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ABSTRACT

Keywords : Video content analysis; video segmentation; shot boundadgtection;
color features; early fusion; late fusion; compressed feats; video classi cation; edge-

based features; autoassociative neural networks; eventedeéon; hidden Markov model.

The objective of this research work is to address some issuassegmentation
and classi cation of video, which are two important tasks imolved in organization,
retrieval and access of digital videos. The goal of video segntation is to partition a
given video sequence into smaller meaningful units, based @mporal changes in the
video sequence. The main issues in video segmentation are ¢hoice of featureghat
are robust to illumination and camera/object motion, and masure of dissimilarity
for detecting temporal discontinuities. In this thesis, wepropose methods for shot
boundary detection using signi cant changes in color feates and compressed features.
We propose a novel technique for shot boundary detection eson the late fusion of
evidence obtained from signi cant changes in color histogm features. We also propose
an algorithm for simultaneous detection of abrupt and gradal transitions, on the
basis of dissimilarity between two sets of frames separatbg a margin that excludes
the region around transition. Second order statistics damred from features extracted
around the shot boundaries are used for validation. Bidiréonal processing of video
is explored in order to reduce the number of missed shot bowartes. Finally, decision
due to the proposed late fusion is combined with that due to th traditional early
fusion, which relies on the extent of overall change in coléeatures for detecting shot
boundaries. Since the color histogram features do not regent the spatial distribution
of color, we use color coherence vector as a feature. Addiadly, the sparseness of
distribution of color coherence feature vectors is expl@t by nonlinear projection

of the feature vectors on to a lower dimension space. This pection is implemented



using autoassociative neural network (AANN) models. Expenental results show that
the proposed methods, in combination with color featuresaa e ectively detect both
abrupt and gradual transitions, and are less sensitive to éhthreshold applied to the
dissimilarity measure. The compressed features have alseeb found to be e ective
for shot boundary detection.

The problem of video classi cation is addressed in the conteof sports video cate-
gorization. Key issues involved are theelection of featuregor adequately representing
class-speci c information, and developing e cient modekg techniques to capture in-
formation present in the features. We propose to model claspeci c distributions
of two edge-based features, namely, edge direction histagr and edge intensity his-
togram, using autoassociative neural network (AANN) modsl The complementary
nature of these features is demonstrated by combining evitte from the individual
features. Also, combination of evidence due to di erent cksi ers results in an improve-
ment in the performance of classi cation. We propose a novelethod for classi cation
of sports videos based on events detected from each categaosing the framework of
hidden Markov models. The detected events which denote sigrant changes in a
temporal sequence, can be viewed as features at a higher lefde sequence of events
also act as signature for a given class. The classi cationstgm is also able to decide
whether a given video clip belongs to one of the prede ned agories or not.

In summary, this thesis proposes new methods for video segitaion based on
combination of early and late fusion of evidence, and a mettidor simultaneous de-
tection of abrupt and gradual transitions for shot boundarydetection. A nonlinear
projection of feature vectors from a high dimension sparsedture space to a lower
dimension space is proposed, using autoassociative neuratwork (AANN) models.
The thesis also proposes new edge-based features and AANNJeis for video classi-
cation, along with a method for combining evidence from dierent classi ers. A new
method is proposed for classi cation of sports videos basew events in each sports

category using the framework of hidden Markov models.
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CHAPTER 1

INTRODUCTION TO VIDEO CONTENT ANALYSIS

The amount of multimedia data has grown signi cantly in the st few years. This
growth is primarily due to advances in data acquisition, st@ge, and communication
technologies, aided by advances in processing of audio andeo signals. Video has
played an important role in this growth, more so in terms of & volume. There is
a need to organize large collections of digital videos for eient access and retrieval.
Technigues are needed to organize digital videos into congband meaningful entities,

that human beings can relate to. Such a task is known as videontent analysis, which

refers to understanding the meaning of a video document. Tlobjective of this thesis
Is to address issues in two important tasks of video contentnalysis, namely, video
segmentation and video classi cation. Video segmentatianvolves partitioning a video

sequence into several smaller meaningful units, based omgoral discontinuities in

the video sequence. Video classi cation, on the other hani the task of categorizing
a given video clip into one of the prede ned classes.

The need for automatic algorithms for video content analysiis motivated by the
large volume of video data. While human beings are adept at idng meaningful
information from video data, it is a challenging problem to atomate this task due
to our inability to articulate our perceptual ability in the form of an algorithm. Yet
a methodical approach is needed to address the problem of ewdcontent analysis.
In Section |, we briey describe various tasks involved in aomatic video content
analysis. This places in perspective, the role of video segntation and classi cation
in video content analysis. In Section Il, we discuss certaiissues related to video
segmentation and classi cation that are addressed in thishesis. Section Ill outlines

the organization of the thesis.



1.1 TASKS INVOLVED IN VIDEO CONTENT ANALYSIS

The objective in video content analysis is to develop techmiles to automatically parse

video, audio, and text to identify meaningful composition sucture of video and to

extract and represent content attributes of video sequense A typical video content

analysis (VCA) scheme involves ve primary tasks: featurexgraction, video structure

analysis, abstraction, video classi cation and indexing A block diagram illustrating

these tasks and their interrelationship is shown in Fig. 1.1

Video —>

Database

1.1.1 Feature extraction

C Feature Extraction )——)

Video Stream

|

Features —)C Structure Analysis )

( Video Classification )

( Video Abstraction )—)

Retrieval &
Browsing

Fig. 1.1: Process diagram for video content analysis.

Video Indices/
VTOC

Summary/
Skimming Video

(—C Video Indexing )(—

Meta Data

A feature is de ned as a descriptive parameter that is extrded from an image or a

video sequence [1]. The e ectiveness of video content arsty depends on the e ec-

tiveness of features/attributes used for the representain of the content. Based on the

complexity and use of semantics, features can be classi eda low-level and high-level

features [2].

Low-level features (also known as primitive features) sucks color, texture, shape,




object motion (for video), spatial location of image elemés (both for image and
video), and pitch (for audio) can be extracted automaticayl. However, these features
may not be meaningful from the point of view of human percepin. High-level features
(also known as logical, semantic features) involve variodegrees of semantics depicted
in images and video. The features at this level can be objeatior subjective. Objective
features describe physical objects in images and action ilW&o. Subjective features are
concerned with abstract attributes. They describe the meamng and purpose of objects
or actions. An event such as a goal in a game of soccer is an egharof subjective
feature. Interpretation of complex objects or actions, andgubjective judgment are
required to capture the relationship between video conterdand abstract concepts.

An important issue is the choice of suitable features for a\gn task. E ective
video content analysis can be achieved by collaborativelging low-level and high-level
features. We can use low-level features to segment a videgsence into individual
shots and generate representative key frames for each shohese key frames can then

be used for classi cation and indexing of videos.

1.1.2 Structure analysis

Video structure analysis is the process of extracting tempal and structural informa-
tion from the video. It involves detection of temporal boundries and identi cation
of meaningful segments of a video. A video sequence can bevei@ as a well orga-
nized document and can be parsed into logical units at the folving di erent levels of

granularity:
Frame level: A frame represents a single image in a video sequence.

Shot level: A shot is a sequence of frames recorded contiguously from agse

camera and representing a continuous action in time or space

Scene level: A scene is a continuous sequence of shots having a common

semantic signi cance.

Sequence/story level: A sequence/story is composed of a set of scenes.

3



1.1.2.1 Shot segmentation

Shots are the physical basic layers in video, whose boundsiare determined by
editing points or where the camera switches on or o . Shots aranalogous towords
or sentencesn text documents. The choice of shot as the basic unit for véb content
indexing provides the basis for constructing a video-tablef-contents. An important

issue is the e ective detection of di erent types of shot bondaries.

1.1.2.2 Scene segmentation

The level immediately higher than the shots is called scené scene is a continuous
sequence of shots having a common semantic signi cance. Tm®cess of detecting
video scenes is analogous to paragraphing in parsing of teddcument and requires a
higher level of content analysis. Since a scene is a logicaituit is often di cult to

specify a basis on which a sequence of shots can be groupeettogy to form a scene.

1.1.2.3 Story segmentation

A story comprises of a set of scenes. Story segmentation rneedore semantic un-
derstanding of video content. Scenes or stories in video apaly logical layers of
representation based on subjective semantics, and no uns& de nition and rigid
structure exists for scenes and stories. Hence, groupingemjgence of shots into scene,
and grouping a set of scenes into a story require a priori infoation about the nature

of the video program.

1.1.3 Video abstraction

Video abstraction is the process of creating a presentatiaf the content of a video,
which should be much smaller than the original video but whitpreserves the essential
message of the original video. This abstraction process im#ar to the extraction of

keywords or summaries from text documents. That is, we need extract a subset



of video data such as key frames or highlights as entries fdras, scenes or stories
from the original video. Abstraction is especially importat given the vast amount of
video data. Video abstraction helps to enable a quick browsg of a large collection of
video data and to achieve e cient content representation ad access. Combining the
structural information extracted from video parsing and kg frames extracted during

video abstraction, we can build a visual table of contents @& video program.

1.1.4 Video classi cation

Classi cation of digital videos into various genres or catgories is an important task,
and enables e cient cataloging and retrieval with large vigo collections. E cient
searching and retrieval of video content have become moreadit due to increas-
ing amount of video data. Semantic analysis is a natural wayf @ideo classi cation,
since videos of di erent categories are expected to di er isemantics. However, rep-
resentation of semantics is a challenging task, since it i®tnrigidly structured and
hence, subjective. Therefore, the problem of video classation is typically addressed

through extraction and modeling of low-level features.

1.1.5 Indexing for retrieval and browsing

The structural and content attributes derived during featue extraction, video pars-
ing, abstraction and video classi cation processes, areteh referred to as metadata.
Based on this metadata, we can build video indices and tabt#-contents. However, a
universal solution for video indexing for all video categaes is very di cult to achieve.
Some of the existing video browsing and retrieval systemseadiscussed in Appendix
A.



1.2 ISSUES ADDRESSED IN THIS THESIS

The previous section brie y described the various issuesvolved in video content anal-
ysis. This research work focuses on features for video segtagon (which is a part
of structure analysis of video) and video classi cation. Té problem of shot boundary
detection is addressed in video segmentation. This probleseals with the detection of
temporal discontinuities in video sequences, where the seqce of frames between two
successive discontinuities forms a shot. The key issues #re choice of the features for
representation of images, the choice of a similarity/distece metric and an algorithm
that is general enough for detection of both abrupt discontuities and gradual transi-
tions. We address these issues on the basis of signi cant olgas exhibited by a small
subset of color features. A novel approach for detection di& boundaries is proposed
based on the late fusion of evidence obtained from the signant changes. We also
examine the e ect of dimension reduction of feature vectoren the performance of
shot boundary detection.

The problem of video classi cation is addressed in the conteof sports videos.
Sports videos present a good test case for evaluating alglems for video classi cation,
since di erent sports share certain common aspects whiletagning their individual
identities. An important issue is the representation of vido frames, so that resul-
tant features adequately capture class-speci ¢ informain. Here, edge-based features,
namely, edge direction histogram and edge intensity histogm are examined, since
di erent sports are distinctly characterized by edge infamation. Another issue is the
development of e ective modeling techniques to capture theaformation present in
the features. These models can either be based on the estimoatof probability den-
sity function of feature vectors, or based on the estimatioof temporal information
present in the sequence of feature vectors. Our approach toig problem is twofold.
Firstly, the use of autoassociative neural network models motivated by their ability
to capture the density of feature vectors without making assnptions about the shape

of the density function. The second approach to video classtion is based on the



notion of events in di erent sports categories. The eventsahote signi cant changes
in video sequences, and can be viewed as features for repred®n of class-specic
information. The events are not prede ned, but instead, thg are hypothesized from
the changes inherent in the video sequence, using a framekvbased on hidden Markov
models. The hypothesized events are then used to classifyigeg sports video. The
algorithms for video segmentation and classi cation are veed o ine, using video

data collected from broadcast channels.

1.3 ORGANIZATION OF THE THESIS

An overview of the existing approaches to video segmentaticand classi cation is
presented in Chapter 2. Some research issues are identi edboth these tasks which
are addressed in this thesis. In Chapter 3, a novel techniqumlled late fusion is
proposed for detecting shot boundaries in video sequenc@&sie basis for this method is
the signi cant change exhibited by a few color components eva sequence of frames. A
one-pass algorithm for simultaneous detection of abrupt drgradual transitions is also
proposed. The sparsity of distribution of color features @sents a case for dimension
reduction of feature vectors. In Chapter 4, shot boundary dection is performed using
feature vectors with reduced dimension. A nonlinear projéon of feature vectors from
a high dimension sparse feature space to a lower dimensiomap is performed using
autoassociative neural network (AANN) models. In Chapter 5the problem of video
classi cation is addressed by estimating class-speci c dsities of edge-based features,
using AANN models which are nonparametric. A new method forlassi cation of
sports videos based on events in each sports category is meed in Chapter 6, using
the framework of hidden Markov models. Chapter 7 summarizébe research work
carried out as part of this thesis, highlights the contribuions of the work and discusses

directions for future work.



CHAPTER 2

OVERVIEW OF APPROACHES FOR VIDEO

SEGMENTATION AND CLASSIFICATION

This chapter reviews some of the existing approaches to vaeegmentation and video
classi cation. The problem of shot boundary detection is he y described in Section
2.1. The three important components of algorithms for shot cundary detection,
namely, features for representation of video frames, simlty/distance metric, and
the algorithm for change detection, are discussed in termg$ the commonly made
choices for these components. The existing algorithms fonat boundary detection
are then reviewed. In Section 2.2, the existing approaches video classi cation are
reviewed, with particular focus on the classi cation of spis videos. Some research
issues arising out of the review of existing methods are ideed, which are addressed

in this thesis.

2.1 EXISTING METHODS FOR VIDEO SHOT BOUNDARY DETEC-

TION

Automatic segmentation of video is the rst step for organiing a long video sequence
into several smaller meaningful units. A typical structureof video is shown in Fig. 2.1.
The smallest basic unit is a shot. A shot in a video is a contigus sequence of video
frames recorded from a single camera operation, represagtia continuous action in
time and space. Relevant shots are typically grouped into adgher level unit called a
scene. Each scene is a part of a story. Browsing these scend#slds the entire story,

enabling users to locate their desired video segments qujcknd e ciently.
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Video sequence

Scene 1 Scene 2

Shot 1 Shot 2 Shot 3

Frameg [Frameg |Framg | Frame:- - -

11

Fig. 2.1: Common video structure

Shot boundary detection is the most basic temporal video segntation task, as
it is intrinsically linked to the way that video is produced. It is a natural choice for
segmenting a video into more manageable parts. This is besawideo content within
a shot tends to be continuous, due to the continuity of both th physical scene and
the parameters (motion, zoom, focus) of the camera that imag it. Therefore, in
principle, the detection of a shot change between two adjatgeframes requires the
computation of an appropriate continuity or similarity metric. However, this premise
has three major complications.

The rst one is to de ne a continuity metric for video in such a way that it
is insensitive to gradual changes in camera parameters,hiong and physical scene
content, easy to compute, and discriminant enough to be usgéf For this purpose,
one or more scalar or vector features from each frame can beragted and distance
functions can be de ned in the feature domain. Alternative}, the features themselves
can be used either for clustering the frames into shots or fdetecting shot transition

patterns. The second complication is deciding which valued the continuity metric



correspond to a shot change and which do not. This is nontrad, since the variation of
feature within certain shots can exceed the respective vation across shots. Decision
methods for shot boundary detection include xed threshols, adaptive thresholds
and statistical detection methods. The third complicationis the fact that not all shot
changes are abrupt. Using motion picture terminology, chges between shots can be
gradual and can belong to the following categories, some ohigh are illustrated in
Fig. 2.2:

1) Cut: This is the case of an abrupt change, where one frame belongstlie

disappearing shot and the next one to the appearing shot.

2) Dissolve:In this case, the last few frames of the disappearing shot te@mrally

overlap with the rst few frames of the appearing shot. Duriig the overlap,

the intensity of the disappearing shot decreases from norirta zero (fade out),

while that of the appearing shot increases from zero to norhéade in).

3) Fade: Here, rst the disappearing shot fades out into a black frameand then

the black frame fades into the appearing shot.

4) Wipe: This is a set of shot change techniques, where the appearingda

disappearing shots coexist in di erent spatial regions ofrie intermediate video

frames, and the region occupied by the former grows until itnéirely replaces

the latter.

5) Other transition types: Certain special e ects are also used in motion pictures.

They are, in general, very rare and di cult to detect.

2.1.1 Components of shot boundary detection algorithms

An important component of shot boundary detection algoritims is the set of features
extracted from a video frame or from a region of the frame. Amloer component is
the similarity measure that is used to detect the presence af shot boundary. We
present below the di erent choices that can be made for eaclormponent, along with

their advantages and disadvantages. A shot boundary detémh algorithm can then

10



(@)

(b)

(€)

(d)

Fig. 2.2: Examples of di erent types of shot transitions: (a) Cut (b) fade,
(c) dissolve and (d) wipe.
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be designed by suitably choosing each component.

2.1.1.1 Features used for representation of video frame

Almost all shot change detection algorithms reduce the laegdimensionality of the
video domain by extracting a small number of features from @or more regions of
interest in each video frame. Such features include the folVing:
1) Luminance/color: The simplest feature that can be used to characterize an
image is its average grayscale luminance. This, however, ssisceptible to
changes in illumination. A more robust choice is to use one omore statistics
(e.g., averages) of the values in a suitable color space [B{fike hue saturation
value (HSV).
2) Luminance/color histogram: A richer feature for an image is the grayscale
or color histogram. Its advantage is that it is discriminanf easy to compute,
and mostly insensitive to translational, rotational, and pboming camera motions.
For these reasons, it is widely used [6], [7]. However, it doaot represent the
spatial distribution of color in an image.
3) Image edges:Another choice for characterizing an image is its edge infor
mation [5], [8]. The advantage of this feature is that it is seiently invari-
ant to illumination changes and several types of motion, and related to the
human visual perception of a scene. Its main disadvantage éemputational
cost, noise sensitivity, and when not post-processed, higimensionality.
4) Features in transform domain: The information present in the pixels of an
image can also be represented by using transformations swshdiscrete Fourier
transform, discrete cosine transform and wavelets. Suchatisformations also
lead to representations in lower dimensions. Disadvantagéclude high comp-
utational cost, e ects of blocking while computing the trarsform domain coe -

cients, and loss of information caused by retaining only aviecoe cients.
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5) Motion: This is sometimes used as a feature for detecting shot tratsns,
but it is usually coupled with other features, since motiontself can be highly
discontinuous within a shot (when motion changes abruptlyand is not useful

when there is no motion in the video.

2.1.1.2 Spatial domain for feature extraction

The size of the region from which individual features are evdcted plays an important
role in the overall performance of algorithms shot change w@etion. A small region
tends to reduce detection invariance with respect to motigrwhile a large region might
lead to missed transitions between similar shots. In the folving, we will describe
various possible choices:
1) Single pixel: Some algorithms derive a feature for each pixel such as lumi-
nance and edge strength [5]. However, such an approach réesuh a fea-
ture vector of very large dimension, and is very sensitive taotion, unless
motion compensation is subsequently performed.
2) Rectangular block: Another method is to segment each frame into
equal-sized blocks and extract a set of features (e.g., aage color or orienta-
tion, color histogram) from these blocks [3], [4]. This appach has the advanta-
ge of being invariant to small motion of camera and object, asell as being
adequately discriminant for shot boundary detection.
3) Arbitrarily shaped region: Feature extraction can also be applied to arbitrar-
ily shaped and sized regions in a frame, derived by spatialgseentation algo-
rithms. This enables the derivation of features based on themost homoge-
neous regions, thus facilitating a better detection of temgral discontinuities.
The main disadvantage is the high computational complexitand instability of
region segmentation.
4) Whole frame: The algorithms that extract features (e.g., histograms) fsm

the whole frame [7], [9], [10] have the advantage of being st with respect
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to motion within a shot, but tend to have poor performance at dtecting the

change between two similar shots.

2.1.1.3 Measure of similarity

To evaluate discontinuity between frames based on the seled features, an appropriate
similarity/dissimilarity metric needs to be chosen. A widevariety of dissimilarity
measures has been used in the literature [7,11]. Some of tbenmonly used measures
are Euclidean distance, cosine dissimilarity, Mahalanabidistance and log-likelihood
ratio. Another example of commonly used metric, especiallg the case of histograms,
is the chi-square metric. Information theoretic measureske mutual information and
joint entropy between consecutive frames are also proposémt detecting cuts and

fades [12].

2.1.1.4 Temporal domain of continuity metric

Another important aspect of shot boundary detection algothms is the temporal win-
dow that is used to perform shot change detection. In generahe objective is to
select a temporal window that contains a representative amat of video activity. The
following cases are typically used:
1) Two frames: The simplest way to detect discontinuity between frames is
to look for a high value of the discontinuity metric between wo successive
frames [4], [9], [13], [14]. However, such an approach carnl ta discrimi-
nate between shot transitions and changes within the shot weh there is signi -
cant variation in activity among di erent parts of the video or when certain
shots contain events that cause brief discontinuities (e,gphotographic ashes).
It also has di culty in detecting gradual transitions.
2) N-frame window: One technique for alleviating the above problems is to
detect the discontinuity by using the features of all framesvithin a suitable

temporal window, which is centered on the location of the pettial discontinu-
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ity [4], [5], [10], [15].

3) Interval since last shot changeAnother method for detecting a shot boundary
is to compute one or more statistics from the last detected sh change up
to the current point, and to check if the next frame is consignt with them,
as in [3], [7]. The problem with such approaches is that thers often great
variability within shots, such that statistics computed fa an entire shot may

not be representative of its end.

2.1.1.5 Shot change detection method

Having de ned a feature (or a set of features) computed fromaeh frame and a sim-
ilarity metric, a shot change detection algorithm needs to etect where these exhibit
discontinuity. This can be done in the following ways:
1) Static thresholding: This involves comparing a metric expressing the sim-
ilarity or dissimilarity of the features computed on adjacat frames against a
xed threshold [7]. This performs well only if video contentexhibits similar
characteristics over time. The threshold needs to be adjwest for each video.
2) Adaptive thresholding:Here, the threshold is varied depending on a statistic
(e.g., average) of the feature di erence metrics within a taporal window, as
in [9] and [15].
3) Probabilistic detection: For a given type of shot transition, probability den-
sity function of the similarity/dissimilarity metric is estimated a priori, using
several examples of that type of shot transition. Then an ophal shot change
estimation is performed. This technique is demonstrated irf3] and [4].
4) Trained classi er: Another method for detecting shot changes is to formulate
the problem as a classi cation task where blocks of frameseatabeled as one
of the two classes, namely, \shot change" and \no shot change This involves
training a classier (e.g., a neural network) to distinguit between the two

classes [10].
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2.1.2  Specic algorithms for shot boundary detection

Early work on video shot boundary detection mainly focusednoabrupt shot transi-
tions. A comprehensive survey, comparison and performanegaluation of existing
shot boundary detection algorithms can be found in [6,16{19 In [4], shot detec-
tion techniques are reviewed and a statistical detection ¢anique based on motion
feature is proposed. Color histogram is a commonly used faeg for detecting gradual
transitions [20{23]. Luminance [24, 25], chromaticity [1J1 motion [4] and edge [16]
information have also been used for shot boundary detectionSaraceno et al. [26]
classify audio into silence, speech, music or noise and ubés tinformation to verify
shot boundaries hypothesized by image-based features. 8tzky et al. [27] segment
the video by using audio-visual features and hidden Markov odels (HMM) to hy-
pothesize the various shot transitions. The problem of shdioundary detection is
approached by Hanjalic [4] using a probabilistic approactfor detecting abrupt tran-
sitions, adjacent frames are compared, while for gradualamsitions, frames separated
by the minimum shot length are compared. The a priori likelibod functions of the dis-
continuity metric are obtained using manually labeled dataThus, di erent likelihood
functions are estimated for each type of shot transition.

Gradual transitions are generally more di cult to detect due to camera and object
motion. Detection of gradual transitions, such as fades andissolves is examined
in [20{22]. The approach proposed by Lienhart [10] detectsis$olves with a trained
classi er (a neural network), operating on either YUV colorhistograms, magnitude of
directional gradients, or edge-based contrast. The classi detects possible dissolves
at multiple temporal scales and merges the results using anmier-take-all strategy.
The classi er is trained using a dissolve synthesizer, wiiacreates arti cial dissolves
from any available set of video sequences. The performanseshown to be superior
when compared to simple edge-based dissolve detection nueth.

Cernekova et al. [7] perform singular value decompositio®YD) on the RGB color

histograms of each frame to reduce the dimensionality of te@ae vector to ten. Ini-
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tially, video segmentation is performed by comparing the ajle between the feature
vector of each frame and that of the average of feature vectoof the current segment.
If their di erence is higher than a static threshold, a new sgment is started. Segments
whose feature vectors exhibit large dispersion are congiele to depict a gradual tran-
sition between two shots, whereas segments with small dispien are characterized as
shots. The main problem with this approach is the static threhold applied on the
angle between vectors to detect a shot change, especiallythie case of large intrashot
content variation and small intershot content variation. hdependent component anal-
ysis is also used in [11] to search for prominent basis furats in the feature space,
and thereby reduce the dimension of the feature vector to twdAn iterative clustering
algorithm based on adaptive thresholding is used to detecuts and gradual transi-
tions. The reduction in dimension of feature vectors does heesult in an appreciable
degradation in the performance of shot boundary detection.

Boccignone et al. [15] approach the problem of shot boundadgtection using the
attentional paradigm for human vision. The algorithm comptes for every frame, a set
(called a trace) of points of focus of attention in decreagjnorder of saliency. It then
compares nearby frames by evaluating the consistency of theaces. Shot boundaries
are hypothesized when the above similarity is below a dynamthreshold.

Lelescu and Schonfeld [3] present a statistical approach &hot boundary detec-
tion. They extract the average luminance and chrominance rfeeach block in every
frame and then perform principal component analysis (PCA) mthe resulting feature
vectors. The eigenvectors are computed based only on the tr1 frames of each
shot. The resulting projected vectors are modeled by a Gaues distribution whose
mean vector and covariance matrix are estimated from the tsM frames of each
shot. A change statistic is estimated for each new frame ugira maximum likelihood
methodology (the generalized likelihood ratio) and, if it xceeds an experimentally
determined threshold, a new shot is started. Since eigent@s, mean and covariance
of the projected vectors are estimated using the rst few fraes in each shot, the esti-

mates may not be representatives of the end of the shot, more & the case of shots
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with considerable interframe variations.

A measure de ned by Li et al. [13] is the joint probability image (JPI) of two
frames. The JPI is a matrix whosei] j] element is the probability that a pixel with
color i in the rst image has colorj in the second image. Dierent types of shot
transitions such as dissolve and fade are observed to haveedp patterns of JPI.
Also, a one dimensional projection of the JPI called the joirprobability projection
vector, and a scalar measure of dispersion of the JPI, callguint probability projection
centroid (JPPC), are derived, and observed to be useful fohast boundary detection.

Another approach is to use dierent algorithms for each typeof transition, as
in [5]. Here, two algorithms are designed, one for dissolvaad fades and the other
for wipes. Speci cally, B-spline interpolation techniques used to determine the pres-
ence of fade/dissolve within a temporal window. Further, fdes are distinguished
from dissolves by additionally checking if the interframetandard deviation is close
to zero. Wipes are detected, based on the regular movementtbé wipe's edge. For
this purpose, two-dimensional wavelet transform of interhme di erence is computed
to enhance directionality, from which locations of strongs edges in four di erent
directions (horizontal, vertical, and the two diagonals) ee computed.

A signal processing approach to detection of cuts in videoggesnces is proposed
in [28] using phase correlation as a measure of similarity taeen adjacent frames.
Phase correlation is shown to be robust to illumination chages and noise.

Information theoretic measures are proposed in [12] for aetting shot boundaries.
Mutual information and joint entropy between two successe frames is calculated for
each of the RGB components, for detection of cuts, fade-inac fade-outs.

The approach proposed in [29] is based on mapping the intexfne distance values
on to a multidimensional space, while preserving the tempair sequence (or frame
ordering information). It is shown that detection of boundaies is less sensitive to the
choice of threshold in the multidimensional space.

In [30], di erent types of transitions are observed in di eent temporal resolutions.

Temporal multi-resolution analysis is applied on the videstream, and video frames

18



within a sliding window are classi ed into groups such as namal frames, gradual
transition frames and cut frames. Then the classi ed framesre clustered into di erent
shot categories.

It is a di cult task to compare the e ectiveness of di erent a lgorithms for shot
boundary detection, since the performance depends on theoate of features, similarity
metric, the algorithm for boundary hypothesis and the videalata chosen for evalua-
tion. One attempt is made in [19] where di erent methods are uplitatively evaluated
on the basis of features used, frame di erence measures, dimsionality of features,
criticality of temporal window size and thresholds, and thebility of the methods to
detect di erent types of shot boundaries.

A survey of core concepts underlying the di erent schemes siiot boundary detec-
tion is presented in [17], while a comprehensive comparisohdi erent shot boundary

detection algorithms is discussed in [16].

2.1.3 Issues addressed in shot boundary detection

An observation arising out of the review of the existing ap@aches is that an algorithm
with only one type of feature and/or similarity metric is not general enough to detect
di erent types of shot transitions. Moreover, the choice ofvindow a ects the resolution
of detection of shot boundary. Finally, most of the algoritms are sensitive to the
threshold used on similarity/distance metric. In this thess, we attempt to address
these issues both at the level of features and at the level dfet algorithm for shot
boundary detection. Our approach to observe signi cant chreges in only a few color
features is motivated by the need to derive multiple evidemcfor detection of shot
boundaries. In order to detect di erent types of shot boundaes using a single general
algorithm, we propose a bidirectional processing schemeathtexploits the behavior of
image frames in the neighbourhood of shot boundaries. Ths in contrast to existing
approaches that compare a given frame against statistics rded from a window of

previous frames. The sparseness of distribution of coloratare vectors is exploited
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by deriving features of reduced dimension using a nonlineautoassociative neural
network for compression. While any algorithm is not entirgl robust to thresholds used
on similarity/distance metric, our objective is to reduce he criticality of threshold so

that the proposed algorithm performs optimally over range fathreshold values.

2.2 REVIEW OF APPROACHES TO VIDEO CLASSIFICATION

Many approaches have been proposed for content-based dlaason of video data.
The problem of content-based classi cation of video can be&ldressed at di erent levels

in the semantic hierarchy as shown in Fig. 2.3. For instanc&jdeo collections can be

video
highest leve
cartoon commercial spor news music - -
next level
basketball tennis ~ football volleyball cricket - -
finer level
segment1l segment2 - -- segmenN

(playing field)  (player) (graphics) (audience) (studio)

Fig. 2.3: Video classi cation at di erent levels

categorized into di erent program genres such as cartoonpmmercials, sports, news,
and music. Then, videos of a particular genre, such as spqrtan be further classi ed
into subcategories such as basketball, tennis, football drcricket. A video sequence
of a given subcategory can then be segmented, and these segmean be classi ed

into semantically meaningful classes. For example, footharideo sequences can be
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segmented into shots and these shots are further classi ed &elonging to “playing
eld', “player', "graphics’, "audience’, and “studio’ clases.

The general approach to video classi cation involves the &action of visual fea-
tures based on color, shape, and motion, followed by the esttion of class-specic
probability density function of the feature vectors [31, 3R

In [33], a criterion based on the total length of edges in a gim frame is used. The
edges are computed by transforming each block of 8 pixels using discrete cosine
transform (DCT), and then processing the DCT coe cients. A mule based decision is
then applied to classify each frame into one of the prede nesemantic categories.

Another edge-based feature, namely, the percentage of edgrels, is extracted
from each keyframe for classifying a given sports video intme of the ve categories,
namely, badminton, soccer, basketball, tennis, and gurekating [34]. The k-nearest
neighbour algorithm was used for classi cation.

Motion is another important feature for representation of iWdeo sequences. In [35],
a feature called motion texture is derived from motion eld letween video frames,
either in optical ow eld or in motion vector eld. These features are employed in
conjunction with support vector machines to devise a set of ulticategory classi ers.

The approach described in [36] de nes local measurementswition, whose spatio-
temporal distributions are modeled using statistical nongrametric modeling. In [37],
sports videos are categorized on the basis of camera moticargmeters, in order to
exploit the strong correlation between the camera motion @hthe actions taken in
sports. The camera motion patterns such as X, pan, zoom ancake are extracted
from the video data.

Motion dynamics such as foreground object motion and backgind camera motion
are extracted in [38] for classi cation of a video sequenceto three broad categories,
namely, sports, cartoons and news.

Transform coe cients derived from discrete cosine transfion (DCT) and Hadamard
transform of image frames are reduced in dimension using qeipal component anal-

ysis (PCA) [39]. The probability density function of the conpressed features is then
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modeled using a mixture of Gaussian densities.

Dimension reduction of low level features such as color andxture, using PCA,
has been attempted in [40,41], for reducing spatio-tempdnedundancy.

Another approach described in [42] constructs two hidden Meov models, from
principal motion direction and principal color of each frane, respectively. The decisions
are integrated to obtain the nal score for classi cation.

Apart from statistical models, rule-based methods have aldbeen applied for clas-
si cation. In [43], a decision tree method is used to clasgitideos into di erent genres.
For this purpose, several attributes are derived from videsequences, such as the length
of video clip, number of shots, average shot length and pentage of cuts. A set of
decision rules is derived using these attributes.

Another class of algorithms focuses on deriving temporalformation from video
sequences. Typically, these algorithms are speci c to deteon of prede ned events in
videos within the context of a given application.

In [44], features indicating signi cant events are selectefrom video sequences.
These features include a measure of motion activity and ontation of edges, which
help in detection of crowd images, on-screen graphics andoprinent eld lines in
sports videos. The evidence obtained by dierent feature dectors are combined
using a support vector machine, which then detects the ocaence of an event.

In [45], an HMM based framework is suggested to discover thé&dten states or
semantics behind video signals. The objective is to arrived a sequence of semantics
from a given sequence of observations, by imposing tempocahtext constraints. The
framework is then applied to detect prede ned events in sptg categories such as
basketball, soccer and volleyball.

Another approach [46] models the spatio-temporal behaviowf an object in a
video sequence for identifying a particular event. The gama&f snooker is considered
and the movement of snooker ball is tracked using a color basparticle Iter. A few
events are prede ned in terms of actions, where an action cére a white ball colliding

with a colored ball, or a ball being potted. An HMM is used to mdel the temporal

22



behaviour of the white ball, along with algorithms for collsion detection.

A symbolic description of events is provided in [47], wherevents are described
in terms of rules using fuzzy hypotheses. These hypotheses dased on the degree
of belief of the presence of specic objects and their intexations, extracted from
the video sequence. The method involves the extraction of mamobile objects in
video sequences, also called fuzzy predicates. The inputlssned on the set of fuzzy
predicates, while the output is a fuzzy set de ned on the evénto be recognized. The
association between the fuzzy predicates and the set of etgers represented using a
neurofuzzy structure. The approach is tested on soccer vwsequences for detecting
some predetermined events.

In [48], a multilayer framework based on HMMs is proposed faletection of events
in sports videos, on the basis that sports videos can be catesied as rule based
sequential signals. At the bottom layer, event HMMs output lsic hypotheses using
low-level features. The upper layers impose constraints dhe prede ned events in
basketball.

The deterministic approach to event detection is comparedith probabilistic ap-
proach, in [49]. While the former depends on clear descripti of an event and explicit
representation of the event in terms of low-level featureshe latter is based on states
and state transition models whose parameters are learnt thugh labeled training se-
guences. It is shown, through automatic analysis of footdatoaching video, that the
probabilistic approach performs more accurately while detting events, mainly due
to their ability to capture temporal patterns and yet, absob small spatio-temporal
variations. Thus, a common feature of most of these approahis the use of HMM in
a traditional framework, for detection of prede ned events While the detected events
are used for indexing, retrieval and generation of summarigighlights, they are rarely

used for classi cation of video sequences.
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2.2.1 Issues addressed in video classi cation

The existing approaches to video classi cation can thus berdadly categorized into
those which model the class-speci ¢ probability density faction of feature vectors,
and those which model temporal information present in the geence of images. While
features based on color and its distribution in image framegsnd motion, have been
explored for classi cation, we note that the potential of ede-based features is not
fully realized. Since we address the problem of video clasation in the context of
sports, edge-based features play an important role in chatarizing entities such as
sports areas and motion of players and objects. We proposeethse of edge direction
histogram and edge intensity histogram, where the former @lso used for spatially
localizing edge information within an image. We also propeshe use of autoassociative
neural network models for estimating the distribution of ede-based features. These
are nonlinear and nonparametric models that do not make agsptions on the shape
of probability density function of feature vectors.

Methods that model temporal information in video sequence®cus on the detec-
tion of events in video sequences. These are prede ned eethat require manual
e ort to identify frame sequences containing those eventsMoreover, the detected
events are used mostly for indexing and retrieval, and not falassi cation. In this
context, we note that the events being specic to sports cagpries, can be used as
features to classify a given video into one of those categgsi We propose a novel
method to identify and match events in video sequences, ugi framework based on
hidden Markov models. Here, the events are not prede ned, binypothesized based
on the sequence latent in a given video. Once the events areriti ed, they are further

used for classi cation of a given video into one of the sportsategories.
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2.3 SUMMARY

In this chapter, some of the existing approaches to video segntation and classi -

cation were reviewed. The key components of video shot bowrg detection are the
features used to represent images, and the measure of siniy&distance used to hy-

pothesize a shot boundary. The survey suggests that thereaiseed for robust features
and algorithms which are general enough to detect di erentypes of shot transitions.
In this thesis, we propose novel algorithms for shot boundadetection to address this
iIssue, and also examine the e ectiveness of features of redd dimension. In video
classi cation, most algorithms are still based on low-levdeatures, since deriving more
meaningful information at a higher level is a challenging &k. We explore, low-level
edge-based features, and higher level features based onrtbgon of events for the task
of sports video classi cation. We also study the e ect of cotrining evidence obtained

from multiple features and classi ers, on the performancef @lassi cation.
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CHAPTER 3

VIDEO SHOT BOUNDARY DETECTION BY
COMBINING EVIDENCE FROM EARLY AND LATE

FUSION TECHNIQUES

Video segmentation is the rst step in the analysis of videoantent for indexing,
browsing and retrieval. Segmentation of video can be done wrious levels such as
shots, scenes and stories. Video shot boundary detectionaives a low-level temporal
segmentation of video sequences into elementary units eallshots. Detection of shot
boundaries provides a base for all video abstraction and lhigevel video segmentation
methods. A shot is usually conceived in the literature as ases of interrelated con-
secutive frames captured contiguously by a single cameraesption and representing
a continuous action in time and space [19]. The transition lbgeen two shots can be
either abrupt or gradual. An abrupt transition (hard cut) occurs between two con-
secutive frames, where as gradual transitions (fades, dikses and wipes) are spread
over several frames. Gradual transitions are harder to detebecause the di erence
between consecutive frames is smaller and gradual traneitis can occur even within
a shot.

In this chapter, we brie y describe the traditional method d shot boundary de-
tection, which is an early fusion algorithm. Early fusion réers to the combination
of evidence due to all the components of a feature vector foetgcting shot bound-
aries. In Section 3.1, we propose two modi cations to earlyus$ion algorithm. The
rst modi cation is to compute the dissimilarity between frames which are separated

by a margin, aimed at simultaneous detection of cuts and gradl transitions. The
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second modi cation is to perform a bidirectional processmof video, aimed at reduc-
ing the miss rate. Performance measures for evaluating atgbms for shot boundary
detection are described in Section 3.2. A novel method for@hboundary detection,
called late fusion is proposed in Section 3.3, which is based evidence due only to
those components of the feature vector that change signi oly. The merits of early
and late fusion techniques are combined to improve the perfoance of shot boundary
detection, as described in Section 3.4. The performance bktproposed algorithms is
evaluated on broadcast video data, that includes both abra@nd gradual transitions.

Section 3.5 summarizes the study.

3.1 SHOT BOUNDARY DETECTION BY EARLY FUSION

Shot boundary detection involves testing, at every frame dex n of a given video of

length N, frames, the following two hypotheses:

Ho : A shot boundary exists at frame indexn.

H: : No shot boundary exists at frame index. (3.1)

p representingN, frames in a video. Testing of the hypotheses at the frame inxle

n involves computation of a dissimilarity value,d[n], between two sequences df

the left and right of n, respectively. The value olN can vary from one frame to a few
frames (corresponding to less than one or two seconds). Ifethlissimilarity value is
greater than a threshold [n] (either xed or adaptive), the hypothesisH, that a shot
boundary exists at frame indexn, is chosen.

Some of the commonly used dissimilarity measures include déidean distance,
cosine dissimilarity, Mahalanobis distance and log-likélood ratio. Mahalanobis dis-
tance and log-likelihood ratio are based on probability disbutions, and hence are

superior to a simple metric like Euclidean distance. But the are usually limited to
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second order statistics. Also, they are constrained by thereount of data (hnumber of
image frames) available to estimate the parameters of thedtiiibutions. Such distance
measures are not suitable for detecting gradual transiti@n although the number of
spurious shot boundaries hypothesized is relatively les$n contrast, measures such
as Euclidean distance and cosine dissimilarity can be contpd between successive
frames or between two sequences of frames, thereby makin@rth suitable for both
abrupt and gradual transitions. However, when these distaes are computed between
successive frames, the number of spurious shot boundariggpdthesized is typically
greater than that due to Mahalanobis distance or log-likdliood ratio. The objective
is to use a dissimilarity measure that detects both abrupt ashgradual transitions and
also minimizes the number of spurious shot boundaries. Eigdgan distance with an
adaptive threshold based on the standard deviation compudeover past few frames is
similar to the use of Mahalanobis distance with a xed thresbld. In view of this, we
use Euclidean distance as the dissimilarity measure with adaptive threshold com-
puted using the variance of a few frames before the frame at ivh the hypothesis is
tested. Letd[n] = D(Xn;Xn 1), whereD denotes the Euclidean distance between two
adjacent feature vectorsx,, and x, ;. If | [n] denotes the standard deviation oN
frames to the left ofn, then the dynamic threshold is computed as[n] = L[n],
where is a constant scaling parameter.

We now propose a one-pass algorithm which detects cuts andhdual transitions
simultaneously. Two modi cations are proposed to the tradional method described
above. These are: (1) Simultaneous detection of cuts and dual transitions, by
computing the dissimilarity measure between two feature e#ors separated by a margin

of M frames, and (2) bidirectional processing of the video fordacing the miss rate.

3.1.1 Simultaneous detection of cuts and gradual transitio ns

The dissimilarity value computed between two adjacent blds of frames (where the

block size can vary from one frame to a few frames) has gooddance to detect cuts,
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but fails to detect a signi cant number of gradual transitions. Figs. 3.1(a) and (b)
show the variation of three components of the feature vect®ras a function of time,
in the vicinity of a shot boundary, for a cut and a gradual trarsition, respectively.
The three-dimensional feature vector shown for illustratin is obtained by nonlinear
compression of 512-dimensional color histogram. The issoledimension reduction is
discussed in Chapter 4. The dissimilarity values computedebween adjacent frames
are shown in Figs. 3.1(c) and (d), by solid lines. Also plotte using dotted lines are
the dynamic thresholds, computed as described above. A shmbundary is hypoth-
esized, where the dissimilarity value exceeds the dynamibréshold. It can be seen
from Fig. 3.1(d) that the dissimilarity values between the djacent frames is not sig-
ni cant enough compared to the dynamic threshold, and hencene gradual transition
is missed. In order to detect gradual transitions simultarausly with cuts, we pro-
pose to compute the dissimilarity value between frames septed by a margin of, say
M frames. The dissimilarity value and the dynamic threshold r@ now computed as
din] = D(Xn;Xn m)and [n] = L[n  M]. The basis for computing dissimilarity
value between frames separated by a margin is that the framasthe region of grad-
ual transition do not contribute signi cantly to the dissimilarity. Thus, by excluding
frames in the region of gradual transition, a signi cant disimilarity value is obtained.
Suppose, if frames in the transition region are excised ouhen a gradual transition
would resemble an abrupt change. Thus, by comparing framesthva margin greater
than the typical duration of a gradual transition, the propcsed modi cation treats the
detection of cuts and gradual transitions alike. Figs. 3.&( and (f) show the dissimilar-
ity values computed between two frames separated by a margghM = 20 frames. It
can be seen from the gures that the evidence for the gradualansition is comparable
with that of the cut, and hence can be detected simultaneoysiwith a cut. While
the choice of a margin helps in detection of gradual transdns, it does not a ect the

detection of cuts.
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0 20 40 60 80 0 20 10 60 80
--> Frame index (n) --> Frame index (n)

Fig. 3.1: Shot boundary detection without and with margin. Contours o
three (3) components of feature vector, for (a) a typical cut and (b)

a gradual transition. (c) and (d) Dissimilarity valué&<,; X, 1) without
margin, corresponding to (a) and (b), respectively, shaowsolid line. The
dynamic threshold | [n]with =4 andN =10 is shown by a dotted line.
(e) and (f) Dissimilarity valued(x ;X m) with a margin oM =20, corre-
sponding to (a) and (b), respectively. The dynamic threghol [ [n M]
with =4 is shown by a dotted line.
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3.1.2 Bidirectional processing of video

Signi cant variations in the frames (and hence in the featwes) just before the shot
boundary, results in a high threshold that causes several @ene shot boundaries to
be missed. This is a typical problem with methods that procesthe video only in the
forward direction (left to right). This can be overcome by pocessing the video in the
reverse or backward direction (right to left) as well. One sth case is shown in Fig. 3.2.
The distance and the threshold values computed in the forwardirection are given by
di[n] = D(Xn;Xn m) @and ¢[n] = R[N M]. These are same as discussed in
Section 3.1.1. The distance and the threshold values in thewerse direction are given
by dp[n] = D(Xn 1;Xn+m 1) @nd p[n] = r[N+ M 1], where g[n+ M 1]
denotes the standard deviation ofN frames to the right of the frame whose index is
(n+ M 1). It can be easily veri ed that dy[n] and p[n] are just the shifted versions
of their counterparts in the forward direction, di [n] and ¢[n]. Hence, it is su cient
to compute the dissimilarities and the threshold values owlin the forward direction.
The evidences due to forward and backward processing appea two edges (rising
and falling respectively) of the distance plot, as is appanein Fig. 3.1(e). The new

condition for hypothesizing a shot boundary at the frame ineix n becomes
di[n]> ¢[n] J dy[n]> o[N] (3.2)

where \j" denotes the logicalOR operation. This modi ed condition, that uses the
evidence from either side of a shot boundary, reduces the sisate, but at the same

time can increase the number of false alarms.
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0 20 40 60 80 100 120 140 160
---> Frame index (n)

Fig. 3.2: Bidirectional processing of video for shot boundary detecta)
Contours of three (3) dimensions of feature vectgr for a cut atn = 83
with signi cant variation to the immediate left of the tratisn. (b) The
dissimilarity valued; [n] (solid line) and the threshold [n] (dashed line).
Forward processing fails to detect the shot boundary (naark®. (c) The
dissimilarity valuedy[n] (solid line) and the threshold,[n] (dashed line).
Backward processing detects the shot boundary.
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3.2 PERFORMANCE EVALUATION

3.2.1 Data set

The performance of shot boundary detection algorithms is aluated on a database of
approximately 2% hours of news, wild life documentaries and sports video seeces.
The database contains a total of 618 cuts and 170 gradual traitions, the details of
which are given in Table 3.1. The video clips were captured at rate of 25 frames
per second, at 320 240 pixel resolution, and stored in audio video interleaveA{/I)

format.

Table 3.1: Video data used for shot boundary detection experiments.

Clip ID Duration (min) # frames | # cuts | # graduals
BBC 23 33,895 155 28
CNN 24 36,000 76 72
NDTV 27 32,673 135 7

Wild Life 20 30,068 137 21
Sports 15 22,899 115 42
Overall 109 1,55,535 618 170

3.2.2 Features

An image histogram refers to the probability mass function fothe image intensities.
This is extended for color images to capture the joint probalities of the intensities of

the three color channels, namely, red (R), green (G), and @#uB). More formally, the
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color histogram is de ned by
hasc(a;b;9= N Pr(A=aB = b;C= 0); (3.3)

whereA , B and C represent the three color channels R,G and B, respectivegndN is
the number of pixels in the image. Computationally, the colohistogram is formed by
discretizing the colors within an image and counting the nuber of pixels of each color.
In our experiments, a 512-dimension RGB color histogram, tdined by quantizing the

3-D color space intoan 8 8 8 grid, is used as the feature vector.

3.2.3 Performance metrics

The performance of the shot boundary detection task is meawdl in terms of recall

(R) and precision (P) criteria, given by

NC_

R=_—- 3.4
Nm’ ( )
and
N¢
P=_—: )
N.+ N, (3.5)

where N, is the total number of actual (or manually marked) shot boundries, N

is the number of shot boundaries detected correctly, and; is the number of false
alarms. A good performance requires both recall and preasito be high, i.e., close
to unity. The choice of the threshold factor is crucial. A small value of improves
the recall, while reducing the precision at the same time. Aaftge value of has the
reverse e ect on recall and precision. A compromise betweeecall and precision is
obtained by using a measure combining the recall and preasi given by

2 R P

Fi= R P (3.6)

Ideally, F; should be close to unity.
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3.2.4 Results and discussion

The performance of forward and backward processing usingetiearly fusion algorithm

is given in Table 3.2. The optimal threshold factor . corresponds to besF; measure.

Table 3.2: Performance (in terms dR, P and F;) of shot boundary detection
using forward and backward processing of video by earbnfusi

Forward processing Backward processing
Clip ID opt R P F1 opt R P F1
BBC 10.0| 0.881| 0.926| 0.903| 8.0 | 0.902| 0.942| 0.921
CNN 8.0 | 0.878| 0.909| 0.893| 6.5 | 0.892| 0.904| 0.898
NDTV 12.5| 0.768| 0.908| 0.832| 6.5 | 0.873| 0.780| 0.824

Wild Life 9.5 | 0.852| 0.912| 0.881| 6.5 | 0.858| 0.844| 0.851

Sports 11.0| 0.867| 0.897| 0.881| 9.0 | 0.844| 0.854| 0.849

Overall 9.5 | 0.854| 0.889| 0.871| 6.5 | 0.890| 0.820| 0.853

It is to be noted here that the optimal threshold factor is di erent for di erent clips,
and also for forward and backward directions of the same clipPerformance after
combining the evidence obtained using forward and backwargrocessing is given in
Table 3.3. It is seen that the OR logic improves the performa®, while the AND logic
reduces the optimalF; value to 0.59. This is mainly due to a high probability that ore

of the two sides of a shot boundary has a large variance amorgetfeature vectors.

3.3 SHOT BOUNDARY DETECTION BY LATE FUSION

The early fusion technique described in the previous seatiavas based on the overall

change in color histogram between adjacent frames in a videequence. The dimension
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Table 3.3: Performance (in terms oR, P and F;) of shot boundary detection by
combining the evidence obtained using forward and backpva®ssing of video.

Combined (OR) Combined (AND)
Clip ID opt R P F1 opt R P F1
BBC 10.0| 0.937| 0.918| 0.927| 3.0 | 0.881| 0.592| 0.708
CNN 8.0 | 0.953| 0.898| 0.925| 3.0 | 0.736| 0.407| 0.524
NDTV 9.5 | 0.901| 0.837| 0.868| 3.0 | 0.852| 0.531| 0.654

Wild Life 9.5 1 0.902| 0.878| 0.889| 3.0 | 0.863| 0.583| 0.696

Sports 13.0| 0.878| 0.940| 0.908| 3.0 | 0.700| 0.240| 0.358

Overall 10.0| 0.908| 0.882| 0.895| 3.0 | 0.817| 0.465| 0.592

of color histogram, 512 in this case, was chosen to provideeggiate representation to
each color component. However, not all components of the oplhistogram feature
vectors are populated for a given frame of video. Secondlyptrall components of the
color histogram change signi cantly in the neighbourhood foa shot boundary. It is

observed that in general, a small number of color bins underg signi cant change
when there is shot boundary. Figs. 3.3 (a) and (b) show the poability and cumulative

distributions of the number of bins changing signi cantly &the actual shot boundaries,
for a threshold factor of =5. It can be seen from Fig. 3.3 (b) that around 50% of the
shot boundaries have 50 or less number of bins changing sigantly (approximately

10% of the total number of bins) and around 82% of the shot bodaries have 100 or
less number of bins (approximately 20%) changing signi cély. Hence we see that a
shot boundary can be detected by observing a signi cant chge in a small number of

bins.
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Fig. 3.3: (a) Probability distribution of shot boundaries in termdlref number
of color bins changing signi cantly. (b) Cumulative distition of (a).

At the same time, if all components of the color histogram areonsidered for the
computation of dissimilarity, as is the case in early fusigneven a small contribution
from each component results in a large value of the overallsgimilarity. This is typi-
cally the case when frames in a video sequence change grdgiudle to object/camera
motion and intensity variations, even when there is no shotdundary. To overcome
the problem of false hypothesis due to small changes accuated over a large number
of bins, we propose to use the number of bins changing sigramtly as a measure to hy-
pothesize a shot boundary. We call this as late fusion tectue, since the components
of color histogram are rst observed for signi cant changeand only then included in
the process of decision making. The condition for hypothesig a shot boundary is
exactly same as the early fusion technique outlined in the gvious section, except that
it is applied on individual bins separately. If the numberx of bins voting for a shot
boundary exceeds a thresholl , a shot boundary is hypothesized. The performance of
the late fusion technique is given in Table 3.4. The optimalhreshold factorK ,,; cor-
responds to best; measure. We observe from the table that less than 20 compotsen

of the color histogram are su cient for detection of shot bomdaries, provided that
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Table 3.4: Performance (in terms d®, P andF,) of shot boundary
detection by late fusion of decisions along individual dgmoas.

Video category K opt R P Fq
BBC 19 | 0.930| 0.911| 0.920
CNN 12 | 0.865| 0.914| 0.889
NDTV 17 | 0.930| 0.841| 0.883

Wild Life 17 | 0.880| 0.880| 0.880
Sports 12 | 0.900| 0.976 | 0.936
Overall 15 | 0.888| 0.877| 0.882

these components change signi cantly in the vicinity of a sbt boundary. Also, com-
parison of Tables 3.3 and 3.4 indicates that the performana# late fusion algorithm

is comparable to that of early fusion (when OR logic is usedrf@aombination).

3.4 COMBINING EVIDENCES FROM EARLY AND LATE FUSION

TECHNIQUES

The early fusion technique computes the net changes in allghbins or dimensions,
which can be signi cantly large although the change in the idividual bins is small.
This can lead to false hypotheses of shot boundaries therebginging down the per-
formance. The late fusion technique provides robustnessaigst such cases which are
typically caused by illumination changes and camera/objéenotion. At the same time,
it fails to detect genuine boundaries which have similar cot content on either side.
Thus, early fusion relies on the extent of overall change, v late fusion relies on the
number of signi cant changes. The inherent advantages of éise two techniques can be

exploited by combining evidence due to these two methods. &tperformance of the
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shot boundary detection task, when the shot boundaries hypgwesized by early fusion
are validated (equivalent to logical AND operation) by the &te fusion method, is given
in Table 3.5. It can be seen that there is signi cant improverant in performance as

compared to that of the two techniques individually.

Table 3.5: Performance (in terms d®, P andF,) of shot boundary
detection after combining early and late fusion techniques

Video category opt | Kopt R P Fq
BBC 3.5 | 18 | 0.9720| 0.9329| 0.9521
CNN 5.5 3 0.9527| 0.9276| 0.9400
NDTV 6.5 | 14 | 0.9225| 0.9225| 0.9225

Wild Life 45 | 10 | 0.9454| 0.8964 | 0.9202
Sports 6.0 | 5 |0.9889| 0.9175| 0.9519
Overall 5.5 8 0.922 | 0.921 | 0.921

Another signi cant advantage of combining these two techmjues is that the crit-
icality of the choice of threshold factors and K is reduced. It can be seen from
Figs. 3.4 (a) and (b), that the F; measure drops signi cantly on either side of the
optimal threshold factors and K, for early and late fusion techniques, respectively.
Fig. 3.5 shows that for the combination of early and late fusn, the F; measure remains
high (around 0.9) over a wide range of values, for a chosen value &€ . Similar trend
is observed when th&k values are varied for a xed value of , as shown in Fig. 3.6.
For a xed value of early fusion threshold factor =5.0, the overall recall, precision
and F, values for the entire data set are plotted as a function of thiate fusion thresh-
old factor K in Fig. 3.7. Thus, we see that there is a greater exibility inthe choice

of the threshold factors.
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Fig. 3.4: Performance curves for ve dierent video clips as a functod
the threshold factor. (a) Early fusion techniquéj vs and (b) late fusion
technique:F; vsK.
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Fig. 3.5: Performance curves for the combination of early and laterius
techniques.F; values as a function of early fusion threshold factofor ve

di erent video clips, and for two di erent values of late ifs threshold factor
K, (a) 5 and (b) 10.
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Fig. 3.6: Performance curves for the combination of early and laterius
techniquesF; measure as a function of late fusion threshold faktorfor the
ve di erent video clips, and for two di erent values of earfusion threshold
factor , (a) 5 and (b) 10.
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The missed shot boundaries are mainly due to lack of eviden@esigni cant change
in color information, such as cuts within a war footage). Fedares other than color
or intensity information, like edge changes that provide caoplementary information,
need to be used to reduce the miss rate. The false detectioa#i into two categories:
signi cant changes in captions, graphics or animation andigni cant camera/object
motion within a shot. Strictly speaking, the former should ot be considered as false
alarms as they indeed correspond to events within a shot, vigiit is always di cult

to eliminate the latter.

3.5 SUMMARY

In this chapter, we proposed a novel method called late fusioof evidence, for de-
tection of shot boundaries. The basis for this method lies ithe signi cant change
occurring in a small number of color features, in the neighlnchood of a shot boundary.
The technique is robust to illumination changes and camerabject motion within a
shot. Also, modi cations to the existing early fusion algathm were suggested. These
modi cations, namely, processing with a margin and bidird@nal processing, make
e ective use of statistics derived from frames in the neigldurhood of shot bound-
aries. These modi cations were shown to improve the perfomnce of shot boundary
detection. The evidence due to late fusion has been combinetth the evidence due
to early fusion to exploit the advantages of both the methodslt was also observed
that such a combination reduces the criticality of the choe of threshold, by yielding

good performance over a range of threshold values.
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CHAPTER 4

VIDEO SHOT BOUNDARY DETECTION USING

FEATURES OF REDUCED DIMENSION

The problem of detection of shot boundaries in video sequesscwas discussed in the
previous chapter, using color histogram as a feature for negsentation of images. It
has been observed that color histogram is sparse, that is, nyaof the components/bins
of color histogram are either small or zero. This sparsenesslicates that only a few
components of color histogram are signi cant, and hence, ¢he is a case for reducing
the dimension of color histogram feature vector. Secondlgplor histogram does not
re ect the spatial distribution of colors in an image. Thus,a representation based on
color histogram may fail to di erentiate between two imagesvhich are distinct, but
have similar color distributions. Hence, a representatiois needed that can capture
the spatial distribution of colors. In this chapter, we use @lor coherence vector as a
feature for representation of images. The color coherenaector (CCV) is a histogram-
based feature that incorporates information about the spéil distribution of color as
well [50]. While the CCV provides additional information f@ shot boundary detection,
it also increases the dimensionality of the feature vectorThis can be countered by
transforming the high dimension sparse feature space intdav dimension space, while
preserving most of the signi cant information.

There are several choices for providing linear or nonlineamapping for dimension
reduction. Our choice for nonlinear principal component alysis (NLPCA) using
autoassociative neural network (AANN) models is motivatedy its superior scaling
properties, less computational cost, and its ability to cajpre higher order relations

in the data [51,52]. The nonlinear transformation of the fdare vectors to a low di-
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mension space preserves information useful for shot bounglaetection, and helps to
provide better visualization. Hence, we propose the use aftaassociative neural net-
work (AANN) models for nonlinear compression of color cohence feature vectors. We
discuss the e ect of compression of color coherence vectorsthe performance of shot
boundary detection. This approach to dimension reductionsicompared with those
based on singular value decomposition (SVD) and independeromponent analysis
(ICA).

This chapter is organized as follows: In Section 4.1, the eattion of color coher-
ence vector (CCV) from a frame of video is described. In Semti 4.2, AANN models
and their ability to perform nonlinear compression of featte vectors are discussed.
Also, singular value decomposition (SVD) and independenbmponent analysis (ICA)
are brie y described in the context of compression. Sectiof.4 provides the descrip-
tion of the proposed shot boundary detection algorithm. In &ction 4.5, experimental
results of the shot boundary detection algorithm are discged. Section 4.6 summarizes

the study.

4.1 COLOR COHERENCE VECTORS

Color histograms are used to compare images in many applimats. Their advan-
tages are ease of computation, and insensitivity to small ahges in camera viewpoint.
However, color histograms lack spatial information, so ingges with very di erent ap-
pearances can have similar histograms. For example, the iges shown in Fig. 4.1
have similar color histograms, despite their rather di erat appearances [50,53].
Many applications require simple methods for comparing pai of images based on
their overall appearance. For example, a user may wish to radve all images similar
to a given image from a large database of images. Color histagns are a popular so-
lution to this problem, and are used in systems like QBIC [54nd Chabot [55]. Color
histograms are computationally e cient, and generally ingnsitive to small changes

in camera position. However, a major limitation is that a calr histogram provides
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Fig. 4.1: Two images with similar color histograms.

no spatial information; it merely describes which colors arpresent in an image, and
in what proportions. In addition, color histograms are serigve to both compression
artifacts and changes in overall image brightness. To ovente the lack of spatial infor-
mation, we describe a histogram-based method that incorpates spatial information

for representing images. We classify each pixel in a givenlaobin as either coherent
or incoherent, based on whether or not it is part of a large siharly-colored region.

A color coherence vector (CCV) stores the number of cohereas well as incoherent
pixels with each color. By separating coherent pixels fronm¢oherent pixels, CCVs
provide ner distinctions than color histograms. Intuitively, we de ne a color's coher-
ence as the degree to which pixels of that color are memberdafje similarly-colored
regions. We refer to these signi cant regions as coherentgiens, and observe that
they are of importance in characterizing images. CCVs prenecoherent pixels in one
image from matching incoherent pixels in another. This alles ne distinctions that

cannot be made with color histograms.
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4.1.1 Computation of color coherence vector

Color coherence vector is obtained by splitting the numberf@ixels in each color bin
into two parts, coherent and incoherent. The coherent partiges the count of pixels
that lie within a neighbourhood of the same color, and the reaining pixels form the

incoherent part. By tracking the coherent and incoherent pas separately for each
color bin, CCVs provide a ner distinction between images tan color histograms.
Thus, CCV can detect some additional shot boundaries whichag otherwise be missed
by color histogram.

The high resolution RGB color space is quantized into a small number of color
bins, so as to reduce some of the uctuations in color interig@s over adjacent frames

from the same scene. The CCV for a frame of video can be complitey constructing

same color. A connected componeli; 2 G is a maximal set of pixels such that for
any two pixelsp  (X1;y¥1); 4 (X2;¥2) 2 G, there is a path in G; betweenp
and g. A path in G; is a sequence of pixelp;; p2; :::; pn such that each pixel is inG;
and any two sequential pixelgy and p;+1 are adjacent to each other. Two pixels are
considered to be adjacent, if one pixel is among the eight skst neighbours of the
other. Each connected component is of a specic color, can bé varying size, and
can be computed in linear time. For each connected compone@{ associated with
the kth color, the count  and  of coherent and incoherent pixels , respectively, are
updated as follows:
If jGij > then
k= k+]Gi
else
k= k+]Gi]
where is a constant that denotes the minimum size of a coherent néigourhood,
and jG;j denotes the size of the grapls;. Thus, if the color space is quantized into

m=2 bins, a CCV ofm dimensionsf ( 1; 1);:;( m=2; m=2)0 IS obtained.
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4.2 APPROACHES TO DIMENSION REDUCTION

In this section, we discuss three di erent approaches to rede the dimension of color
coherence feature vectors. The rst approach, based on suilgr value decomposition,
attempts to uncover the geometrical structure formed by faare vectors in the input
space. The input feature vectors are projected onto orthonmal basis vectors, which
in turn are derived from the input data itself. In contrast, independent component
analysis attempts to derive basis vectors which need not betlvogonal, but are sta-
tistically independent. Finally, autoassociative neurahetwork models are discussed,
which attempt to capture nonlinear principal components othe input feature space

and thereby help reduce the dimension of the feature vectors

4.2.1 Singular value decomposition

The singular value decomposition (SVD) of aM N matrix A is any factorization
of the form A = UV T, whereU isanM M column-orthogonal matrix, V is an

N N column-orthogonal matrix, and isanM N diagonal matrix with nonnegative
elements, given by =diag 1; »; ' r Wwhere 4 2 R OandR

is the rank of the matrix A. The values ;, i = 1;2; ;R are the singular values,
and the rst of R columns ofV and U are called the right and left singular vectors,
respectively.

Let a; denote anM -dimensional feature vector derived fron”ith image frame,
wherei = 1;2; ;N, and N denotes the number of frames in the video sequence.
The matrix A is constructed by arranging the feature vectors;, i = 1;2; ;N,
along the columns. The column vectors A& are projected onto the orthonormal basis
formed by vectors of the left singular matrixU. The row vectors ofA are projected
on to the orthonormal basis formed by vectors of the right sgular matrix V7. Let
M be the dimension of the feature vectors antll be the number of feature vectors.
By performing SVD, vectors from theM -dimensional feature space are projected onto

a K -dimensional K <R M) re ned feature space, by preserving onlK singular
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vectors corresponding to theK largest singular values of . A given M -dimensional
feature vectora; can be compressed into & -dimensional feature vectors; as

&= au; aus alug ' (4.1)

whereuq; u,; Uk are the rst K column vectors ofU and T denotes the transpose

operator.

4.2.2 Independent component analysis

Independent component analysis (ICA) is a statistical andamputational technique,
which uses higher order statistics for revealing hidden faes that underlie sets of ran-
dom variables, measurements or signals [56]. ICA is a linea@northogonal transform
which separates the independent source signals from theindar mixtures without
knowing the mixing matrix.

Independent component analysis de nes a model for the obsed multivariate
data, which is typically given as a large database of sampledn the model, the
data variables are assumed to be linear or nonlinear mixtusef some unknown latent
variables, and the mixing system is also unknown. The latentariables are assumed
non-Gaussian and mutually independent and they are calleddependent components
of the observed data. These independent components, alsdlexh sources or factors,
can be estimated using ICA. The ICA technique aims to nd a liear transform for
the input data using a basis as statistically independent agossible. While principal
component analysis (PCA) tries to obtain a representation &sed on uncorrelated
variables, ICA provides a representation based on statistlly independent variables.
The features produced by PCA are mutually uncorrelated. Hoswer, ICA not only
decorrelates the data but also reduces higher-order stdical dependence of data.

Let x denote anN -dimensional vector ands denote anM -dimensional vector,
whose components are th&1 statistically independent non-Gaussian source signals.

The ICA model can be expressed as
X = As,; (4.2)
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whereA isanN M mixing matrix with linearly independent columns. The objetive
is to estimate the demixing matrixW using only the observed signalg. The matrix
W is applied on the observed signal such that the componentstbe output vector y

are as statistically independent as possible, where
y = Wx = WAs : (4.3)

The rows of the output vectors are the independent component The basis func-
tions learned by ICA form the columns of matrixA. An input feature vector can be

compressed by projecting it onto a few independent comporien

4.2.3 Autoassociative neural network models

Autoassociative neural network models are multilayer feéorward neural network mod-
els that perform a nonlinear identity mapping of the input spce [52,57]. The network
architecture of these models may have more than one hidderyda, and the input and
output layers have the same number of processing units. Oné tbe hidden layers
known as the bottleneck layer or the compression layer has anénsion lesser than
the input layer. These networks can be trained using backppagation learning al-
gorithm [52] so as to reconstruct the input data at the outputlayer. The vectors at
the outputs of the compression layer represent projectiors the input feature vec-
tors onto signi cant basis functions learnt by the network $8]. This characteristic of
AANN model was exploited extensively for linear and nonliree compression of input
data [59].

The principal component analysis (PCA) projects the input éature vectors onto
the rst few directions of maximum variances, so that the emr due to the represen-
tation is optimal in the mean squared sense. This linear trafiormation uses only the
second order correlations in the data, and cannot capturerse of the class discrimina-
tive information which is signi cant for pattern recognition tasks. Nonlinear principal
component analysis (NLPCA), typically implemented by neual network models, pro-

vides a nonlinear generalization of PCA [51,58,60]. AANN ndels and kernel PCA
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(KPCA) methods have been commonly used for NLPCA [52]. In th&ernel PCA,
eigenanalysis is performed in a feature space nonlinearlated to the input space,
and whose dimension is directly proportional to the numberfanput patterns. For a
large number of patterns, kernel PCA results in a kernel maitx of large dimension. In
such cases, eigenanalysis becomes computationally inteas Also, from the studies
of dimension reduction using AANN models for recognition afonsonant-vowel units
of speech, it is shown that nonlinear compression using AANModels is superior to
linear compression by PCA [61]. Hence, AANNs are an attrao® tool for nonlinear
compression of input feature vectors.

A ve layer AANN model for performing nonlinear compressiors shown in Fig. 4.2.

It has m nodes in the input layer, p nodes in the compression (third) layer, andn

0]
0]
@

Input Layer Compression

Layer Output Layer

Fig. 4.2: Five layer AANN model used for nonlinear compression oérpatectors.

nodes in the output layer. The second and fourth layers of theetwork have more
units than the input layer. The compression layer has fewemits than the input and
the output layer. The activation functions of the units in the second and fourth layers

are nonlinear. The activation functions of the units in the hird layer may be linear
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or nonlinear. Once the network has been trained, the»-dimensional input vector is
transformed to ap-dimensional < m) vector at the compression layer. The output
values of the units in the compression layer give a reducedr#nsion representation of

the input vector. These reduced dimension vectors are usealdetect shot boundaries.

4.3 VISUALIZATION OF EVIDENCE AT THE SHOT BOUNDARY

In our approach, the RGB color space is discretized into 125 ( 5 5) colors leading
to a 250-dimensional color coherence vector for each franfde dimension of the fea-
ture vector is reduced using an AANN model whose structure 2560 379N pN 379N 250,
where L denotes linear units andN denotes nonlinear units. The integer values de-
note the number of units in that particular layer. A video frame is now represented
by a point in the p-dimensional { = 3) space and allows for better visualization. The
frames with similar color patterns will be mapped close to eh other. Thus, in the
neighbourhood of an abrupt shot transition, frames on eaclide result in the formation
of two distinct clusters. Such a case is shown in Fig. 4.3(akhere each frame is rep-
resented by a 3-dimensional feature vector, obtained afteompression using AANN
model. The distance between the clusters or the margin of sgption depends on the
nature of frames in the neighbourhood of the abrupt shot bowary. On the other
hand, a gradual transition between two shots, when viewed & 3-dimensional space,
consists of two dense clusters connected by a path, as showirig. 4.3(b). Except for
this path from one to cluster to another, a gradual transitio is similar to an abrupt
one. This reinforces the logic behind the choice of a margif foames, in the one-pass

algorithm discussed in Section. 3.1.1.

4.4 SHOT BOUNDARY DETECTION USING COMPRESSED FEATURES

In this section, we examine the e ectiveness of compressedture vectors for detection

of shot boundaries. For this purpose, the compressed feaduwectors are rst used in
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Fig. 4.3: (a) Cluster patterns for abrupt transition in the low dimemsspace.
(b) Cluster patterns formed during gradual transition ie tbw dimension space.

the framework of the early fusion algorithm described in th@revious chapter. That
is, early fusion along with two modi cations, namely, one-gss processing and bidi-
rectional processing, is performed using the 3-dimensidriaature vectors. We brie 'y
revisit these modi cations in this section, and then addres two issues, of validation
and categorization of shot boundaries.

Shot boundary detection involves testing a hypothesis, awvery frame indexn of a
given video, whether a shot boundary exists or not. LeX = fxq;X2;: 1 Xn; 1101 XN, O
be a sequence of feature vectors, each of dimensprepresentingN, frames in the

video. Testing of the hypotheses at the frame indaxinvolves computation of a dissimi-

and Xgr = fXn;Xn+1; 00 Xnen 10 to the left and right of n, respectively. If the dis-
similarity value d[n] is greater than a threshold [n] (either xed or adaptive), the
hypothesis that a shot boundary exists, is chosen.

An adaptive threshold is computed using the variance of a fefrlames before the
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frame at which the hypotheses is tested. Letln] = D( ,; g), whereD( ; Rr)
denotes the Euclidean distance between the vectors and g and where | and
denote the means of feature vectors iX, and Xr, respectively. If [ [n] = P i Ui
represents the amount of variability within a block ofN frames to the left ofn, then
the dynamic threshold is computed as; [n] = L[n], where | is the covariance
matrix of the feature vectors inX_, and is a scaling parameter that controls the
dynamic threshold.

The rst set of shot boundaries is hypothesized using the dymic threshold based
technique described above with a window size Nf = 1. In order to reduce the number
of misses, the video is also processed in the reverse (or baukl) direction, which is
equivalent to comparing the dissimilarity value with y[n], the amount of variability to

the right of n. The condition for hypothesizing a shot boundary thus becoes
di[n]> ¢[n] J dy[n]> o[N] (4.4)

where d; [n] and dy[n] are the distance values computed in the forward and reverse
(or backward) directions, respectively. The use of "ORj) logic in the bidirectional
processing of the video increases the number of false hypeghs, which are reduced
by validating the hypothesized boundaries using the sameratition as in Eq. 4.4, but
with a larger window size, sayN =10. This modi ed condition, that uses the evidence
from either side of a shot boundary, reduces the miss rate, tat the same time
can increase the false alarms. The hypothesized shot bounda need to be further

validated to reduce false detections. An algorithm is now pposed for the same.

441 Validation of shot boundaries

Let n be the frame index at which a shot boundary is hypothesized.h& dissimilarity

values between each of th& framesfX,;Xn+1; ' Xn+n 10 to the right of n and
L[n M], the mean ofN frames to the left of @ M), are computed. The hypothe-

sized shot boundary is validated if at leasN=2 of theN dissimilarity values are greater

than ¢[n]. If the validation fails, then a similar process is repeatkin the reverse direc-
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tion. Hence, the condition for validating a shot boundary athe frame indexn becomes

X 1 X 1
h(di[n+ Kk]) >N=2 | h(do[n  k]) > N=2 (4.5)
k=0 k=0
where
8
< . H
nam+kp=, o ok (4.6)
-0 if di[n+Kk] ¢[n]
and
8
< . H
hdgn kD= ff Gl k> ln] 4.7)
Lo i dfn K] on]:

This majority logic, apart from validating the shot boundaly, eliminates spurious

changes typically caused by bright ashes over a couple offmes.

4.4.2 Categorization of shot boundaries into cuts and gradu al transitions

The cuts are identi ed from gradual transitions using the ifiormation that the variance
of frames on either side of a cut is small compared to that of aaglual transition. In
order to do this, the center of a transition is computed by pking the point of maximum
variance aroundn. Two ratios of standard deviations on either side of the detéed

shot boundary are computed as
vi = c[n]= L[nf;

and
Vr = c[n]= rIN]; (4.8)

where | [n], r[n], and c[n] are the standard deviations of theN frames to the left,
to the right, and around n, respectively. The shot boundary is categorized as a cut if

either of the ratios is greater than a predetermined threslha, i.e., if
vL> ] Ww?> (4.9)
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In our experiments,N =10 and = 2 are used. In addition, every cut should validate
both the conditions in (4.4) and (4.5) for a margin oM = 1 frame.

The entire process of hypothesizing a shot boundary is sumnzed in Table 4.1.

Table 4.1: Summary of the algorithm.

1. Compute them dimension color coherence vector for each frame of the
video sequence.

2. Compress them dimension CCVs top dimension vectors.

3. At each frame indexn, test the hypotheses in (3.1) using (4.4).

4. If Hy is tested positive, go to step 5 to further validate the shotbundary.
Else, incrementn by one and go to step 3.

5. Validate the hypothesized shot boundary as per (4.5).

6. If the shot boundary is successfully validated, proceed tstep 7. Else,
increment n by one and go to step 3.

7. ldentify if the shot boundary is a cut by testing the conditons in (4.4)
and (4.5) with a margin of M = 1, along with the condition in (4.9).

4.5 EXPERIMENTAL RESULTS

The performance of the proposed shot boundary detection algthm is evaluated on
a database of video sequences given in Chapter 3, usmegall (R), precision (P) and
F, performance measures as described in previous chapter.

The performance of shot boundary detection using feature at®rs of reduced
dimension is discussed in this section. Table 4.2 lists theeformance, when 3-
dimensional feature vectors, obtained using AANN modelsraused for shot boundary

detection. For comparison, the performance due to early fios algorithm is listed in
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Table 4.2: Performance (in terms d®, P and F,)
of shot boundary detection using feature vectors of
reduced dimensiorp€3) obtained from AANN.

Video category R P F1
BBC 0.912| 0.864 | 0.887
CNN 0.903| 0.855| 0.878

NDTV 0.894 | 0.841 | 0.866
Wild Life 0.915| 0.867 | 0.890
Sports 0.854| 0.785| 0.870

Table 4.3. It is observed that the compression of feature wecs leads to a reduction in
performance, since dimension reduction invariably ressglin some loss of information.
However, the reduction in performance is not very signi canindicating the degree of
sparsity of the input (uncompressed) feature vectors. Comapison of Table 4.2 with
Table 4.4 and Table 4.5 indicates that compression using AAN models results in
better performance of shot boundary detection, than using\® or ICA. This can be
attributed to the ability of AANN models to learn nonlinear basis functions, compared
to the linear basis represented by SVD and ICA. Table 4.6 corapes the e ect of di-
mension reduction of feature vectors on the detection of algt (cuts) and gradual
transition. The slightly poorer performance in the case ofrgdual transitions is at-
tributed to the lack of evidence available in the reduced diension feature vectors. In
contrast, the dissimilarity metric computed using uncompessed feature vectors show
greater evidence for detecting gradual transitions, due toontributions of di erent
components of the feature vector. For cuts, however, the disilarity metric com-
puted from only three dimension is enough for detection, prmarily due to the extent

of change in each dimension.

56



Table 4.3: Performance (in terms d®, P and F;)
of shot boundary detection by early fusion, using un-
compressed feature vectors (250 dimension).

Video category R P F1
BBC 0.942 | 0.926 | 0.934
CNN 0.935| 0.889| 0.911
NDTV 0.912| 0.846 | 0.877

Wild Life 0.908 | 0.882| 0.894
Sports 0.892| 0.934| 0.912

Table 4.4: Performance (in terms d®, P and F;)
of shot boundary detection using feature vectors of
reduced dimensiorp€3) obtained from SVD.

Video category R P F1
BBC 0.888 | 0.813| 0.846
CNN 0.892| 0.812| 0.849
NDTV 0.877| 0.798| 0.835

Wild Life 0.879| 0.800| 0.837
Sports 0.854| 0.785| 0.818
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Table 4.5: Performance (in terms d®, P and F;)
of shot boundary detection using feature vectors of
reduced dimensiorp€3) obtained from ICA.

Video category R P F1
BBC 0.810| 0.715| 0.759
CNN 0.794| 0.729 | 0.757

NDTV 0.771] 0.700 | 0.733
Wild Life 0.740| 0.680| 0.708
Sports 0.713 | 0.660 | 0.685

Table 4.6: Performance (in terms d®, P andF;) of shot boundary
detection for cut and gradual transitions for the valuegaf 3 using
AANN models of compression.

Video Cuts Graduals

category R P F1 R P F1

BBC 0.942| 0.886| 0.913| 0.882| 0.843| 0.862

CNN 0.934| 0.878| 0.905| 0.872| 0.832| 0.851

NDTV 0.926| 0.854| 0.888| 0.862| 0.828| 0.826

Wild life 0.935| 0.878| 0.906| 0.895| 0.856| 0.874

Sports 0.918| 0.862| 0.887| 0.875| 0.832| 0.852
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46 SUMMARY

In this chapter, the task of temporal segmentation of videoegjuence into shots was
performed using feature vectors of reduced dimension. Thieoice of color coherence
vector as feature is based on its ability to represent spatiaistribution of color in-
formation. Feature vectors of reduced dimension obtainedsing AANN models were
observed to perform better shot boundary detection than thee due to SVD and ICA,
primarily due to the ability of AANN models to represent noninear basis functions
from the given data. The reduction in dimension of feature wors does not result in
signi cant decrease in the performance of shot boundary dsttion, due to the spar-
sity of distribution of color coherence vectors. We have asproposed algorithms for
categorizing a shot boundary as an abrupt or a gradual trart®n, and for validating
the detected shot boundaries, which help in improving the evall performance of shot

boundary detection.
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CHAPTER 5

CLASSIFICATION OF SPORTS VIDEOS USING

EDGE-BASED FEATURES

In the previous chapters, we proposed methods for detectiohshot boundaries in video
sequences. Having detected the shot boundaries in a videbe trelevant shots can be
grouped to form more meaningful units of video. Such units ed to be categorized
on a basis that enables e cient cataloging and retrieval wih large video collections.
This requires e ective methods for classi cation of videorito di erent genres.

The objective of video classi cation is to classify a givenigeo clip into one of
the prede ned video categories. In this chapter, we addreske problem of sports
video classi cation for ve classes, namely, cricket, fodall, tennis, basketball and
volleyball. Sports videos represent an important applicain domain due to their
commercial appeal. Classi cation of sports video data is dallenging problem, mainly
due to the similarity between dierent sports in terms of enities such as playing
eld, players and audience. Also, there exists signi cant ariation in the video of a
given category collected from di erent television progrars’channels. This intra-class
variability contributes to the di culty of classi cation o f sports videos.

Content-based video classi cation is essentially a pattarclassi cation problem [62]
in which there are two basic issues, namely, feature extraa@h, and classi cation based
on the selected features. Feature extraction is the process extracting descriptive
parameters from video, which will be useful in discriminatig between classes of video.
The classi er operates in two phases: Training and testingh@ase. Training is the
process of familiarizing the system with the video charaatstics of a given category,

and testing is the actual classi cation task, where a test deo clip is assigned a class
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Fig. 5.1: Block diagram of video classi cation task.

label. A block schematic of video classi cation task is showin Fig. 5.1. If there is
more than one system for the task based on di erent featuresgpresentations) and/or
classi ers, one may combine the evidence from di erent sysmns. Hence, an automatic

video classi cation system needs to accomplish the followg major tasks:

Extracting appropriate features from the given video data.
Generating a model for each class of video.
Developing a decision logic for classifying a test video.

Combining the evidence obtained from di erent features orlassi er method-

ologies.

In this work, we study the e ectiveness of edge-based feats, namely, edge di-
rection histogram and edge intensity histogram, for sportsideo classi cation. We
demonstrate that these features provide discriminative formation useful for the in-
tended task. Three classi er methodologies, namely, autssociative neural networks
(AANN), hidden Markov models (HMMs), and support vector mabines (SVMs) are
used for modeling the sports categories. Evidences from ttveo edge based features
are combined using a linear weighting rule. The applicatiof this framework is

demonstrated on ve sport genre types, namely, cricket, faball, tennis, basketball
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and volleyball. Also, evidences from multiple classi ersra combined using a linear
weighted combination, for improving the classi cation peformance. Finally, the per-
formance of the classi cation system is examined for testdeos which do not belong
to any of the above ve categories.

This chapter is organized as follows: In Section 5.1, the eattion of edge direction
histogram and edge intensity histogram for representing suial features inherent in a
video class is described. Section 5.2 gives a brief introtioa to the classi er method-
ologies used for video classi cation. Section 5.3 describhe combination of evidence
from multiple classi ers. Section 5.4 describes experimnon video classi cation of
the ve sports categories, and also discusses the perfornganof the system. Section

5.5 summarizes the study.

5.1 EXTRACTION OF EDGE-BASED FEATURES

Edges constitute an important feature to represent the coent of images. Human
visual system is sensitive to edge-speci c features for ig@ perception. In the context
of sports video classi cation, images that contain the plang eld are signi cant for
distinguishing among the classes of sports. This is becausach sport has its own
distinct playing eld where most of the action takes place. #so, the interaction among
subjects (players, referees and audience) and objects (baglbal, basket) is unique to
each sport. A few sample images of each sports category arevah in Fig. 5.2. The
corresponding edge images are shown in Fig. 5.3. Each playield has several dis-
tinguishing features such as lines present on the playinglde and regions of di erent
textures. The subjects are also prominent in the images ancelp in distinguishing
between di erent sports. From Fig. 5.3, we can observe thatdge features are im-
portant for representing the sports video content and carrgu cient information for
human beings to distinguish among classes. These obsemas suggest that features
derived to represent the edge information can be of signi oa help in automatically

di erentiating among various categories of sports.
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Fig. 5.2: Sample images from ve di erent sports video categories) Basketball, (b)
cricket, (c) football, (d) tennis and (e) volleyball.
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Fig. 5.3: Edge images corresponding to the ve images shown in Figfds.the sports
categories: (a) Basketball, (b) cricket, (c) football, (tBnnis and (e) volleyball.
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We have considered two features that can be derived to repess edge informa-
tion, namely, edge direction histogram and edge intensityistogram. Edge direction
histogram is one of the standard visual descriptors de nechiMPEG-7 [63] for image
and video, and provides a good representation of nonhomogens textured images.
This descriptor captures the spatial distribution of edgesOur approach to compute
the edge direction histogram is a modi ed version of the appach described in [63].
A given image is rst segmented into four subimages. The edgeformation is then
calculated for each subimage using Canny algorithm [64]. €hange of the edge direc-
tions (0° 180) is quantized into 5 bins. Thus, an image partitioned into 4 gbimages
results in a 20-dimensional edge direction histogram featuvector for each frame of
a video clip. Fig. 5.4 shows 20-dimensional edge directiorstograms for ve di erent
categories. Each histogram is obtained by averaging the tograms obtained from in-
dividual frames of a clip. The clips were selected randomlyoin ve di erent classes.
The gure shows that the pattern of edge direction histogramis di erent for di erent
classes and that the selected features carry discriminagivnformation among di erent
video classes.

We have also considered the distribution of edge intensiigo evaluate the degree
of uniformity of edge pixels. This feature is derived from tb magnitude information
of the edge pixels. The range of magnitudes (0255) is quantized into 16 bins, and
a 16-dimensional edge intensity histogram is derived fronaeh frame of a video clip.
Fig. 5.5 shows 16-dimensional edge intensity histogram fore di erent categories.
Each histogram is obtained by averaging the histograms obted from individual
frames of a clip. The clips were selected randomly from ve é@rent classes. From
Figs. 5.4 and 5.5, we observe that edge direction histogramrdes more discriminative

information among the classes than edge intensity histogra
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5.2 CLASSIFIER METHODOLOGIES

Once the features are extracted, the next step is to model theehaviour of features for
performing classi cation. In this work, we have considerethree classi er methodolo-
gies for our study, namely, autoassociative neural netwagkAANN), hidden Markov
models (HMMs), and support vector machines (SVMs). We havehosen autoasso-
ciative neural networks (AANN) to model the video content, die to their ability to
capture distribution of feature vectors [65] based on the arples presented to the net-
work. Given the temporal nature of video, and hidden Markov mdels (HMMs) [66]
being e ective tools for modeling time-varying patterns, w have chosen HMM as one
of the classi er models for our study. We have also chosen fagyt vector machines
(SVMs) [67] for their inherent discriminative learning ablity and good generalization
performance. In the following subsections, a brief introduion to the three classi er
methodologies is presented. Detailed description of therée classi er methodologies

is given in Appendices B, C, and D.

5.2.1 AANN models for estimating the density of feature vect ors

Autoassociative neural network (AANN) models are feedfommvd neural networks, per-
forming an identity mapping of the input space [57] [52]. Frm a di erent perspective,
AANN models can be used to capture the distribution of input dta [65]. The distri-
bution capturing ability of the AANN models is discussed in dtail in Appendix B.
In this study, separate AANN models are used to capture the sliribution of feature
vectors of each sports video category. A ve layer AANN modes shown in Fig. 5.6.
The structure of the AANN model used in the present studies 0L 40N 6N 40N 20L,
whereL denotes linear units andN denotes nonlinear units. This structure is arrived
at experimentally to maximize the classi cation performace. The activation function
of the nonlinear unit is a hyperbolic tangent function. The etwork is trained using
error backpropagation learning algorithm for 500 epochs{h One epoch denotes the

presentation of all the training examples (of a given classp the neural network ex-
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Input layer

Fig. 5.6: Structure of ve-layer AANN model used for video classiamat

actly once. The number of epochs is chosen using cross-\atiion for veri cation, to
obtain the best performance for experimental data.

The block diagram of the proposed sports video classi catiosystem based on
edge direction histogram is shown in Fig. 5.7. For each videmategory, an AANN
model based on edge direction histogram is developed. Theegory whose model
provides the strongest evidence for a given test clip is hyfhesized as the category
of the test clip. A similar classi cation system is develop@ based on edge intensity
histogram. Thus, the edge direction histogram and edge imisity histogram feature
vectors extracted from the training data of a particular spds category are used to
train two AANN models for that category, one model correspating to each feature
type. The AANN models are trained using backpropagation leaing algorithm in
the pattern mode [57] [52]. The learning algorithm adjusts @ghts of the network
to minimize the mean squared error obtained for each featusector. Once the two
AANN models are trained, they are used as a model for that pacular sports category.

A test video clip is processed to extract edge direction hsgjram and edge intensity
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Fig. 5.7: Block diagram of the proposed video classi cation systeimgus
edge direction histogram features. Categories 1 to 5 acketrifootball,
tennis, basketball and volleyball, respectively.

histogram features. These features are presented as inpat AANN models of all
the categories. The output of each model is compared with itgput to calculate

the squared error for each frame. The errdgy for kth frame is transformed into a
con dence value by using the relatiorCy = exp( Eg). A given test clip is presented to
an AANN model to obtain a con dence valueC = & i N_, Cy for that model, whereN

is the total number of frames in the test clip. For each categg two con dence values
are obtained, one from each AANN model. These two scores aoembined using linear

weighted average rule to obtain a combined scof& given by
C=w Cy+(1 w) C; (5.1)

whereCy4 and C; denote the con dence scores obtained from AANN models whiche
trained on edge direction histogram and edge intensity hisgram respectively. The
termw (0O w 1) denotes the weight assigned to the score due to edge direct
histogram. The value ofw is chosen to maximize the classi cation performance for the

given data set. Thus, for each test video clip, ve scores aambtained. The category
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whose model gives the highest con dence value is hypothexsizas the sports category

of the test clip. Experimental results are discussed in Séoh 5.4.

5.2.2 Hidden Markov models

The hidden Markov model (HMM) consists of nite number (N) of states. At each
time step the system is at a given state and at the next time spethe state is updated
according to a probability distribution that depends only o the previous state. Addi-
tionally, at a given state a symbol is generated according @ probability distribution
that depends on that state. The most likely parameters for tt HMM that generate a
given training set are estimated [68]. Given a model and an observation sequenc®,
the probability P(O= ) that this observation sequence is generated by the modelis
calculated as a sum over all possible state sequences. Ewmieomputation of P(O=)
is described in Appendix C. The hidden Markov model toolkit ITK) [69] was used
for developing class-specic models. The choice of numbef states (N = 7) and
number of mixtures M = 1) per state is made empirically corresponding to the best
classi cation performance. During testing phase, given thfeatures of a test video clip,
the HMM outputs the log probability, representing the a poseriori probability that
the given clip belongs to that particular class. The test mdtodology is similar to the

block schematic shown in Fig. 5.7. Experimental results agiscussed in Section 5.4.

5.2.3 Support vector machines for video classi cation

Support vector machines (SVMs) provide a new approach to patn classi cation
problems with underlying basis in statistical learning thery, in particular the principle
of structural risk minimization [70]. The SVM models learn ¢ separate the boundary
regions between patterns belonging to two classes by mappithe input patterns
onto a high dimensional space, and seeking a separating hgglane in this space. The
separating hyperplane is chosen in such a way as to maximitedistance (margin) from

the closest training examples. More details about SVMs carelfound in Appendix
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D. We consider SVM models for classi cation due to their alitly to generalize from
limited amount of training data, and also due to their inherat discriminative learning
[52]. The SVMTorch-II tool [71] was used for developing claspeci c SVM models.
When a given feature vector corresponding to a test clip is @sented to an SVM
model, the result is a measure of the distance of the featureator from the hyperplane
constructed as a decision boundary between a given class dhd remaining classes.
The performance of pattern classi cation depends on the typof kernel function
chosen. Possible choices of kernel function include polymal, Gaussian and sigmoidal
functions. In this work, we have used Gaussian kernel, sinit@vas empirically observed
to perform better than the other two. This class of SVMs involes two parameters,
namely, the kernel width and the penalty parameterP. In our experiments, the
value of the parameter is taken as the dynamic range of the features. The value
of the parameter P is chosen corresponding to the best classi cation performee.
SVMs are originally designed for two-class classi cationrpblems. In our work, multi-
class M = 5) classi cation task is achieved using one-against-restpproach, where an
SVM is constructed for each class by discriminating that cks against the remaining
(M 1) classes. The test methodology is similar to the block sahatic shown in

Fig. 5.7. Experimental results are discussed in Section 5.4

5.3 COMBINING EVIDENCE DUE TO MULTIPLE CLASSIFIERS

It has been shown in the literature [72{75] that combinationof evidence obtained
from several complementary classi ers can improve the perimance of classi cation.
There are a few reasons justifying the necessity of combigirvidence from multiple

classi ers/features:

1. For a pattern recognition application, there exist a numbr of classi cation
algorithms developed from di erent theories and methodolgies. For a specic
problem, each of these classi ers could reach a certain degrof success, but

none of them may be good enough to be employed in practice.
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2. Often there are numerous types of features which could bsed to represent
and recognize patterns. These features are also represdnite very diversi ed
forms, and it is hard to lump them together to design one singlclassi er to

make the decision.

3. Dierent features may represent complementary sources$ mformation about a
given class. Hence, combination of evidence due to di erefgéatures may help

in improving classi cation.

There are numerous types of features that can be extractecbm the same raw data.
Based on each of these features, a classi er or di erent cla®rs can be trained for
the same classi cation task. As a result, we need schemes tmtbine the results from
these classi ers to produce an improved result for the classation task. The output

information from various classi cation algorithms can be ategorized into three levels:

1. Abstract level:  Classi er outputs a unique label.

2. Rank level: Classier ranks all labels in a queue with the label at the top

being the rst choice.

3. Measurement level: Classi er attributes to each class a measurement value
that re ects the degree of con dence that a specic input bedngs to a given

class.

Among the three levels, the measurement level contains théghest amount of infor-
mation, while the abstract level contains the lowest. Henceve have considered the
measurement level for our work. Firstly, the evidence due ttwo di erent features,
namely, edge direction histogram and edge intensity histogm are combined using the
rule of linear weighting, as described in Eq. 5.1. At the nexevel, evidence obtained
from three di erent classi ers are combined using linear wghting. The outcome of

such a combination of evidence is discussed in the next seanti
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5.4 RESULTS AND DISCUSSION

5.4.1 Data set

Experiments were carried out on about —‘ZS hours of video data (1000 video clips,
200 clips per sports category, and each clip of 20 seconds atiom) comprising of
cricket, football, tennis, basketball and volleyball vide categories. The video clips
were captured at the rate of 25 frames per second, at 320240 pixel resolution, and
stored in AVI format. The data were collected from di erent TV channels in various
sessions to ensure variety. For each sports video categoiy)O clips were used for

training, and the remaining 100 clips were used for testing.

5.4.2 Performance of di erent classi ers

The performance of AANN based classi cation system using g€ direction histogram
(EDH), edge intensity histogram (EIH), and combined evidece from EDH and EIH

is given in Table 5.1. The performances of classi cation dgsns based on HMMs
and SVMs are given in Tables 5.2 and 5.3, respectively. Frorhd results, it can be
observed that the classi cation performance is poorer forideo clips of cricket and
football categories, compared to those of tennis, basketband volleyball categories.
This is because, in the latter three categories, the playinglds have well de ned lines
and they appear in a majority of frames of a video clip. Moreev, a few speci c camera
views dominate the broadcast. For example, such a view mayveo the full court in

tennis or volleyball. Thus, a large area of an image frame cgnises of the playing eld.

On the other hand, in cricket and football categories the caera view tends to change
from one position to another depending on the action. Thusoatinuous motion along
with lack of well manifested edge-speci c information resis in poorer classi cation.

It is also evident that edge direction is a stronger featureof discriminating between
the classes, compared to edge intensity. One can visuallyrpeive the content of an

image from the binary edge image, which preserves only thegeddirections but not
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Table 5.1: Performance of AANN based sports video classi cation systsing EDH,
EIH, and combined evidence (correct classi cation in %)ri€nin the last column denote
the average performance of classi cation.

Cricket | Football | Tennis | Basketball | Volleyball Avg. perf.
EDH 81 84 95 94 95 89.8
EIH 54 57 93 93 92 77.8
Combined 84 88 100 100 100 94.4

Table 5.2: Performance of HMM based sports video classi cation sysisng EDH, EIH,
and combined evidence (correct classi cation in %). Estiethe last column denote the

average performance of classi cation.

Cricket | Football | Tennis | Basketball | Volleyball Avg. perf.
EDH 77 86 92 95 94 88.8
EIH 45 58 84 93 92 74.4
Combined 80 87 93 98 96 90.8

the magnitudes. The performance of SVM based classi er is gigularly poor for EIH
features compared to AANN and HMM based classi ers for the s@e feature. This is
due to lack of discriminative information in EIH and the factthat SVMs are chosen
for their discriminative ability. Since edge direction ancedge intensity features can be
viewed as complementary sources of information, the evidendue to these features can
be combined. Tables 5.1, 5.2, and 5.3 also show the perforroarof classi cation that
is obtained due to weighted combination of evidence from eelglirection histogram
and edge intensity histogram for di erent classi ers. We ca observe that there is an
improvement in the performance of classi cation due to theambination of evidence,

for all the classi ers.
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Table 5.3: Performance of SVM based classi cation system using EDH, &id com-
bined evidence (correct classi cation in %). Entries in ldet column denote the average

performance of classi cation.

Cricket | Football | Tennis | Basketball | Volleyball Avg. perf.
EDH 81 84 92 93 95 89.0
EIH 68 86 32 100 100 77.2
Combined 83 86 100 100 100 93.8

5.4.3 E ect of duration of test video sequence

The duration of test data (test video clip) has signi cant baring on the classi cation
performance. Several existing techniques for video clasation typically use test clips
whose durations vary from 60 seconds to 180 seconds [33,3#43,42,76]. The classi-
cation performance in these cases is observed to improve the duration of the test
clip increases. In [34], average edge ratio used in conjunctwith k-nearest neighbour
algorithm requires 120 seconds of test data to yield a classition performance of
92.4% on a ve-class problem. It is evident that the AANN base classi er has better
generalizing ability than the k-nearest neighbour classi er, in this context. Similarlya
time-constrained clustering algorithm [41] using compreed colour features requires a
minimum of 50 seconds of test data to yield a classi cation prmance comparable to
the proposed method. In contrast, the proposed method usesst clips of 20 seconds
duration in all the experiments on video classi cation. Theresulting performance,
listed in Tables 5.1, 5.2 and 5.3 is comparable to that obta@a due to the above meth-
ods which use a larger duration of test clip. Apart from the dration of test data,
the quality of test data also in uences classi cation perfomance. Some methods [41]
retain only the class-speci c frames in the test data by eding out images related to
crowd/audience or o - eld action. Such editing results in an improved performance.

In our experiments, no such editing of the test data is perfared.
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5.4.4 Performance due to combining evidence from multiple c lassi ers

The normalized measurement values obtained from the threéassi ers are combined
using linear weighting. Table 5.5 shows classi cation pesfmance obtained by com-
bining evidence from di erent combinations of the three clssi ers. It is observed that
the combination of evidence from any two classi ers results a performance better
than those of the individual classiers. The confusion matk for the nal classier

(combined AANN, HMM, and SVM) is given in Table 5.4. The impreement in clas-
si cation due to combination of evidence can be attributed @ the di erent classi er

methodologies, which emphasize di erent types of informain present in the features,

such as their spatial distribution and temporal sequence.

Table 5.4: Confusion matrix of video classi cation results (in %) esponding
to the score obtained by combining evidence due to all theethlassi ers (in %)
(AANN, HMM, and SVM).

Cricket | Football | Tennis | Basketball | Volleyball
Cricket 96 00 04 00 00
Football 02 94 04 00 00
Tennis 00 00 100 00 00
Basketball 00 00 00 100 00
Volleyball 00 00 00 00 100
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Table 5.5: Classi cation performance obtained by combining evidémoe di erent classi ers (correct

classi cation in %). Entries in the last column denote therage performance of classi cation.

Cricket | Football | Tennis | Basketball | Volleyball | Avg. perf.
AANN 84 88 100 100 100 94.0
SVM 83 86 100 100 100 93.8
HMM 80 87 93 98 96 90.8
AANN+SVM 96 94 100 100 100 98.0
AANN+HMM 92 92 100 100 100 96.8
HMM+SVM 90 92 100 100 100 96.4
AANN+HMM+SVM 96 94 100 100 100 98.0




5.4.5 Veri cation of test video sequences using the classi ers

It is necessary to examine the response of a classi er fort@gputs of a di erent class.
More speci cally, if a test video clip belongs to any class ber than the above ve
classes, the system is expected not to assign it the label afyaof the ve classes.
Instead, the system should assign a separate label to all buest cases. This, how-
ever, depends on two factors: (a) the nature of evidence/maaement output by a
classi er and (b) the decision logic based on which a test d clip is assigned a class
label. In SVM based classi ers, one-against-rest approachused for decomposition of
multi-class pattern classi cation problem into several tw-class pattern classi cation
problems. Hence, one should ideally get all negative condee scores as output of
the SVM model for a test clip which does not belong to any of thprede ned cate-
gories. Thus, a natural threshold of zero helps in decisionaking in the case of SVM,
although the decision could also be in error.

In the case of AANN models and HMMs, the training process attepts to capture
only the within-class properties, and no speci ¢ attempt isnade to distinguish a given
class from others. Thus, a nonclass test input to these modaedtill results in positive
measurements, although small. Fig. 5.8 shows the histograoh in-class con dence
scores along with that of nonclass con dence scores, for AANmodels, SVMs and
HMMs. The scores are normalized between 0 and 1. The in-clag®res are obtained
by presenting test video clips of a given category to the moldeof that category.
The nonclass scores are obtained by presenting test videgpslof a given category
to the models of other categories. Hundred (100) test videdips of each class were
used to obtain the in-class and nonclass con dence scoresheTextent of separation
of the histograms indicates the ability of the model to diseminate between in-class
and nonclass examples. The area of overlap of the two histagrs is a measure of
minimum classi cation error. From Fig. 5.8, we observe thathis area of overlap is
least for SVM based classi er, followed by AANN based classr. If the con dence

score corresponding to the intersection of the two histognss is chosen as threshold
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for decision, then such a choice results in minimum classaton error on the training
data. The same threshold is used for decision in the case afttdata. Tables 5.6, 5.7,
and 5.8 indicate the outcome of presenting test video clip$ cartoon, commercial and
news categories, to the models based on AANN, SVM, and HMM sgectively, trained
on cricket, football, tennis, basketball, and volleyball.The entries in the tables denote
the percentage of misclassi cation. For instance, if a testdeo clip of cartoon category,
when presented to the model of cricket category, is labeled aricket, then the test
video clip is said to be misclassi ed. For veri cation, 100 st video clips of each of
cartoon, commercial and news categories were used. The ager misclassi cation is
less than 15% for classi ers based on AANN and SVM. The clagsi based on HMM
does not seem to be very useful for discrimination. Misclagstion error may be

reduced further by extracting features specic to a given ekss.

Table 5.6: Performance of misclassi cation (in %) obtained from AANNdals, for test
clips which do not belong to any of the ve sports categoriestries in the last column
denote the average performance of classi cation.

Cricket | Football | Tennis | Basketball | Volleyball Avg. perf.

Cartoon 08 06 02 01 01 3.60
Commercial 19 12 08 03 02 8.80
News 29 18 23 05 04 15.80
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Table 5.7: Performance of misclassi cation (in %) obtained from SVMdels, for test
clips which do not belong to any of the ve sports categoriestries in the last column

denote the average performance of classi cation.

Cricket | Football | Tennis | Basketball | Volleyball Avg. perf.
Cartoon 39 16 02 01 04 12.00
Commercial 34 03 02 01 01 8.40
News 55 12 01 02 01 14.00

Table 5.8: Performance of misclassi cation (in %) obtained from HMMdals, for test
clips which do not belong to any of the ve sports categoristries in the last column

denote the average performance of classi cation.

Cricket | Football | Tennis | Basketball | Volleyball Avg. perf.
Cartoon 47 16 27 01 25 22.20
Commercial 59 02 28 02 33 24.80
News 11 08 01 02 01 4.40
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5.5 SUMMARY

We have presented an approach to sports video classi catidsased on edge-specic
features, namely, edge direction histogram and edge intégshistogram. We have also
studied di erent classi er methodologies, namely, AANN, HMM and SVM. A video
database of TV broadcast programs containing ve sports vieb categories, namely,
cricket, football, tennis, basketball and volleyball was sed for training and testing
the models. Experimental results indicate that the edge-ls&d features can provide
useful information for discriminating among the classes neidered, and that edge
direction histogram is a superior feature compared to edgeténsity histogram. It was
shown that combining evidence from complementary edge feaés and from di erent
classi ers results in an improvement in the performance oflassi cation. It was also
observed that the classi cation system is able to decide, wkther a given test video

clip belongs to one of the ve prede ned video categories oroh
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CHAPTER 6

EVENT-BASED CLASSIFICATION OF SPORTS VIDEOS

USING HIDDEN MARKOV MODEL FRAMEWORK

In the previous chapter, we studied the use of edge-basedtteas for classi cation of
sports videos using di erent classi er methodologies. Whe the AANN based classi er
attempts to model the probability distribution of edge-bagd features, the HMM based
classi er attempts to model the information inherent in thetemporal sequence. The
latter, however, does not aim to model actions speci ¢ to agen sport. Each sport is
uniquely characterized by certain events or actions, whidre inherent in the sequence
of frames. The challenge is to automatically detect these taans from the sequence
of frames, so that the detected actions can be used to distuiigh between sports
categories. In this chapter, we propose a method based on deéth Markov model
(HMM) to detect the actions in sports videos and thereby usehem for classi cation.
We address the problem of classi cation of sports videos mtdi erent categories.
Each sports video category can be identi ed using actions ihat particular sport. For
instance, the act of a bowler delivering the ball to a batsmars unique to the game
of cricket. Similarly, a player serving the ball into the oppnent's court is specic
to the game of lawn tennis. These actions help a human viewen teadily identify
a given sport. What is important here is the sequence of chagg that are integral
to an action and which qualify the action. For instance, whera bowler delivers the
ball, his bowling run up, bowling action and speed of the detry are not so much
important as the act of delivering the ball. It is the act of déivering the ball that is
signi cant, and is common across di erent bowlers. Such astoccur within a limited

time duration. They help in uniquely characterizing a sportand can be useful for
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classi cation, provided they can be detected automaticall from the video data. In
this context, an event can be de ned as any signi cant changduring the course of
the game. An activity may be regarded as a sequence of certaamantic events.
Automatic detection of events from raw data is a challengintask, since the variations
in the raw data make it di cult interpret a change as an event. At the level of feature
too, these changes cannot be observed by comparing low-ldeatures across adjacent
frames, due to variability and noise. Moreover, the changesay span over a sequence
of image frames. In this context, an event can be viewed as afigre at a higher level,
while an activity (sequence of events) can be viewed as a fatpre of a given class.
This necessitates the need to model the information preseint a sequence of frames.

The problem of automatic detection of events in sports videohas been addressed
in literature, by modeling events that are de ned a priori fo a given sport (or a set of
sports) [44,45]. The main goal in such approaches is to cl#gghe video of a given
sport into di erent semantic events. In such approaches [445], video sequences are
presegmented into clips where each clip contains only oneeat. Another class of
approaches performs automatic segmentation of the giverdeio into shots. However,
the detected events themselves are not used to distinguisbttveen di erent categories
of sports. In this chapter, the objective is to automaticall detect events from the video
sequences in a generic manner without a priori knowledge dfet events and without
prede ning the events. Moreover, the hypothesized eventsreaused to distinguish
between classes, since the nature of events is likely to di among the classes. We
propose a probabilistic approach to detect the events, ugrthe framework of hidden
Markov model (HMM). Since the variations in the events are rected only indirectly
through the feature vectors derived from the data, HMM is a ler choice to capture
the hidden sequence from the observed sequence of featurgors.

Hidden Markov models have been used in the literature for idéfying activities
from observation sequences [77]. Given an HMM denoted byand an observation
sequenceO, the probability P(O= ) that this observation sequence is generated by

the model, is calculated as either theumor maximumover all possible state sequences
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to detect the activity [78]. The optimal state sequence is nalriven by the events that
occur during the activity, but by the likelihood of the obsewved data. No attempt has
been made to examine the sequence of states to charactering éidden) activity
in the sequence of events that may be present in the observedtal This study
attempts to derive/interpret the sequence of events that mabe present in a subset
of (hidden) state sequences, and not from the raw data itseifecause the raw data
may vary too much to interpret any change as an event [79]. Inrhe case of sports
video data, activities are characterized by certain eventsf interest that are embedded
in the motion information, and occur within a limited time duration. These event
probabilities obtained using the HMM framework are used toharacterize the activity
in a particular game.

The remainder of this chapter is organized as follows: In S&m 6.1, we describe a
method for detection of events in the framework of hidden M&ov models. Section 6.2
describes the representation of motion based features fatedction of events. Once the
events are hypothesized, a measure of similarity is requirédor comparison of events
obtained from reference and test video data. In Section 6.3, method is proposed
for the comparison of events. Section 6.4 discusses expemts on video classi cation
using ve sports categories, and the performance of the sgsh. Section 6.5 summarizes

the study.

6.1 DETECTION OF EVENTS USING HMM

Hidden Markov models are powerful tools for characterizinthe temporal behavior of
time sequences, and have been used in various ways for conteased video process-
ing. The HMM is a Markov model in which the state is a probabiltic function of
observation symbol. Typically, the number of stated is far less than the numbeiT of
observation symbols. The HMM can be described by the paranestset = (A;B; )

where
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A = fa; g denotes the state transition matrix.

B = fiy (k)g denotes the distribution of feature vectors in each state.

Given a large number of examples of an activity, the paramateset = (A;B; ) is
estimated using Baum-Welch algorithm [66]. More details alut HMMs are included
in Appendix B. Once the parameter set is estimated, the probability of a test obser-

vation sequenceé) = ( 0,0,03:::07) being generated by the model can be computed
in two ways:

Sum over all the possible state sequences

P
P(O=)= (g quugqgP(hGiiiGr;0102:::07=).

Maximum of all the possible state sequences

P(O=)=maXtq.q:qrgP (hO:::0r;0102:::07= ).

The key idea in this traditional HMM formulation is that the sum or the maximum
over all possible state sequences is considered in evalugtihe probabilities. But the
optimal state sequence obtained using these methods is naoiven by the events that
occur during the activity, rather by the likelihood of the olserved data. In this kind of
formulation, there is no attempt to examine the sequence ofates to characterize any
hidden activity in the form of sequence of events that may berpsent in the observed
data.

We propose a method to examine a subset of all the possibletstaequences and
explore the possibility of interpreting them as sequence efents. The hypothesis is
that, though the state sequences themselves may look di ereacross the examples of
the same activity, certain (hidden) state transitions may e preserved in the subset of

state sequences, and we call such transitions as events.
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Exploring events in sequence of states

Let a given sports video clip be represented by an observatiosymbol sequence
O =(010,03:::07). Suppose that the underlying activity responsible for theproduc-

tion of the observation symbol sequence can be described Kyevents occurring at

events, the nature of events and the time instants at which @y occur. As these events
are localized in time, it is reasonable to expect that an eveat time t is a ected by
the observations in its immediate neighbourhood. Hence, wie ne a variable P(i;j ),

given by [79]

P0)= P& p= 000 pra = 65000500 = 50a = Ji Gz = 2075 Gup = j=0; );
(6.1)
where 2+ 1 frames aroundt are considered. The superscripp refers to support of
p frames used on either side of the time instart in order to detect an event. The

P(i;j ) can be written as

P(isj) = PG p= 050G pra = 502256 = 101 = [iQe2 = 2205 Gup = J; O= )
o P(O=)
_ e p()ath(or pia):iih(01)a; B (0a) i (01 p)a] i) 6.2)
P(O=) '

where and are the forward and backward variables [78]. We de ne one nmor

variable €, similar to the one that is used in Viterbi maximization, as
ki) =max p@i;j) 6] (6.3)
1)
where
(k;l)=argmax {(i;j) 6] (6.4)
N

Hereel(k; 1) represents the probability with which there can be a transion from stable
state k to stable statel, with a support of p frames for stable states, at the time instant
t. At every instant of time, we hypothesize an event, and evadue the event probability

e’(k;1). Large values ofel indicate the presence of an event, and the corresponding
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(k; 1) pair indicate the state transition responsible for the ev&. The nature of the
event is speci ed by state pair k;1), and the intensity of the event is speci ed by the

value of €.

an event probability value €’ and a state transition (k; 1) are associated. The value of
p determines the support given to the stable states on eitherde of the transition. A
small value ofp results in too many spurious events, whereas a large valuepimight
result in missing an event of interest totally. Hence, the Jae of p is determined by
using the domain knowledge and some preliminary experimahtstudies. The event
probability sequences and the corresponding state transitionsk; I) form the signature
for the activity in a particular sports category.

This idea of detection of events from the sequence of obsdiva vectors has been
examined for recognition of utterances of isolated digit8(Q]. It was observed in [80]
that certain state transitions were preserved across di @nt speakers for a given sound
unit. In the present context, we observe whether a given stattransition is common to
di erent video clips of a particular sports category. We als observe whether di erent

sets of state transitions are prominent for di erent sports

6.2 FEATURES FOR DETECTION OF EVENTS

Motion is an important cue for understanding video and widgl used in semantic video
content analysis. Since features based on motion carry inmpent information about
the temporal sequence corresponding to a given sports caigg we use motion-based
features for event detection. The approach adopted here fextraction of motion in-
formation from the video is based on the work by Matthew et al[81]. From the video
sequence, we derive the binary maps as shown in Fig. 6.1. Tédsnary maps are
representative of moving and non-moving areas of the videecence, where moving
areas are highlighted in white. The binary maps are extracteby pixel-wise di erenc-

ing of consecutive frames. We divide each frame into four sifmages of equal size in
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(@)

(b)

(©)

(d)

(€)

Fig. 6.1: Examples of binary maps for di erent sports categories hEaw shows two
consecutive frames and the corresponding binary map fodieeent sports, namely,
(a) basketball (b) cricket (c) football (d) tennis and (e)lieyball.
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order to capture the location speci ¢ information. The moton feature is computed as

follows:
1 X xXh
M (t) = v Pu(x;y); O<t N; (6.5)

x=1 y=1

where

N QO

o P

;i jhxy) T a(xy)i >

Pu(Xy) = .
. : otherwise

(6.6)

In the above equation,N is the total number of frames in the video clip,l;(X;y)

and |, i(x;y) are the pixel values at location X; y) in tth and (t 1)'[h frames, respec-
tively. Here is the threshold, andw and h are width and height of the subimage,
respectively. A 4-dimensional feature vector is deriveddm each pair of consecutive
frames. Thus, the sequence of 4-dimensional feature vestaterived from a video
clip of a particular sports category forms one observationysibol sequence for that

category.

6.3 MATCHING OF EVENTS

We now describe a method for matching of events between a testleo sequence
and a reference video sequence. The block diagram of the pvepd sports video
classi cation system using HMM framework is shown in Fig. @ GivenL ; observation

symbols of a video category, a ve state ergodic HMM model witone Gaussian per
state is trained with motion features extracted from the vi@o frames. The events
(event probabilities and corresponding state transitiongorresponding to the reference
examples are obtained. These reference event sequencesised to create a dictionary
of events for the given sports category. The distribution othe event probability

values corresponding to a particular state transition ;1) in the reference events is
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Test

cli Feature HMM for Event Event Score
p .

extraction categoryN detection matching

Referencalictionary of
events forcategoryN

Fig. 6.2: Block diagram of the proposed video classi cation systemyudMM
framework.

approximated by a Gaussian densityN ( «; «), where , and | denote mean and

variance of the density function, respectively, given by

1 Xt
kKl = L. e[’(k;l) (6.7)
1=
and v
u 1 %
kKl = P —1 (ef(k;l) k)2 (6.8)
t=1

So, every state transition is assigned a mean and a variancéigh represents the
probabilities with which the event € (k; ) occurs in that category. For a test video clip
not presented during training, the events are obtained usina reference HMM. Let us
denote by (k; 1), the event probability corresponding to the state transiton (k;1) at
time t, when a test sequence of observation symbols is presentedt@ference model.
Let L, denote the number of observation symbols in the test sequencA similarity

scores between the test video clip and the reference model is giveg b

X2 :
s= 1 p_l—exp (é’(k,l)z 0)” ; (6.9)
2 2§

There exists a possibility that two di erent categories mayhave similar distribu-
tions of event probabilities. In such a case, it is necessaiy examine the sequence of

events, which may help in discriminating between the two cagories.
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6.4 EXPERIMENTAL RESULTS

Experiments were carried out on about —§ hours of video data (1000 video clips, 200
clips per sports category, and each clip of 20 seconds duceij comprising of cricket,
football, tennis, basketball, and volleyball categoriesThe video clips were captured
at a rate of 25 frames per second, at 320 240 pixel resolution, and stored in AVI
format. The data were collected from dierent TV channels invarious sessions to
ensure variety. For each sports video category, 100 clipsreaised for training and the
remaining 100 clips were used for testing.

The choice of the number of states) of HMM is critical. Itis di cult to arrive at
the number of states from the physical process, since the pess is not explicit. Hence,
N needs to be determined experimentally, by observing the sk cation performance.
The classi cation performance was observed by varyiny between 3 and 10. The
valuesN =7 and N =9 were chosen based on the performance of classi cation. sal
the choice of the value op is critical since it determines the support given to the stadle
states on either side of the transition. A small value gb results in too many spurious
events, whereas a large value gfmight miss an event of interest. Hence, the value of
p is determined by using some preliminary experimental stuets.

An ergodic HMM model is built for each class using 4-dimensial motion feature
vectors. The performance of the event-based HMM classi es igiven in Table 6.1
for the case with number of statedN = 7 and number of mixturesM = 1. In
Table 6.1, the entries in parenthesis denote the classi cah performance forN =7
and M = 2. The classication performance forN = 9 and M = 1;2 is given in
Table 6.2. It is observed that the average performance fod = 7 is better for all
sports except football. This can be attributed to the relatvely low motion of the four
sports categories basketball, cricket, tennis, and vollbgll compared to football, where
dynamic variations are better modeled using more number ofases (N = 9). This
greater variation also necessitates the choice of two mixes per state M = 2) for

improved classi cation in the case of football category, ashown in Table 6.2.
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Table 6.1: Performance of correct video classi cation fér= 7, andM =1 (in

%). The entries in parenthesis denote the performanceNfor 7 andM = 2.

The parameteip denotes the number of frames provided as support on eitther si
of the time instantt. Entries in the last column denote the average performahce o
classi cation.

Basketball | Cricket | Football | Tennis | Volleyball Avg. perf.

p=5 92(62) | 68(56) | 76(58) | 78 (80) | 96 (96) | 82.0 (70.4)

p=7 90 (66) | 58 (52) | 80 (62) | 78 (84) | 98 (96) | 80.8 (72.0)

p=10 82(66) | 56(32) | 88(72) | 78(80) | 98 (80) | 80.4 (66.0)

p=13 72 (46) | 56 (20) | 90 (62) | 80(88) | 98 (58) | 79.2 (54.8)

p=15 60 (34) | 48 (20) | 92 (60) | 74 (90) | 98 (62) | 74.4 (53.2)

p=17 48 (20) | 42(18) | 92(56) | 74 (92) | 98 (70) | 70.8 (51.2)

The confusion matrix for the best average classi cation pésrmance N = 7,
M =1, and p=15) is given in Table 6.3. The relatively poorer performancéor cricket
and football categories can be attributed to the inability & the models to detect the
events. Large playing elds in cricket and football categoes result in signi cant
camera motion within a given time, compared to other categms. Hence, the number
of examples of a given event is lesser in the training dataglding to poor representation
of events.

Using the above method, we could detect signi cant changes each sports cat-
egory using motion information. For example, some of the ews detected in cricket
category are bowler releasing the ball, batsman hitting thball, elder picking up the
ball, and elder throwing the ball. Two such cases events, dbowler releasing the
ball and elder picking the ball, are shown in Fig. 6.3. Sim#rly, some of the events

detected in other sports categories are shown in Figs. 6.4566.6, and 6.7.
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Table 6.2: Performance of correct video classi cation for=9, andM =1 (in

%). The entries in parenthesis denote the performanceNfor 9 andM = 2.

The parametep denotes the number of frames provided as support on eitther si
of the time instantt. Entries in the last column denote the average performahce o
classi cation.

Basketball | Cricket | Football | Tennis | Volleyball Avg. perf.

p=5 94 (68) | 56 (06) | 96 (98) | 60 (60) | 82 (74) | 77.6 (61.2)

p=7 84 (58) | 48 (06) | 98 (98) | 60 (62) | 78 (48) | 73.6 (54.4)

p=10 76 (22) | 36(08) | 98(98) | 60 (64) | 82 (10) | 70.4 (40.4)

p=13 58 (04) | 34 (10) | 98 (98) | 60 (62) | 88 (06) | 67.6 (36.0)

p=15 44 (04) | 38(08) | 98(98) | 60 (62)| 86 (09) | 65.2 (35.6)

p=17 44 (04) | 24 (10) | 96 (98) | 60 (62) | 84 (02) | 61.6 (34.8)

Table 6.3: The confusion matrix for the best classi cation perform&anc
(inN%)(N=7,M =1, andp=>5).

Basketball | Cricket | Football | Tennis | Volleyball
Basketball 92 00 00 02 06
Cricket 02 68 16 12 04
Football 06 14 76 04 00
Tennis 00 06 16 78 00
Volleyball 00 04 00 00 96
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(@) (b)

Fig. 6.3: Sequence of image frames (from top to bottom) of two eventsrizket
category where the event of (a) bowler releasing the ball(bnhclder picking up the
ball are detected. The detected events are marked by a.circle
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(a) (b)

Fig. 6.4: Sequence of image frames (from top to bottom) of basketlzaéigory where
the event of player throwing the ball is detected. Two examplf such an event are
shown in (a) and (b). The detected events are marked by aecircl
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(a) (b)

Fig. 6.5: Sequence of image frames (from top to bottom) of footbalegaty where
the event of player passing the ball is detected. Two exangdlesuch an event are
shown in (a) and (b). The detected events are marked by aecircl
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(@) (b)

Fig. 6.6: Sequence of image frames (from top to bottom) of two eventsenhis
category where the events of (a) serving the ball and (b)imdag forehand shot are
detected. The detected events are marked by a circle.
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(@) (b)

Fig. 6.7: Sequence of image frames (from top to bottom) of two eventgotiyball
category where the events of (a) playing an underarm shot(Bnhdmashing the ball
are detected. The detected events are marked by a circle.
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6.5 SUMMARY

We have presented a technique for classi cation of sportsdeos using events to rep-
resent class-speci c information. The events were detedteising a framework based
on hidden Markov models. Each sports video category can beeidi ed using actions
in that particular sport. Activities are characterized by asequence of semantic events
that are embedded in the motion, and occur within a limited tme duration. The event
probabilities were used to characterize the activity. Vide classi cation was performed
based on the similarity score obtained by matching the evesnt A video database of
TV broadcast programs containing ve popular sports categtes, namely, basketball,
cricket, football, tennis, and volleyball was used for traiing and testing the models.
A correct classi cation of 82.0% has been achieved. Classation performance can be

improved by using sequence knowledge during score compidat
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CHAPTER 7

SUMMARY AND CONCLUSIONS

In this thesis, new approaches were proposed to address sassaes in video segmenta-
tion and classi cation. These two tasks are important in thecontext of video content
analysis, and present some challenging problems. Video megtation involves the
partitioning of a given video sequence into smaller and mormeaningful units. In this
thesis, issues speci ¢ to detection of shot boundaries inddo sequences were addressed.
The key issue is to derive features which can help detect a cige in video sequence
due to a shot boundary, and which are robust to illumination o camera/object mo-
tion. A novel method based on the late fusion of evidence wasoposed for addressing
this issue, which detects signi cant change in a few compoms of color histogram
feature for hypothesis of shot boundaries. The decision dtethe late fusion method
was combined with that due to the existing approach of earlyukion. Since early fu-
sion depends on the extent of overall change in features aratd fusion depends on
a few signi cant changes, the combination improves the rolstness of shot boundary
detection. We also proposed modi cations to the traditionbearly fusion algorithm for
improving the performance of shot boundary detection. Fitly, a one-pass algorithm
was proposed for simultaneous detection of abrupt and graalutransitions. The basis
for this method is that, barring the region of gradual trangions, an abrupt and a
gradual transition are essentially similar. Secondly, bicectional processing of video
was proposed in order to reduce the number of missed deteaso Thirdly, the hypoth-
esized shot boundaries were validated on the basis of mafptogic. Finally, a method
was proposed to classify a detected shot boundary as a cut ogeadual transition,
using a measure of variance. These modi cations, in conjuian with early and late

fusion, were shown to reduce the criticality of the choice tfireshold for hypothesizing
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the presence of shot boundaries. The proposed methods yigtust performance over
a range of threshold values.

Another important issue is the dimension of feature vectorsed for representation
of images. In this thesis, color histogram of 512 dimensiora$ been used for this
purpose. Since color histograms do not represent spatialsttibution of color, color
coherence vector was used for representation of images. lBtitese feature vectors are
sparse and can be represented using a much smaller dimensiBeature vectors of re-
duced dimension were obtained using linear compression esgies such as independent
component analysis (ICA) and singular value decompositio(SVD), and nonlinear
autoassociative neural network (AANN) models. It was showthat reduction in the
dimension of feature vectors does not result in signi cantetrease in performance of
shot boundary detection, due to the sparsity of distribution of color features. Feature
vectors of reduced dimension obtained using AANN models pem better than those
due to SVD and ICA for shot boundary detection, primarily dueto the ability of
AANN models to represent nonlinear basis functions from thgiven data. The use of
linear and nonlinear compression techniques provides coagp representation, better
visualization and the option for multiple validations at lov computational cost.

The key issues in video classi cation are representation ofass-speci ¢ informa-
tion using suitable features, and developing models to capt information present in
the features. In this thesis, these issues were addressedhia context of classi cation
of sports videos, using two di erent approaches. The rst aproach was based on
the use of edge-based features to represent class-speciforimation, while the second
approach was based on the hypothesis of events from video isatpes. In the rst
approach, edge direction histogram and edge intensity hegjram features were used
in conjunction with three di erent classi er techniques, based on autoassociative neu-
ral networks (AANN), support vector machines (SVM) and hidén Markov models
(HMM). The AANN models were used to capture class-speci c diributions of edge-
based features, while the HMMs were used to model the sequemaformation present

in the features. Models based on SVM were also explored asythecorporate di eren-
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tial training to determine a hyperplane that separates thexamples of a given category
from those of other categories. Edge direction histogram dredge intensity histogram
were shown to have complementary evidence. Also, combirati of evidence due to
the di erent classi ers resulted in an improvement in the peformance of classi cation,
illustrating the complementary nature of the modeling techiques. The ability of the
classi cation system to decide whether a given test clip ba&hgs to any one of the ve
sports categories or not, was studied.

The second approach to video classi cation is based on detiea of events in video
sequences. The events denote signi cant changes in videndaa sequence of events
denotes an activity. The activities are characterized by aegjuence of semantic events
embedded in the motion, and occur within a limited time duraibn. The activities
are intended to correspond to physical actions in di erent gorts. The events and
the activities are detected using a framework based on hidddéMarkov models. The
physical events are not de ned a priori. Instead, the modekitrained to hypothesize
the events, by presenting several example sequences of agisport. Given a test video
sequence, a similarity score is computed by matching the eng in the test sequence
with those obtained from reference data. A video database ®V broadcast programs
containing ve sports categories was used for training andesting the models. A

correct classi cation of 82.0% has been achieved.

7.1 CONTRIBUTIONS OF THE WORK

The contributions of the research work carried out as part ahis thesis can be sum-

marized as follows:

1. A new method based on late fusion of evidence from individucolor compo-
nents was proposed for detecting shot boundaries in videagsences. This was
based on the observation that most of the shot boundaries ackaracterized by
signi cant changes in only a small humber of components of loo histogram

feature.
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. Algorithms were proposed for simultaneous detection obeupt and gradual
transitions, and for categorization of the detected shot hmdaries into the above
two groups. These algorithms are based on e ective usage tdtsstics derived

from the neighbourhood of shot boundaries.

. The combination of early fusion and late fusion, along witthe proposed algo-
rithmic modi cations, were shown to improve the performane of shot boundary

detection and reduce the criticality of threshold.

. The ability of AANN models to perform nonlinear compressin was exploited for
reducing the dimension of color coherence feature vectoruch a representation
allows for multiple validations without signi cant reduction in the performance

of shot boundary detection.

. The ability of AANN models for capturing distribution of feature vectors was
exploited for classi cation of sports videos, using edgeréction histogram and

edge intensity histogram.

. The combination of evidence due to complementary featwdgedge direction
histogram and edge intensity histogram) and di erent clagsers (AANN models,
SVM and HMM) was shown to improve the performance of classiation. The
classi cation system can also be used to verify whether a gin video sequence

belongs to one of the prede ned classes or not.

. A new method was proposed for classi cation of sports vids, by hypothesizing
events in each sports category using the framework of hidd&markov models.
These events are not de ned a priori and are detected from thedeo sequences

presented during training phase.
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7.2 DIRECTIONS FOR FURTHER RESEARCH

In this thesis, color based features such as color histogrand color coherence vector
were used for representation of images for shot boundary detion in video sequences.
These are one-dimensional representations obtained fromrée-dimensional color his-
tograms. An important issue is the mapping of the three-dinresional color space onto
one dimension, followed by a dissimilarity measure that pserves the proximity infor-
mation during the mapping. One solution to this problem is tgprovide a fuzzy border
while quantizing the color space.

The problem of video classi cation was addressed on the bagif events detected in
each sports category. Here, events obtained from a test seque were compared with
those obtained from training sequences, without exploitgninformation present in the
sequence of events. Dynamic programming techniques can bplered to match the
sequences of events, to obtain better classi cation perfoance. The proposed method
can also be used to detect the events that are speci ¢ to a giveport. The basic idea
is that a state transition that commonly occurs across di eent clips should model a
particular event. This can also help in classifying a giverpsrt into di erent conceptual
categories. The performance of the video classi cation g can be improved by
combining the evidence from other modalities, such as audimd text, with the visual
evidence.

Automatic video content analysis to generate the video-tde-of-contents is a nat-
ural application for the two tasks discussed in this thesisThis would require higher
levels of segmentation of the video, by combining adjacennd relevant shots into
larger units like scenes and stories. The classi cation diies presented in this thesis

can help in this process of labeling and merging of individuahots.
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APPENDIX A

EXISTING SYSTEMS FOR VIDEO BROWSING AND
RETRIEVAL

Researchers have developed numerous schemes and toolsifl@ovindexing and query.
A brief description of some of the existing systems is giverelow.

Informedia-The CMU digital Video Library : The Informedia Digital Video
Library Project [82] at Carnegie Mellon University is an orline digital video library,
which allows for full-content and knowledge-based searcimdiretrieval using desktop
computer over local, metropolitan, and wide-area networkg3, 84]. The library con-
tains news and documentary video. The system integrates goh recognition, natural
language understanding, and image processing for multimaccontent analysis. The
system contains methods to create short synopsis of eachead Language understand-
ing is applied to the audio track to extract meaningful keywals. Each video in the
database is represented as a group of representative frareggacted from the video at
points of signi cant activity. Caption text is also extracted from these frames, which
adds to the set of indices for the video.

AT&T Pictorial Transcript System . Pictorial Transcript is an automated
archiving and retrieval system for broadcast news progrardeveloped at AT&T Labs [85].
Combined audio-visual analysis has been used to automatigagenerate the content
hierarchy. At the rst level news programs are separated it news reports and com-
mercials. At the next level, news report is further segmentieinto anchorperson speech
and others, which includes live report. At the highest leveltext processing is used
to generate a table of contents based on the boundary infortnan extracted at lower

levels and corresponding closed-caption information.



Movie Content Analysis (MoCA) : MoCA is a project at the University of
Mannheim, Germany, targeted mainly for understanding the esmantic content of
movies [86,87]. The system segments movies into salient tshand generates a digital
abstract of the movie. The text detection component tracks wving text and performs
OCR on the text. The audio analysis component detects sileechuman speech, music
and noise. The latter is further analyzed to detect violenca the scenes.

CONtent-based Image and Video Access System (CONIVAS) : CONIVAS
is a client-server based system developed at Phillips Res#e[88]. The system employs
cut detection for extraction of a storyboard used for browsg and retrieval from digital
studio archive. Features extracted from the key frames aresed for building an index
of the content. Segmentation can be applied either in the cgressed domain or the
uncompressed domain. Feature extraction is performed e#thusing low level visual
features such as color, shape, and texture, or using full tesetrieval. The extracted
features are stored in a database. Image and video segmerdas ©e retrieved using
example query segments.

Query By Image and Video Content (QBIC) : QBIC system [89] developed
at IBM's Almaden Research Center uses a variety of featuresrfretrieving images
from image/video database. The system allows a user to selardrowse and retrieve
image, graphic and video data from large on-line collectisn Visual features such as
color, layout and texture are extracted and stored in databse. The system allows
Query-by-Example (QBE) type queries, wherein the user carelect any thumbnail
from the list of images within the database or specify an ima&gand request retrieval of
similar images. The system segments the video into shots agdnerates storyboards
consisting of representation frames extracted from the stso The methods used for
image retrieval can be applied to these representative fra® to retrieve video clips by
content.

VideoQ : VideoQ is a web enabled content based video search systerf, fL].
VideoQ expands the traditional search methods (e.g., keywas and subject naviga-

tion) with a novel search technique that allows users to sear compressed video based
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on a rich set of visual features and spatio-temporal relatships. Visual features in-
clude color, texture, shape and motion. Spatio-temporal deo object query extends
the principle of query by sketch in image databases to a tempd sketch that de nes

the object motion path.

WebSeek : WebSeek is a prototype image and video search engine whidtflexcts
images and videos from the Web and catalogs them. It also pides tools for searching
and browsing [92,93] using various content based retriev&ichniques that incorporate
the use of color, texture and other properties. Relevanceef#back mechanisms are
used to enhance performance.

Multimedia Analysis and Retrieval System (MARS) : MARS is a system
developed at the University of lllinois at Urbana Champaign94]. The system sup-
ports content-based image retrieval based on color, texteyr shape, and any Boolean
combinations of them. The novel part in the system is the ingration of database
management techniques (query processing), informationtrieval techniques (boolean
retrieval model), and image processing techniques (imageatures). MARS supports
image retrieval using relevance feedback.

Automatic News Summarization Extraction System (ANSES) : ANSES
is a system developed at Imperial College, London [95, 96]hi$ project combines a
video scene change algorithm with current text segmentaticand summarization tech-
niques, to build an automatic news summarization and extréion system. Television
broadcast news are captured both in video and audio format thi the accompanying
subtitles in text format. News stories are identi ed, extrated from the video, and
summarized in a short paragraph which reduces the amount afformation to a man-
ageable size. Individual news video clips can be retrieve@@ively by a combination
of video and text, using a reverse indexed search engine t@yde distilled information
such as a summarized version of the original text and to higght important keywords
in the text.

Semantic Annotation of Sports Videos  : In this system [97], an approach for

semantic annotation of sports videos that include severali drent sports and even
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nonsports content is implemented. Videos are automaticgllannotated according to
elements of visual contents at di erent layers of semantiagni cance. The system pri-

marily distinguishes studio and interview shots from spost action shots and further
decompose sports videos into their main visual and graphioment elements, includ-
ing sport type, foreground versus background and text camns. Relevant semantic
elements from videos are extracted by combining several ldavel visual primitives

such as image edges, corners, segments, curves and coldodnams, according to
context-speci ¢ aggregation rules. The annotation task i®rganized into three dis-
tinct subtasks: Preclassifying sports shots, identifyingraphic features and classifying
visual shot features.

Name It-Naming and Detecting Faces in News Videos : The Name-It sys-
tem [98] associate faces and names in news videos. It proegsaformation from the
videos and can infer possible name candidates for a givendawr locate a face in news
videos by name. To accomplish this task, the system takes a tmmodal video anal-
ysis approach : Face sequence extraction and similarity déwation from video, name
extraction from transcript and video-caption recognition Suppose that we are watch-
ing a TV news program. When unknown persons appear in the newgleo, we can
eventually identify most of them by watching only the video.To do so, system detects
faces from a news video, locates names in the sound track, ahdn associates each
face with the correct name. For face-name association, asmgehints as possible based
on structure, context, and meaning of the news video are useName-It can associate
faces in news videos with their right names without using an prior face-name as-
sociation set. In other words, Name-It extracts face-namexespondences only from

news videos.
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APPENDIX B

AUTOASSOCIATIVE NEURAL NETWORK MODELS

Autoassociative neural network models are feedforward nali networks performing
an identity mapping of the input space, and are used to capterthe distribution
of the input data [65], [99]. The distribution capturing ablity of the AANN model is
described in this section. Let us consider the ve layer AANNnodel shown in Fig. B.1,
which has three hidden layers. In this network, the second drfourth layers have more
units than the input layer. The third layer has fewer units than the rst or fth. The
processing units in the rst and third hidden layer are noninear, and the units in
the second hidden layer (compression layer) can be linear monlinear. As the error
between the actual and the desired output vectors is minimezl, the cluster of points
in the input space determines the shape of the hypersurfacktained by the projection
onto the lower dimensional space. Fig. B.2(b) shows the sgaspanned by the one-
dimensional compression layer for the two-dimensional dashown in Fig. B.2(a) for
the network structure 2L 10N 1N 10N 2L whereL denotes a linear unit and\ denotes
a nonlinear unit. The integer value indicates the number ofnits used in that layer.
The nonlinear output function for each unit is tanhg), wheres is the activation value
of the of the unit. The network is trained using backpropagabn algorithm [57], [52].
The solid lines shown in Fig. B.2(b) indicate mapping of theigen input points due to
the one-dimensional compression layer. Thus, one can sagttthe AANN captures the
distribution of the input data depending on the constraintsimposed by the structure
of the network, just as the number of mixtures and Gaussian fictions do in the case
of Gaussian mixture models (GMM).

In order to visualize the distribution better, one can plot te error for each input

data point in the form of some probability surface as shown ikig. B.2(c). The error



Input layer ’ Output layer
Compression

layer

Fig. B.1: A ve layer AANN model.

E; for the data point i in the input space is plotted asp; = exp( £ ), where is a
constant. Note that p; is not strictly a probability density function, but we call the
resulting surface as probability surface. The plot of the wbability surface shows a
large amplitude for smaller errork;, indicating better match of the network for that
data point. The constraints imposed by the network can be seeby the shape the
error surface takes in both the cases. One can use the prob#psurface to study the
characteristics of the distribution of the input data captued by the network. Ideally,
one would like to achieve the best probability surface, beste ned in terms of some

measure corresponding to a low average error.
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Fig. B.2: Distribution capturing ability of AANN model. (a) Arti cia2-dimensional
data. (b) 2-dimensional output of AANN model with the stiwet2L 10N 1N 10N 2L.

(c) Probability surfaces realized by the network structirtelON 1N 10N 2L.
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APPENDIX C

HIDDEN MARKOV MODELS

A Markov model is a nite state machine that makes a transitimm of state once
every time unit, governed by a probability law. The probabity of occupying a state
is determined solely by recent history. A hidden Markov modgHMM) is a doubly
stochastic process that is not observable (it is hidden), bucan only be observed
through another set of stochastic processes that produceetlsequence of observed
symbols.

Elements of an HMM

An HMM is characterized by the following:

1. The numberN of states in the model. Although the states are hidden, for nmg
practical applications there is often some physical sigréance attached to the
states of the model. Generally the states are interconnedtén such a way that
any state can be reached from any other state (an ergodic mdyehowever,

other possible interconnections of states are often of imést. The individual

2. The number M of distinct observation symbols per state, i.e., the discre
alphabet size. The observation symbols correspond to the ysical output

of the system being modeled. The individual symbols are dded as

3. The state transition probability distribution A = fa; g where
a =Plgs =jja=1]; 1 &) N (C.1)

For the special case where any state can reach any other statea single step,



we havea; > O for alli;j . For other types of HMMs, we would haves; = 0O for

one or more {;j ) pairs.

4. The observation symbol probability distribution in statej, B = fiy (k)g, where
h(k)=Plo = wja=jl; 1 | N 1 k M (C.2)

5. The initial state distribution = f ;g where
i=Plw=1i]; 1 i N: (C.3)

Given appropriate values ofN; M; A; B; and , the HMM can be used as a gener-

ator to give an observation sequence
O =(0105:::0¢:::07) (C.4)

(where each observatioro; is one of the symbols fromV, and T is the number of
observations in the sequence) as follows:
1. Choose an initial statey = i according to the initial state distribution .

2. Sett =1.

3. Chooseo; = v according to the symbol probability distribution in statei, i.e.,
b (k).
4. Transit to a new state ¢+; = ] according to the state transition probability

distribution for state i, i.e., g; .

5. Sett =t +1; return to step 3 if t <T ; otherwise terminate the procedure.

The above procedure can also be used as a model for how a givbeeovation
sequence was generated by an appropriate HMM. It can be seeoni the above dis-
cussion that the complete speci cation of an HMM requires |zi cation of two model

parameters N and M), speci cation of observation symbols, and the speci catin of

three probability measuresA; B and . For convenience, the compact notation,

=(A;B; ) (C.5)
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is used to indicate the complete parameter set of the model.

Given the observation sequenc® = (0,0,:::07), and a model = (A;B; ),
how to e ciently compute P(Oj ), the probability of the observation sequence, given
the model? The problem can also be viewed as one of scoring veg¥l a given model
matches a given observation sequence. For example, if theeads considered in which it
is tried to choose among several competing models, the sabut to the above problem
allows the choice of the model which best matches the obsdivas.

The HMM parameters are estimated in a computationally e cient way using the

following variables:

Forward variable: (i) = P(0:02:::04;,G = i= )
The probability of producing a partial observation sequereo,0;:::0; and end-

ing in state i at time t, given the model .

X
(i) = P(h:::q 1;G = i;0102:::0= )
fai;02;::50t9
- X\I -
P(Oj )= (i)
i=1
Backward variable: ((j) = P(Ot+10t+2 :::0r=q = 1; )

The probability of producing a partial observation sequere (0y+1 Ot+2 :::071),

given the statei at time t and the model .

X
)= P(G+1G+2 2 110r; 041 Oz 12107=Q = ;)
fQe+1 ;Gt+2 50507 O

- X\I - -
P(Oj )= t(i) (i)

i=1
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APPENDIX D

SUPPORT VECTOR MACHINES

The support vector machine (SVM) is a linear machine pioneed by Vapnik [100].
The main idea of an SVM is to construct a hyperplane as the dewtn surface in
such a way that the margin of separation between positive andegative examples
is maximized. The notion that is central to the constructionof the support vector
learning algorithm is the innerproduct kernel between a sygort vector x; and a vector
x drawn from the input space. The support vectors constitute &mall subset of the
training data extracted by the support vector learning algathm. The separation
between the hyperplane and the closest data point is calleté margin of separation,
denoted by . The goal of a support vector machine is to nd a particular hperplane
for which the margin of separation is maximized. Under this condition, the decision
surface is referred to as the optimal hyperplane. Fig. D.3lulstrates the geometric
construction of a hyperplane for two dimensional input sp& The support vectors
play a prominent role in the operation of this class of learng machines. In conceptual
terms, the support vectors are those data points that lie ckest to the decision surface,
and therefore the most di cult to classify. They have a diret¢ bearing on the optimum
location of the decision surface.

The idea of an SVM is based on the following two mathematicalperations [100]:

1. Nonlinear mapping of an input pattern vector onto a highedimensional feature

space that is hidden from both the input and output.

2. Construction of an optimal hyperplane for separating th@atterns in the higher

dimensional space obtained from operation 1.

Operation 1 is performed in accordance with Cover's theoreon the separability

of patterns [100]. Consider an input space made up of nonlamyy separable patterns.



X2

Optimal hyperplane

+ /

Support vectors

x1

Fig. D.3: lllustration of the idea of support vectors and an optimgdry
plane for linearly separable patterns.

Cover's theorem states that such a multidimensional spaceay be transformed into
a new feature space where the patterns are linearly sepamhiith a high probabil-
ity, provided the transformation is nonlinear, and the dimasion of the feature space
is high enough. These two conditions are embedded in opematil. The separating
hyperplane is de ned as a linear function of the vectors drawfrom the feature space.
Construction of this hyperplane is performed in accordanaeith the principle of struc-
tural risk minimization that is rooted in Vapnik-Chervonenkis (VC) dimension theory
[52]. By using an optimal separating hyperplane the VC dimemon is minimized and
generalization is achieved. The number of examples neededéearn a class of interest
reliably is proportional to the VC dimension of that class. Thus, in order to have a
less complex classi cation system, it is preferable to hatbose features which lead to
lesser number of support vectors.
The optimal hyperplane is de ned by:

).
idiK(x;%x;)=0 (D.6)

i=1
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wheref ;gYy is the set of Lagrange multipliers,fdigYy is the set of desired classes

and K (x; x;) is the innerproduct kernel, and is de ned by:

K (X; i) (X)) (i)
X

X)) =152 NG (D.7)
j=0
wherex is a vector of dimensiorm drawn from the input space, and' ,—(x)gjm;1 denotes
a set of nonlinear transformations from the input space to #afeature space’ o(x) = 1,
for all x. m; is the dimension of the feature space. From (D.6) it is seendhthe
construction of the optimal hyperplane is based on the evadtion of an innerproduct
kernel. The innerproduct kernelK (x; Xx;) is used to construct the optimal hyperplane
in the feature space without having to consider the featurepace itself in explicit form.

The design of a support vector machine involves nding an ophal hyperplane.
In order to nd an optimal hyperplane, it is necessary to nd the optimal Lagrange
multipliers which are obtained from the given training samfesf (x;; di)giN;l . Dimension
of the feature space is determined by the number of supportaters extracted from

the training data by the solution to the optimization problem (D.6).
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