visually perceive the content of an

image from the binary edge image, which preserves only the edge directions but not
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Table 5.1: Performance of AANN based sports video classi�cation system using EDH,
EIH, and combined evidence (correct classi�cation in %). Entries in the last column denote
the average performance of classi�cation.

Cricket Football Tennis Basketball Volleyball Avg. perf.

EDH 81 84 95 94 95 89.8

EIH 54 57 93 93 92 77.8

Combined 84 88 100 100 100 94.4

Table 5.2: Performance of HMM based sports video classi�cation systemusing EDH, EIH,
and combined evidence (correct classi�cation in %). Entries in the last column denote the
average performance of classi�cation.

Cricket Football Tennis Basketball Volleyball Avg. perf.

EDH 77 86 92 95 94 88.8

EIH 45 58 84 93 92 74.4

Combined 80 87 93 98 96 90.8

the magnitudes. The performance of SVM based classi�er is particularly poor for EIH

features compared to AANN and HMM based classi�ers for the same feature. This is

due to lack of discriminative information in EIH and the fact that SVMs are chosen

for their discriminative ability. Since edge direction andedge intensity features can be

viewed as complementary sources of information, the evidence due to these features can

be combined. Tables 5.1, 5.2, and 5.3 also show the performance of classi�cation that

is obtained due to weighted combination of evidence from edge direction histogram

and edge intensity histogram for di�erent classi�ers. We can observe that there is an

improvement in the performance of classi�cation due to the combination of evidence,

for all the classi�ers.
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Table 5.3: Performance of SVM based classi�cation system using EDH, EIH, and com-
bined evidence (correct classi�cation in %). Entries in thelast column denote the average
performance of classi�cation.

Cricket Football Tennis Basketball Volleyball Avg. perf.

EDH 81 84 92 93 95 89.0

EIH 68 86 32 100 100 77.2

Combined 83 86 100 100 100 93.8

5.4.3 E�ect of duration of test video sequence

The duration of test data (test video clip) has signi�cant bearing on the classi�cation

performance. Several existing techniques for video classi�cation typically use test clips

whose durations vary from 60 seconds to 180 seconds [33,34,37,41,42,76]. The classi-

�cation performance in these cases is observed to improve asthe duration of the test

clip increases. In [34], average edge ratio used in conjunction with k-nearest neighbour

algorithm requires 120 seconds of test data to yield a classi�cation performance of

92.4% on a �ve-class problem. It is evident that the AANN based classi�er has better

generalizing ability than thek-nearest neighbour classi�er, in this context. Similarly,a

time-constrained clustering algorithm [41] using compressed colour features requires a

minimum of 50 seconds of test data to yield a classi�cation performance comparable to

the proposed method. In contrast, the proposed method uses test clips of 20 seconds

duration in all the experiments on video classi�cation. Theresulting performance,

listed in Tables 5.1, 5.2 and 5.3 is comparable to that obtained due to the above meth-

ods which use a larger duration of test clip. Apart from the duration of test data,

the quality of test data also inuences classi�cation performance. Some methods [41]

retain only the class-speci�c frames in the test data by editing out images related to

crowd/audience or o�-�eld action. Such editing results in an improved performance.

In our experiments, no such editing of the test data is performed.
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5.4.4 Performance due to combining evidence from multiple c lassi�ers

The normalized measurement values obtained from the three classi�ers are combined

using linear weighting. Table 5.5 shows classi�cation performance obtained by com-

bining evidence from di�erent combinations of the three classi�ers. It is observed that

the combination of evidence from any two classi�ers resultsin a performance better

than those of the individual classi�ers. The confusion matrix for the �nal classi�er

(combined AANN, HMM, and SVM) is given in Table 5.4. The improvement in clas-

si�cation due to combination of evidence can be attributed to the di�erent classi�er

methodologies, which emphasize di�erent types of information present in the features,

such as their spatial distribution and temporal sequence.

Table 5.4: Confusion matrix of video classi�cation results (in %) corresponding
to the score obtained by combining evidence due to all the three classi�ers (in %)
(AANN, HMM, and SVM).

Cricket Football Tennis Basketball Volleyball

Cricket 96 00 04 00 00

Football 02 94 04 00 00

Tennis 00 00 100 00 00

Basketball 00 00 00 100 00

Volleyball 00 00 00 00 100

77



Table 5.5: Classi�cation performance obtained by combining evidencefrom di�erent classi�ers (correct
classi�cation in %). Entries in the last column denote the average performance of classi�cation.

Cricket Football Tennis Basketball Volleyball Avg. perf.

AANN 84 88 100 100 100 94.0

SVM 83 86 100 100 100 93.8

HMM 80 87 93 98 96 90.8

AANN+SVM 96 94 100 100 100 98.0

AANN+HMM 92 92 100 100 100 96.8

HMM+SVM 90 92 100 100 100 96.4

AANN+HMM+SVM 96 94 100 100 100 98.0
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5.4.5 Veri�cation of test video sequences using the classi� ers

It is necessary to examine the response of a classi�er for test inputs of a di�erent class.

More speci�cally, if a test video clip belongs to any class other than the above �ve

classes, the system is expected not to assign it the label of any of the �ve classes.

Instead, the system should assign a separate label to all such test cases. This, how-

ever, depends on two factors: (a) the nature of evidence/measurement output by a

classi�er and (b) the decision logic based on which a test video clip is assigned a class

label. In SVM based classi�ers, one-against-rest approachis used for decomposition of

multi-class pattern classi�cation problem into several two-class pattern classi�cation

problems. Hence, one should ideally get all negative con�dence scores as output of

the SVM model for a test clip which does not belong to any of theprede�ned cate-

gories. Thus, a natural threshold of zero helps in decision making in the case of SVM,

although the decision could also be in error.

In the case of AANN models and HMMs, the training process attempts to capture

only the within-class properties, and no speci�c attempt ismade to distinguish a given

class from others. Thus, a nonclass test input to these models still results in positive

measurements, although small. Fig. 5.8 shows the histogramof in-class con�dence

scores along with that of nonclass con�dence scores, for AANN models, SVMs and

HMMs. The scores are normalized between 0 and 1. The in-classscores are obtained

by presenting test video clips of a given category to the models of that category.

The nonclass scores are obtained by presenting test video clips of a given category

to the models of other categories. Hundred (100) test video clips of each class were

used to obtain the in-class and nonclass con�dence scores. The extent of separation

of the histograms indicates the ability of the model to discriminate between in-class

and nonclass examples. The area of overlap of the two histograms is a measure of

minimum classi�cation error. From Fig. 5.8, we observe thatthis area of overlap is

least for SVM based classi�er, followed by AANN based classi�er. If the con�dence

score corresponding to the intersection of the two histograms is chosen as threshold
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Fig. 5.8: Histograms of in-class con�dence scores along with nonclass
con�dence scores for (a) AANN models (b) HMMs and (c) SVM models.

80



for decision, then such a choice results in minimum classi�cation error on the training

data. The same threshold is used for decision in the case of test data. Tables 5.6, 5.7,

and 5.8 indicate the outcome of presenting test video clips of cartoon, commercial and

news categories, to the models based on AANN, SVM, and HMM, respectively, trained

on cricket, football, tennis, basketball, and volleyball.The entries in the tables denote

the percentage of misclassi�cation. For instance, if a testvideo clip of cartoon category,

when presented to the model of cricket category, is labeled as cricket, then the test

video clip is said to be misclassi�ed. For veri�cation, 100 test video clips of each of

cartoon, commercial and news categories were used. The average misclassi�cation is

less than 15% for classi�ers based on AANN and SVM. The classi�er based on HMM

does not seem to be very useful for discrimination. Misclassi�cation error may be

reduced further by extracting features speci�c to a given class.

Table 5.6: Performance of misclassi�cation (in %) obtained from AANN models, for test
clips which do not belong to any of the �ve sports categories.Entries in the last column
denote the average performance of classi�cation.

Cricket Football Tennis Basketball Volleyball Avg. perf.

Cartoon 08 06 02 01 01 3.60

Commercial 19 12 08 03 02 8.80

News 29 18 23 05 04 15.80
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Table 5.7: Performance of misclassi�cation (in %) obtained from SVM models, for test
clips which do not belong to any of the �ve sports categories.Entries in the last column
denote the average performance of classi�cation.

Cricket Football Tennis Basketball Volleyball Avg. perf.

Cartoon 39 16 02 01 04 12.00

Commercial 34 03 02 01 01 8.40

News 55 12 01 02 01 14.00

Table 5.8: Performance of misclassi�cation (in %) obtained from HMM models, for test
clips which do not belong to any of the �ve sports categories.Entries in the last column
denote the average performance of classi�cation.

Cricket Football Tennis Basketball Volleyball Avg. perf.

Cartoon 47 16 27 01 25 22.20

Commercial 59 02 28 02 33 24.80

News 11 08 01 02 01 4.40
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5.5 SUMMARY

We have presented an approach to sports video classi�cationbased on edge-speci�c

features, namely, edge direction histogram and edge intensity histogram. We have also

studied di�erent classi�er methodologies, namely, AANN, HMM and SVM. A video

database of TV broadcast programs containing �ve sports video categories, namely,

cricket, football, tennis, basketball and volleyball was used for training and testing

the models. Experimental results indicate that the edge-based features can provide

useful information for discriminating among the classes considered, and that edge

direction histogram is a superior feature compared to edge intensity histogram. It was

shown that combining evidence from complementary edge features and from di�erent

classi�ers results in an improvement in the performance of classi�cation. It was also

observed that the classi�cation system is able to decide, whether a given test video

clip belongs to one of the �ve prede�ned video categories or not.
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CHAPTER 6

EVENT-BASED CLASSIFICATION OF SPORTS VIDEOS

USING HIDDEN MARKOV MODEL FRAMEWORK

In the previous chapter, we studied the use of edge-based features for classi�cation of

sports videos using di�erent classi�er methodologies. While the AANN based classi�er

attempts to model the probability distribution of edge-based features, the HMM based

classi�er attempts to model the information inherent in thetemporal sequence. The

latter, however, does not aim to model actions speci�c to a given sport. Each sport is

uniquely characterized by certain events or actions, whichare inherent in the sequence

of frames. The challenge is to automatically detect these actions from the sequence

of frames, so that the detected actions can be used to distinguish between sports

categories. In this chapter, we propose a method based on hidden Markov model

(HMM) to detect the actions in sports videos and thereby use them for classi�cation.

We address the problem of classi�cation of sports videos into di�erent categories.

Each sports video category can be identi�ed using actions inthat particular sport. For

instance, the act of a bowler delivering the ball to a batsmanis unique to the game

of cricket. Similarly, a player serving the ball into the opponent's court is speci�c

to the game of lawn tennis. These actions help a human viewer to readily identify

a given sport. What is important here is the sequence of changes that are integral

to an action and which qualify the action. For instance, whena bowler delivers the

ball, his bowling run up, bowling action and speed of the delivery are not so much

important as the act of delivering the ball. It is the act of delivering the ball that is

signi�cant, and is common across di�erent bowlers. Such acts occur within a limited

time duration. They help in uniquely characterizing a sportand can be useful for
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classi�cation, provided they can be detected automatically from the video data. In

this context, an event can be de�ned as any signi�cant changeduring the course of

the game. An activity may be regarded as a sequence of certainsemantic events.

Automatic detection of events from raw data is a challengingtask, since the variations

in the raw data make it di�cult interpret a change as an event. At the level of feature

too, these changes cannot be observed by comparing low-level features across adjacent

frames, due to variability and noise. Moreover, the changesmay span over a sequence

of image frames. In this context, an event can be viewed as a feature at a higher level,

while an activity (sequence of events) can be viewed as a signature of a given class.

This necessitates the need to model the information presentin a sequence of frames.

The problem of automatic detection of events in sports videos has been addressed

in literature, by modeling events that are de�ned a priori for a given sport (or a set of

sports) [44, 45]. The main goal in such approaches is to classify the video of a given

sport into di�erent semantic events. In such approaches [44, 45], video sequences are

presegmented into clips where each clip contains only one event. Another class of

approaches performs automatic segmentation of the given video into shots. However,

the detected events themselves are not used to distinguish between di�erent categories

of sports. In this chapter, the objective is to automatically detect events from the video

sequences in a generic manner without a priori knowledge of the events and without

prede�ning the events. Moreover, the hypothesized events are used to distinguish

between classes, since the nature of events is likely to di�er among the classes. We

propose a probabilistic approach to detect the events, using the framework of hidden

Markov model (HMM). Since the variations in the events are reected only indirectly

through the feature vectors derived from the data, HMM is a better choice to capture

the hidden sequence from the observed sequence of feature vectors.

Hidden Markov models have been used in the literature for identifying activities

from observation sequences [77]. Given an HMM denoted by� and an observation

sequenceO, the probability P(O=� ) that this observation sequence is generated by

the model, is calculated as either thesumor maximumover all possible state sequences
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to detect the activity [78]. The optimal state sequence is not driven by the events that

occur during the activity, but by the likelihood of the observed data. No attempt has

been made to examine the sequence of states to characterize any (hidden) activity

in the sequence of events that may be present in the observed data. This study

attempts to derive/interpret the sequence of events that may be present in a subset

of (hidden) state sequences, and not from the raw data itselfbecause the raw data

may vary too much to interpret any change as an event [79]. In the case of sports

video data, activities are characterized by certain eventsof interest that are embedded

in the motion information, and occur within a limited time duration. These event

probabilities obtained using the HMM framework are used to characterize the activity

in a particular game.

The remainder of this chapter is organized as follows: In Section 6.1, we describe a

method for detection of events in the framework of hidden Markov models. Section 6.2

describes the representation of motion based features for detection of events. Once the

events are hypothesized, a measure of similarity is required for comparison of events

obtained from reference and test video data. In Section 6.3,a method is proposed

for the comparison of events. Section 6.4 discusses experiments on video classi�cation

using �ve sports categories, and the performance of the system. Section 6.5 summarizes

the study.

6.1 DETECTION OF EVENTS USING HMM

Hidden Markov models are powerful tools for characterizingthe temporal behavior of

time sequences, and have been used in various ways for content-based video process-

ing. The HMM is a Markov model in which the state is a probabilistic function of

observation symbol. Typically, the number of statesN is far less than the numberT of

observation symbols. The HMM can be described by the parameter set � = ( A; B; �)

where

� � = f � 1; � 2; : : : ; � N g denotes the initial state probability.
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� A = f aij g denotes the state transition matrix.

� B = f bj (k)g denotes the distribution of feature vectors in each state.

Given a large number of examples of an activity, the parameter set � = ( A; B; �) is

estimated using Baum-Welch algorithm [66]. More details about HMMs are included

in Appendix B. Once the parameter set� is estimated, the probability of a test obser-

vation sequenceO = ( o1o2o3 : : : oT ) being generated by the model� can be computed

in two ways:

� Sum over all the possible state sequences

P(O=� ) =
P

f q1 ;q2 ;:::;qT g P(q1q2 : : : qT ; o1o2 : : : oT =� ).

� Maximum of all the possible state sequences

P(O=� ) = max f q1 ;q2 ;:::;qT gP(q1q2 : : : qT ; o1o2 : : : oT =� ).

The key idea in this traditional HMM formulation is that the sum or the maximum

over all possible state sequences is considered in evaluating the probabilities. But the

optimal state sequence obtained using these methods is not driven by the events that

occur during the activity, rather by the likelihood of the observed data. In this kind of

formulation, there is no attempt to examine the sequence of states to characterize any

hidden activity in the form of sequence of events that may be present in the observed

data.

We propose a method to examine a subset of all the possible state sequences and

explore the possibility of interpreting them as sequence ofevents. The hypothesis is

that, though the state sequences themselves may look di�erent across the examples of

the same activity, certain (hidden) state transitions may be preserved in the subset of

state sequences, and we call such transitions as events.
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Exploring events in sequence of states

Let a given sports video clip be represented by an observation symbol sequence

O = ( o1o2o3 : : : oT ). Suppose that the underlying activity responsible for theproduc-

tion of the observation symbol sequence can be described byK events occurring at

times � 1; � 2; � 3; : : : ; � k . So, to represent this activity, we need to detect the numberK of

events, the nature of events and the time instants at which they occur. As these events

are localized in time, it is reasonable to expect that an event at time t is a�ected by

the observations in its immediate neighbourhood. Hence, wede�ne a variable � p
t (i; j ),

given by [79]

� p
t (i; j ) = P(qt � p = i; qt � p+1 = i; : : : ; qt = i; qt+1 = j; qt+2 = j; : : : ; qt+ p = j=O; � );

(6.1)

where 2p + 1 frames aroundt are considered. The superscriptp refers to support of

p frames used on either side of the time instantt in order to detect an event. The

� p
t (i; j ) can be written as

� p
t (i; j ) =

P(qt � p = i; qt � p+1 = i; : : : ; qt = i; qt+1 = j; qt+2 = j; : : : ; qt+ p = j; O=� )
P(O=� )

=
� t � p(i )ap

ii bi (ot � p+1 ) : : : bi (ot )aij bj (ot+1 ) : : : bj (ot+ p)ap
jj � t+ p(j )

P(O=� )
(6.2)

where � and � are the forward and backward variables [78]. We de�ne one more

variable ep
t , similar to the one that is used in Viterbi maximization, as

ep
t (k; l) = max

i;j
� p

t (i; j ) i 6= j (6.3)

where

(k; l) = arg max
i;j

� p
t (i; j ) i 6= j: (6.4)

Hereep
t (k; l) represents the probability with which there can be a transition from stable

state k to stable statel, with a support of p frames for stable states, at the time instant

t. At every instant of time, we hypothesize an event, and evaluate the event probability

ep
t (k; l). Large values ofep

t indicate the presence of an event, and the corresponding
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(k; l) pair indicate the state transition responsible for the event. The nature of the

event is speci�ed by state pair (k; l), and the intensity of the event is speci�ed by the

value of ep
t .

For every symbolot in the given observation symbol sequenceO = f o1; o2; : : : ; oT g,

an event probability valueep
t and a state transition (k; l) are associated. The value of

p determines the support given to the stable states on either side of the transition. A

small value ofp results in too many spurious events, whereas a large value ofp might

result in missing an event of interest totally. Hence, the value of p is determined by

using the domain knowledge and some preliminary experimental studies. The event

probability sequenceep
t and the corresponding state transitions (k; l) form the signature

for the activity in a particular sports category.

This idea of detection of events from the sequence of observation vectors has been

examined for recognition of utterances of isolated digits [80]. It was observed in [80]

that certain state transitions were preserved across di�erent speakers for a given sound

unit. In the present context, we observe whether a given state transition is common to

di�erent video clips of a particular sports category. We also observe whether di�erent

sets of state transitions are prominent for di�erent sports.

6.2 FEATURES FOR DETECTION OF EVENTS

Motion is an important cue for understanding video and widely used in semantic video

content analysis. Since features based on motion carry important information about

the temporal sequence corresponding to a given sports category, we use motion-based

features for event detection. The approach adopted here forextraction of motion in-

formation from the video is based on the work by Matthew et al.[81]. From the video

sequence, we derive the binary maps as shown in Fig. 6.1. These binary maps are

representative of moving and non-moving areas of the video sequence, where moving

areas are highlighted in white. The binary maps are extracted by pixel-wise di�erenc-

ing of consecutive frames. We divide each frame into four sub-images of equal size in
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(a)

(b)

(c)

(d)

(e)

Fig. 6.1: Examples of binary maps for di�erent sports categories. Each row shows two
consecutive frames and the corresponding binary map for �vedi�erent sports, namely,
(a) basketball (b) cricket (c) football (d) tennis and (e) volleyball.
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order to capture the location speci�c information. The motion feature is computed as

follows:

M (t) =
1

w � h

wX

x=1

hX

y=1

Pt (x; y); 0 < t � N; (6.5)

where

Pt (x; y) =

8
<

:

1; if jI t (x; y) � I t � 1(x; y)j > �

0; otherwise:
(6.6)

In the above equation,N is the total number of frames in the video clip,I t (x; y)

and I t � 1(x; y) are the pixel values at location (x; y) in tth and (t � 1)th frames, respec-

tively. Here � is the threshold, andw and h are width and height of the subimage,

respectively. A 4-dimensional feature vector is derived from each pair of consecutive

frames. Thus, the sequence of 4-dimensional feature vectors derived from a video

clip of a particular sports category forms one observation symbol sequence for that

category.

6.3 MATCHING OF EVENTS

We now describe a method for matching of events between a testvideo sequence

and a reference video sequence. The block diagram of the proposed sports video

classi�cation system using HMM framework is shown in Fig. 6.2. GivenL1 observation

symbols of a video category, a �ve state ergodic HMM model with one Gaussian per

state is trained with motion features extracted from the video frames. The events

(event probabilities and corresponding state transition)corresponding to the reference

examples are obtained. These reference event sequences areused to create a dictionary

of events for the given sports category. The distribution ofthe event probability

values corresponding to a particular state transition (k; l) in the reference events is
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Fig. 6.2: Block diagram of the proposed video classi�cation system using HMM
framework.

approximated by a Gaussian densityN (� kl ; � kl ), where � kl and � kl denote mean and

variance of the density function, respectively, given by

� kl =
1

L1

L 1X

t=1

ep
t (k; l) (6.7)

and

� kl =

vu
u
t 1

L1

L 1X

t=1

(ep
t (k; l) � � kl )2: (6.8)

So, every state transition is assigned a mean and a variance which represents the

probabilities with which the event ep
t (k; l) occurs in that category. For a test video clip

not presented during training, the events are obtained using a reference HMM. Let us

denote byêp
t (k; l), the event probability corresponding to the state transition (k; l) at

time t, when a test sequence of observation symbols is presented toa reference model.

Let L2 denote the number of observation symbols in the test sequence. A similarity

scores between the test video clip and the reference model is given by

s =
1

L2

L 2X

t=1

1
p

2�� kl
exp

�
�

(êp
t (k; l) � � kl )2

2� 2
kl

�
: (6.9)

There exists a possibility that two di�erent categories mayhave similar distribu-

tions of event probabilities. In such a case, it is necessaryto examine the sequence of

events, which may help in discriminating between the two categories.
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6.4 EXPERIMENTAL RESULTS

Experiments were carried out on about 512 hours of video data (1000 video clips, 200

clips per sports category, and each clip of 20 seconds duration) comprising of cricket,

football, tennis, basketball, and volleyball categories.The video clips were captured

at a rate of 25 frames per second, at 320� 240 pixel resolution, and stored in AVI

format. The data were collected from di�erent TV channels invarious sessions to

ensure variety. For each sports video category, 100 clips were used for training and the

remaining 100 clips were used for testing.

The choice of the number of states (N ) of HMM is critical. It is di�cult to arrive at

the number of states from the physical process, since the process is not explicit. Hence,

N needs to be determined experimentally, by observing the classi�cation performance.

The classi�cation performance was observed by varyingN between 3 and 10. The

valuesN = 7 and N = 9 were chosen based on the performance of classi�cation. Also,

the choice of the value ofp is critical since it determines the support given to the stable

states on either side of the transition. A small value ofp results in too many spurious

events, whereas a large value ofp might miss an event of interest. Hence, the value of

p is determined by using some preliminary experimental studies.

An ergodic HMM model is built for each class using 4-dimensional motion feature

vectors. The performance of the event-based HMM classi�er is given in Table 6.1

for the case with number of statesN = 7 and number of mixtures M = 1. In

Table 6.1, the entries in parenthesis denote the classi�cation performance forN = 7

and M = 2. The classi�cation performance forN = 9 and M = 1; 2 is given in

Table 6.2. It is observed that the average performance forN = 7 is better for all

sports except football. This can be attributed to the relatively low motion of the four

sports categories basketball, cricket, tennis, and volleyball compared to football, where

dynamic variations are better modeled using more number of states (N = 9). This

greater variation also necessitates the choice of two mixtures per state (M = 2) for

improved classi�cation in the case of football category, asshown in Table 6.2.
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Table 6.1: Performance of correct video classi�cation forN = 7, and M = 1 (in
%). The entries in parenthesis denote the performance forN = 7 and M = 2.
The parameterp denotes the number of frames provided as support on either side
of the time instantt. Entries in the last column denote the average performance of
classi�cation.

Basketball Cricket Football Tennis Volleyball Avg. perf.

p=5 92 (62) 68 (56) 76 (58) 78 (80) 96 (96) 82.0 (70.4)

p=7 90 (66) 58 (52) 80 (62) 78 (84) 98 (96) 80.8 (72.0)

p=10 82 (66) 56 (32) 88 (72) 78 (80) 98 (80) 80.4 (66.0)

p=13 72 (46) 56 (20) 90 (62) 80 (88) 98 (58) 79.2 (54.8)

p=15 60 (34) 48 (20) 92 (60) 74 (90) 98 (62) 74.4 (53.2)

p=17 48 (20) 42 (18) 92 (56) 74 (92) 98 (70) 70.8 (51.2)

The confusion matrix for the best average classi�cation performance (N = 7,

M = 1, and p = 5) is given in Table 6.3. The relatively poorer performancefor cricket

and football categories can be attributed to the inability of the models to detect the

events. Large playing �elds in cricket and football categories result in signi�cant

camera motion within a given time, compared to other categories. Hence, the number

of examples of a given event is lesser in the training data, leading to poor representation

of events.

Using the above method, we could detect signi�cant changes in each sports cat-

egory using motion information. For example, some of the events detected in cricket

category are bowler releasing the ball, batsman hitting theball, �elder picking up the

ball, and �elder throwing the ball. Two such cases events, ofbowler releasing the

ball and �elder picking the ball, are shown in Fig. 6.3. Similarly, some of the events

detected in other sports categories are shown in Figs. 6.4, 6.5, 6.6, and 6.7.
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Table 6.2: Performance of correct video classi�cation forN = 9, and M = 1 (in
%). The entries in parenthesis denote the performance forN = 9 and M = 2.
The parameterp denotes the number of frames provided as support on either side
of the time instantt. Entries in the last column denote the average performance of
classi�cation.

Basketball Cricket Football Tennis Volleyball Avg. perf.

p=5 94 (68) 56 (06) 96 (98) 60 (60) 82 (74) 77.6 (61.2)

p=7 84 (58) 48 (06) 98 (98) 60 (62) 78 (48) 73.6 (54.4)

p=10 76 (22) 36 (08) 98 (98) 60 (64) 82 (10) 70.4 (40.4)

p=13 58 (04) 34 (10) 98 (98) 60 (62) 88 (06) 67.6 (36.0)

p=15 44 (04) 38 (08) 98 (98) 60 (62) 86 (09) 65.2 (35.6)

p=17 44 (04) 24 (10) 96 (98) 60 (62) 84 (02) 61.6 (34.8)

Table 6.3: The confusion matrix for the best classi�cation performance
(in %) (N = 7, M = 1, andp = 5).

Basketball Cricket Football Tennis Volleyball

Basketball 92 00 00 02 06

Cricket 02 68 16 12 04

Football 06 14 76 04 00

Tennis 00 06 16 78 00

Volleyball 00 04 00 00 96
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(a) (b)

Fig. 6.3: Sequence of image frames (from top to bottom) of two events ofcricket
category where the event of (a) bowler releasing the ball and(b) �elder picking up the
ball are detected. The detected events are marked by a circle.
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(a) (b)

Fig. 6.4: Sequence of image frames (from top to bottom) of basketball category where
the event of player throwing the ball is detected. Two examples of such an event are
shown in (a) and (b). The detected events are marked by a circle.
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(a) (b)

Fig. 6.5: Sequence of image frames (from top to bottom) of football category where
the event of player passing the ball is detected. Two examples of such an event are
shown in (a) and (b). The detected events are marked by a circle.
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(a) (b)

Fig. 6.6: Sequence of image frames (from top to bottom) of two events oftennis
category where the events of (a) serving the ball and (b) playing a forehand shot are
detected. The detected events are marked by a circle.
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(a) (b)

Fig. 6.7: Sequence of image frames (from top to bottom) of two events ofvolleyball
category where the events of (a) playing an underarm shot and(b) smashing the ball
are detected. The detected events are marked by a circle.
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6.5 SUMMARY

We have presented a technique for classi�cation of sports videos using events to rep-

resent class-speci�c information. The events were detected using a framework based

on hidden Markov models. Each sports video category can be identi�ed using actions

in that particular sport. Activities are characterized by asequence of semantic events

that are embedded in the motion, and occur within a limited time duration. The event

probabilities were used to characterize the activity. Video classi�cation was performed

based on the similarity score obtained by matching the events. A video database of

TV broadcast programs containing �ve popular sports categories, namely, basketball,

cricket, football, tennis, and volleyball was used for training and testing the models.

A correct classi�cation of 82.0% has been achieved. Classi�cation performance can be

improved by using sequence knowledge during score computation.
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CHAPTER 7

SUMMARY AND CONCLUSIONS

In this thesis, new approaches were proposed to address someissues in video segmenta-

tion and classi�cation. These two tasks are important in thecontext of video content

analysis, and present some challenging problems. Video segmentation involves the

partitioning of a given video sequence into smaller and moremeaningful units. In this

thesis, issues speci�c to detection of shot boundaries in video sequences were addressed.

The key issue is to derive features which can help detect a change in video sequence

due to a shot boundary, and which are robust to illumination or camera/object mo-

tion. A novel method based on the late fusion of evidence was proposed for addressing

this issue, which detects signi�cant change in a few components of color histogram

feature for hypothesis of shot boundaries. The decision dueto the late fusion method

was combined with that due to the existing approach of early fusion. Since early fu-

sion depends on the extent of overall change in features and late fusion depends on

a few signi�cant changes, the combination improves the robustness of shot boundary

detection. We also proposed modi�cations to the traditional early fusion algorithm for

improving the performance of shot boundary detection. Firstly, a one-pass algorithm

was proposed for simultaneous detection of abrupt and gradual transitions. The basis

for this method is that, barring the region of gradual transitions, an abrupt and a

gradual transition are essentially similar. Secondly, bidirectional processing of video

was proposed in order to reduce the number of missed detections. Thirdly, the hypoth-

esized shot boundaries were validated on the basis of majority logic. Finally, a method

was proposed to classify a detected shot boundary as a cut or agradual transition,

using a measure of variance. These modi�cations, in conjunction with early and late

fusion, were shown to reduce the criticality of the choice ofthreshold for hypothesizing
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the presence of shot boundaries. The proposed methods yieldrobust performance over

a range of threshold values.

Another important issue is the dimension of feature vector used for representation

of images. In this thesis, color histogram of 512 dimension has been used for this

purpose. Since color histograms do not represent spatial distribution of color, color

coherence vector was used for representation of images. Both these feature vectors are

sparse and can be represented using a much smaller dimension. Feature vectors of re-

duced dimension were obtained using linear compression schemes such as independent

component analysis (ICA) and singular value decomposition(SVD), and nonlinear

autoassociative neural network (AANN) models. It was shownthat reduction in the

dimension of feature vectors does not result in signi�cant decrease in performance of

shot boundary detection, due to the sparsity of distribution of color features. Feature

vectors of reduced dimension obtained using AANN models perform better than those

due to SVD and ICA for shot boundary detection, primarily dueto the ability of

AANN models to represent nonlinear basis functions from thegiven data. The use of

linear and nonlinear compression techniques provides compact representation, better

visualization and the option for multiple validations at low computational cost.

The key issues in video classi�cation are representation ofclass-speci�c informa-

tion using suitable features, and developing models to capture information present in

the features. In this thesis, these issues were addressed inthe context of classi�cation

of sports videos, using two di�erent approaches. The �rst approach was based on

the use of edge-based features to represent class-speci�c information, while the second

approach was based on the hypothesis of events from video sequences. In the �rst

approach, edge direction histogram and edge intensity histogram features were used

in conjunction with three di�erent classi�er techniques, based on autoassociative neu-

ral networks (AANN), support vector machines (SVM) and hidden Markov models

(HMM). The AANN models were used to capture class-speci�c distributions of edge-

based features, while the HMMs were used to model the sequence information present

in the features. Models based on SVM were also explored as they incorporate di�eren-
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tial training to determine a hyperplane that separates the examples of a given category

from those of other categories. Edge direction histogram and edge intensity histogram

were shown to have complementary evidence. Also, combination of evidence due to

the di�erent classi�ers resulted in an improvement in the performance of classi�cation,

illustrating the complementary nature of the modeling techniques. The ability of the

classi�cation system to decide whether a given test clip belongs to any one of the �ve

sports categories or not, was studied.

The second approach to video classi�cation is based on detection of events in video

sequences. The events denote signi�cant changes in video, and a sequence of events

denotes an activity. The activities are characterized by a sequence of semantic events

embedded in the motion, and occur within a limited time duration. The activities

are intended to correspond to physical actions in di�erent sports. The events and

the activities are detected using a framework based on hidden Markov models. The

physical events are not de�ned a priori. Instead, the model is trained to hypothesize

the events, by presenting several example sequences of a given sport. Given a test video

sequence, a similarity score is computed by matching the events in the test sequence

with those obtained from reference data. A video database ofTV broadcast programs

containing �ve sports categories was used for training and testing the models. A

correct classi�cation of 82.0% has been achieved.

7.1 CONTRIBUTIONS OF THE WORK

The contributions of the research work carried out as part ofthis thesis can be sum-

marized as follows:

1. A new method based on late fusion of evidence from individual color compo-

nents was proposed for detecting shot boundaries in video sequences. This was

based on the observation that most of the shot boundaries arecharacterized by

signi�cant changes in only a small number of components of color histogram

feature.
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2. Algorithms were proposed for simultaneous detection of abrupt and gradual

transitions, and for categorization of the detected shot boundaries into the above

two groups. These algorithms are based on e�ective usage of statistics derived

from the neighbourhood of shot boundaries.

3. The combination of early fusion and late fusion, along with the proposed algo-

rithmic modi�cations, were shown to improve the performance of shot boundary

detection and reduce the criticality of threshold.

4. The ability of AANN models to perform nonlinear compression was exploited for

reducing the dimension of color coherence feature vector. Such a representation

allows for multiple validations without signi�cant reduct ion in the performance

of shot boundary detection.

5. The ability of AANN models for capturing distribution of feature vectors was

exploited for classi�cation of sports videos, using edge direction histogram and

edge intensity histogram.

6. The combination of evidence due to complementary features (edge direction

histogram and edge intensity histogram) and di�erent classi�ers (AANN models,

SVM and HMM) was shown to improve the performance of classi�cation. The

classi�cation system can also be used to verify whether a given video sequence

belongs to one of the prede�ned classes or not.

7. A new method was proposed for classi�cation of sports videos, by hypothesizing

events in each sports category using the framework of hiddenMarkov models.

These events are not de�ned a priori and are detected from thevideo sequences

presented during training phase.
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7.2 DIRECTIONS FOR FURTHER RESEARCH

In this thesis, color based features such as color histogramand color coherence vector

were used for representation of images for shot boundary detection in video sequences.

These are one-dimensional representations obtained from three-dimensional color his-

tograms. An important issue is the mapping of the three-dimensional color space onto

one dimension, followed by a dissimilarity measure that preserves the proximity infor-

mation during the mapping. One solution to this problem is toprovide a fuzzy border

while quantizing the color space.

The problem of video classi�cation was addressed on the basis of events detected in

each sports category. Here, events obtained from a test sequence were compared with

those obtained from training sequences, without exploiting information present in the

sequence of events. Dynamic programming techniques can be explored to match the

sequences of events, to obtain better classi�cation performance. The proposed method

can also be used to detect the events that are speci�c to a given sport. The basic idea

is that a state transition that commonly occurs across di�erent clips should model a

particular event. This can also help in classifying a given sport into di�erent conceptual

categories. The performance of the video classi�cation system can be improved by

combining the evidence from other modalities, such as audioand text, with the visual

evidence.

Automatic video content analysis to generate the video-table-of-contents is a nat-

ural application for the two tasks discussed in this thesis.This would require higher

levels of segmentation of the video, by combining adjacent and relevant shots into

larger units like scenes and stories. The classi�cation studies presented in this thesis

can help in this process of labeling and merging of individual shots.
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APPENDIX A

EXISTING SYSTEMS FOR VIDEO BROWSING AND

RETRIEVAL

Researchers have developed numerous schemes and tools for video indexing and query.

A brief description of some of the existing systems is given below.

Informedia-The CMU digital Video Library : The Informedia Digital Video

Library Project [82] at Carnegie Mellon University is an on-line digital video library,

which allows for full-content and knowledge-based search and retrieval using desktop

computer over local, metropolitan, and wide-area networks[83, 84]. The library con-

tains news and documentary video. The system integrates speech recognition, natural

language understanding, and image processing for multimedia content analysis. The

system contains methods to create short synopsis of each video. Language understand-

ing is applied to the audio track to extract meaningful keywords. Each video in the

database is represented as a group of representative framesextracted from the video at

points of signi�cant activity. Caption text is also extracted from these frames, which

adds to the set of indices for the video.

AT&T Pictorial Transcript System : Pictorial Transcript is an automated

archiving and retrieval system for broadcast news program,developed at AT&T Labs [85].

Combined audio-visual analysis has been used to automatically generate the content

hierarchy. At the �rst level news programs are separated into news reports and com-

mercials. At the next level, news report is further segmented into anchorperson speech

and others, which includes live report. At the highest level, text processing is used

to generate a table of contents based on the boundary information extracted at lower

levels and corresponding closed-caption information.



Movie Content Analysis (MoCA) : MoCA is a project at the University of

Mannheim, Germany, targeted mainly for understanding the semantic content of

movies [86,87]. The system segments movies into salient shots and generates a digital

abstract of the movie. The text detection component tracks moving text and performs

OCR on the text. The audio analysis component detects silence, human speech, music

and noise. The latter is further analyzed to detect violencein the scenes.

CONtent-based Image and Video Access System (CONIVAS) : CONIVAS

is a client-server based system developed at Phillips Research [88]. The system employs

cut detection for extraction of a storyboard used for browsing and retrieval from digital

studio archive. Features extracted from the key frames are used for building an index

of the content. Segmentation can be applied either in the compressed domain or the

uncompressed domain. Feature extraction is performed either using low level visual

features such as color, shape, and texture, or using full text retrieval. The extracted

features are stored in a database. Image and video segments can be retrieved using

example query segments.

Query By Image and Video Content (QBIC) : QBIC system [89] developed

at IBM's Almaden Research Center uses a variety of features for retrieving images

from image/video database. The system allows a user to search, browse and retrieve

image, graphic and video data from large on-line collections. Visual features such as

color, layout and texture are extracted and stored in database. The system allows

Query-by-Example (QBE) type queries, wherein the user can select any thumbnail

from the list of images within the database or specify an image and request retrieval of

similar images. The system segments the video into shots andgenerates storyboards

consisting of representation frames extracted from the shots. The methods used for

image retrieval can be applied to these representative frames to retrieve video clips by

content.

VideoQ : VideoQ is a web enabled content based video search system [90, 91].

VideoQ expands the traditional search methods (e.g., keywords and subject naviga-

tion) with a novel search technique that allows users to search compressed video based
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on a rich set of visual features and spatio-temporal relationships. Visual features in-

clude color, texture, shape and motion. Spatio-temporal video object query extends

the principle of query by sketch in image databases to a temporal sketch that de�nes

the object motion path.

WebSeek : WebSeek is a prototype image and video search engine which collects

images and videos from the Web and catalogs them. It also provides tools for searching

and browsing [92,93] using various content based retrievaltechniques that incorporate

the use of color, texture and other properties. Relevance feedback mechanisms are

used to enhance performance.

Multimedia Analysis and Retrieval System (MARS) : MARS is a system

developed at the University of Illinois at Urbana Champaign[94]. The system sup-

ports content-based image retrieval based on color, texture, shape, and any Boolean

combinations of them. The novel part in the system is the integration of database

management techniques (query processing), information retrieval techniques (boolean

retrieval model), and image processing techniques (image features). MARS supports

image retrieval using relevance feedback.

Automatic News Summarization Extraction System (ANSES) : ANSES

is a system developed at Imperial College, London [95, 96]. This project combines a

video scene change algorithm with current text segmentation and summarization tech-

niques, to build an automatic news summarization and extraction system. Television

broadcast news are captured both in video and audio format with the accompanying

subtitles in text format. News stories are identi�ed, extracted from the video, and

summarized in a short paragraph which reduces the amount of information to a man-

ageable size. Individual news video clips can be retrieved e�ectively by a combination

of video and text, using a reverse indexed search engine to provide distilled information

such as a summarized version of the original text and to highlight important keywords

in the text.

Semantic Annotation of Sports Videos : In this system [97], an approach for

semantic annotation of sports videos that include several di�erent sports and even
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nonsports content is implemented. Videos are automatically annotated according to

elements of visual contents at di�erent layers of semantic signi�cance. The system pri-

marily distinguishes studio and interview shots from sports action shots and further

decompose sports videos into their main visual and graphic content elements, includ-

ing sport type, foreground versus background and text captions. Relevant semantic

elements from videos are extracted by combining several low-level visual primitives

such as image edges, corners, segments, curves and color histograms, according to

context-speci�c aggregation rules. The annotation task isorganized into three dis-

tinct subtasks: Preclassifying sports shots, identifyinggraphic features and classifying

visual shot features.

Name It-Naming and Detecting Faces in News Videos : The Name-It sys-

tem [98] associate faces and names in news videos. It processes information from the

videos and can infer possible name candidates for a given face or locate a face in news

videos by name. To accomplish this task, the system takes a multimodal video anal-

ysis approach : Face sequence extraction and similarity evaluation from video, name

extraction from transcript and video-caption recognition. Suppose that we are watch-

ing a TV news program. When unknown persons appear in the newsvideo, we can

eventually identify most of them by watching only the video.To do so, system detects

faces from a news video, locates names in the sound track, andthen associates each

face with the correct name. For face-name association, as many hints as possible based

on structure, context, and meaning of the news video are used. Name-It can associate

faces in news videos with their right names without using an aprior face-name as-

sociation set. In other words, Name-It extracts face-name correspondences only from

news videos.
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APPENDIX B

AUTOASSOCIATIVE NEURAL NETWORK MODELS

Autoassociative neural network models are feedforward neural networks performing

an identity mapping of the input space, and are used to capture the distribution

of the input data [65], [99]. The distribution capturing ability of the AANN model is

described in this section. Let us consider the �ve layer AANNmodel shown in Fig. B.1,

which has three hidden layers. In this network, the second and fourth layers have more

units than the input layer. The third layer has fewer units than the �rst or �fth. The

processing units in the �rst and third hidden layer are nonlinear, and the units in

the second hidden layer (compression layer) can be linear ornonlinear. As the error

between the actual and the desired output vectors is minimized, the cluster of points

in the input space determines the shape of the hypersurface obtained by the projection

onto the lower dimensional space. Fig. B.2(b) shows the space spanned by the one-

dimensional compression layer for the two-dimensional data shown in Fig. B.2(a) for

the network structure 2L 10N 1N 10N 2L, whereL denotes a linear unit andN denotes

a nonlinear unit. The integer value indicates the number of units used in that layer.

The nonlinear output function for each unit is tanh(s), wheres is the activation value

of the of the unit. The network is trained using backpropagation algorithm [57], [52].

The solid lines shown in Fig. B.2(b) indicate mapping of the given input points due to

the one-dimensional compression layer. Thus, one can say that the AANN captures the

distribution of the input data depending on the constraintsimposed by the structure

of the network, just as the number of mixtures and Gaussian functions do in the case

of Gaussian mixture models (GMM).

In order to visualize the distribution better, one can plot the error for each input

data point in the form of some probability surface as shown inFig. B.2(c). The error
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Fig. B.1: A �ve layer AANN model.

E i for the data point i in the input space is plotted aspi = exp (� E i =� ) , where � is a

constant. Note that pi is not strictly a probability density function, but we call t he

resulting surface as probability surface. The plot of the probability surface shows a

large amplitude for smaller errorE i , indicating better match of the network for that

data point. The constraints imposed by the network can be seen by the shape the

error surface takes in both the cases. One can use the probability surface to study the

characteristics of the distribution of the input data captured by the network. Ideally,

one would like to achieve the best probability surface, bestde�ned in terms of some

measure corresponding to a low average error.
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Fig. B.2: Distribution capturing ability of AANN model. (a) Arti�cial 2-dimensional

data. (b) 2-dimensional output of AANN model with the structure 2L 10N 1N 10N 2L.

(c) Probability surfaces realized by the network structure2L 10N 1N 10N 2L.

113



APPENDIX C

HIDDEN MARKOV MODELS

A Markov model is a �nite state machine that makes a transition of state once

every time unit, governed by a probability law. The probability of occupying a state

is determined solely by recent history. A hidden Markov model (HMM) is a doubly

stochastic process that is not observable (it is hidden), but can only be observed

through another set of stochastic processes that produce the sequence of observed

symbols.

Elements of an HMM

An HMM is characterized by the following:

1. The numberN of states in the model. Although the states are hidden, for many

practical applications there is often some physical signi�cance attached to the

states of the model. Generally the states are interconnected in such a way that

any state can be reached from any other state (an ergodic model); however,

other possible interconnections of states are often of interest. The individual

states are denoted asS = f q1; q2; : : : ; qN g; and the state at time t as qt .

2. The number M of distinct observation symbols per state, i.e., the discrete

alphabet size. The observation symbols correspond to the physical output

of the system being modeled. The individual symbols are denoted as

V = f v1; v2; : : : ; vM g.

3. The state transition probability distribution A = f aij g where

aij = P [qt+1 = j jqt = i ] ; 1 � i; j � N: (C.1)

For the special case where any state can reach any other statein a single step,



we haveaij > 0 for all i; j . For other types of HMMs, we would haveaij = 0 for

one or more (i; j ) pairs.

4. The observation symbol probability distribution in state j , B = f bj (k)g, where

bj (k) = P [ot = vk jqt = j ] ; 1 � j � N; 1 � k � M: (C.2)

5. The initial state distribution � = f � i g where

� i = P [q1 = i ] ; 1 � i � N: (C.3)

Given appropriate values ofN; M; A; B; and �, the HMM can be used as a gener-

ator to give an observation sequence

O = ( o1o2 : : : ot : : : oT ) (C.4)

(where each observationot is one of the symbols fromV, and T is the number of

observations in the sequence) as follows:

1. Choose an initial stateq1 = i according to the initial state distribution �.

2. Set t = 1.

3. Chooseot = vk according to the symbol probability distribution in state i , i.e.,

bi (k).

4. Transit to a new state qt+1 = j according to the state transition probability

distribution for state i , i.e., aij .

5. Set t = t + 1; return to step 3 if t < T ; otherwise terminate the procedure.

The above procedure can also be used as a model for how a given observation

sequence was generated by an appropriate HMM. It can be seen from the above dis-

cussion that the complete speci�cation of an HMM requires speci�cation of two model

parameters (N and M ), speci�cation of observation symbols, and the speci�cation of

three probability measuresA; B and �. For convenience, the compact notation,

� = ( A; B; �) (C.5)
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is used to indicate the complete parameter set of the model.

Given the observation sequenceO = ( o1o2 : : : oT ), and a model � = ( A; B; �),

how to e�ciently compute P(Oj� ), the probability of the observation sequence, given

the model? The problem can also be viewed as one of scoring howwell a given model

matches a given observation sequence. For example, if the case is considered in which it

is tried to choose among several competing models, the solution to the above problem

allows the choice of the model which best matches the observations.

The HMM parameters are estimated in a computationally e�cient way using the

following variables:

� Forward variable: � t (i ) = P(o1o2 : : : ot ; qt = i=� )

The probability of producing a partial observation sequence o1o2 : : : ot and end-

ing in state i at time t, given the model� .

� t (i ) =
X

f q1 ;q2 ;:::;qt g

P(q1q2 : : : qt � 1; qt = i; o1o2 : : : ot=� )

P(Oj� ) =
NX

i =1

� T (i )

� Backward variable: � t (j ) = P(ot+1 ot+2 : : : oT =qt = i; � )

The probability of producing a partial observation sequence (ot+1 ot+2 : : : oT ),

given the statei at time t and the model� .

� t (j ) =
X

f qt +1 ;qt +2 ;:::;qT g

P(qt+1 qt+2 : : : qT ; ot+1 ot+2 : : : oT =qt = i; � )

P(Oj� ) =
NX

i =1

� t (i )� t (i )
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APPENDIX D

SUPPORT VECTOR MACHINES

The support vector machine (SVM) is a linear machine pioneered by Vapnik [100].

The main idea of an SVM is to construct a hyperplane as the decision surface in

such a way that the margin of separation between positive andnegative examples

is maximized. The notion that is central to the constructionof the support vector

learning algorithm is the innerproduct kernel between a support vector x i and a vector

x drawn from the input space. The support vectors constitute asmall subset of the

training data extracted by the support vector learning algorithm. The separation

between the hyperplane and the closest data point is called the margin of separation,

denoted by� . The goal of a support vector machine is to �nd a particular hyperplane

for which the margin of separation� is maximized. Under this condition, the decision

surface is referred to as the optimal hyperplane. Fig. D.3 illustrates the geometric

construction of a hyperplane for two dimensional input space. The support vectors

play a prominent role in the operation of this class of learning machines. In conceptual

terms, the support vectors are those data points that lie closest to the decision surface,

and therefore the most di�cult to classify. They have a direct bearing on the optimum

location of the decision surface.

The idea of an SVM is based on the following two mathematical operations [100]:

1. Nonlinear mapping of an input pattern vector onto a higherdimensional feature

space that is hidden from both the input and output.

2. Construction of an optimal hyperplane for separating thepatterns in the higher

dimensional space obtained from operation 1.

Operation 1 is performed in accordance with Cover's theoremon the separability

of patterns [100]. Consider an input space made up of nonlinearly separable patterns.
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Fig. D.3: Illustration of the idea of support vectors and an optimal hyper-
plane for linearly separable patterns.

Cover's theorem states that such a multidimensional space may be transformed into

a new feature space where the patterns are linearly separable with a high probabil-

ity, provided the transformation is nonlinear, and the dimension of the feature space

is high enough. These two conditions are embedded in operation 1. The separating

hyperplane is de�ned as a linear function of the vectors drawn from the feature space.

Construction of this hyperplane is performed in accordancewith the principle of struc-

tural risk minimization that is rooted in Vapnik-Chervonenkis (VC) dimension theory

[52]. By using an optimal separating hyperplane the VC dimension is minimized and

generalization is achieved. The number of examples needed to learn a class of interest

reliably is proportional to the VC dimension of that class. Thus, in order to have a

less complex classi�cation system, it is preferable to havethose features which lead to

lesser number of support vectors.

The optimal hyperplane is de�ned by:

NLX

i =1

� i di K (x; x i ) = 0 (D.6)
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where f � i g
NL
i =1 is the set of Lagrange multipliers,f di g

NL
i =1 is the set of desired classes

and K (x; x i ) is the innerproduct kernel, and is de�ned by:

K (x; x i ) = ' T (x)' (x i )

=
m1X

j =0

' j (x)' j (x i ); i = 1; 2; : : : ; NL (D.7)

wherex is a vector of dimensionm drawn from the input space, andf ' j (x)gm1
j =1 denotes

a set of nonlinear transformations from the input space to the feature space.' 0(x) = 1,

for all x. m1 is the dimension of the feature space. From (D.6) it is seen that the

construction of the optimal hyperplane is based on the evaluation of an innerproduct

kernel. The innerproduct kernelK (x; x i ) is used to construct the optimal hyperplane

in the feature space without having to consider the feature space itself in explicit form.

The design of a support vector machine involves �nding an optimal hyperplane.

In order to �nd an optimal hyperplane, it is necessary to �nd the optimal Lagrange

multipliers which are obtained from the given training samplesf (x i ; di )g
NL
i =1 . Dimension

of the feature space is determined by the number of support vectors extracted from

the training data by the solution to the optimization problem (D.6).
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