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ABSTRACT

Keywords: Unconstrained acoustic-phonetic boundary detection, discriminative

classification, Artificial Neural Networks, excitation based features.

Acoustic-phonetic speech segmentation is the process of detecting the acoustic-
phonetic boundaries and labeling each segment with a phonetic symbol in the

spoken utterance.

In the scope of this thesis, we address issues related to acoustic-phonetic bound-
ary detection. The first part of this thesis is focused on the different approaches
for acoustic-phonetic boundary detection. Previous works indicate that, acoustic-
phonetic boundary detection approaches can be broadly classified into two types,
i.e., signal processing based approaches and classification based approaches. Signal
processing based approaches typically rely on peak-picking algorithms on tempo-
ral trajectories of signal energy, sub-band energy etc.,. So, these approaches can
operate independent of language and transcription. However, signal processing
approaches are sensitive to parameters used and are less robust than supervised
classifiers. On the other hand, supervised classifiers require hand labeled data to
train classification models. Apart from the above approaches, there are also ap-
proaches which combine both acoustic-phonetic boundary detection and acoustic-
phonetic segment labeling using hidden Markov model (HMM) forced alignment
based approach which can be termed as constrained acoustic-phonetic speech seg-
mentation approach. It should be noted that, signal processing based approaches
are found to be highly sensitive to the parameters used and hence are less ro-
bust. Supervised classifier based approaches are limited by requirement of large

amount of manually segmented data to train the classifier. Constrained acoustic-
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phonetic speech segmentation approaches are limited by requirement of a good
transcription for both training and testing, which is very difficult to obtain. In
order to over come these limitations, we are proposing a unsupervised discrimi-
native classifier approach which does not require manually segmented data and
phonetic transcription. The input to the discriminative classifier is obtained from
boundaries automatically detected by signal processing based boundary detection
approaches. We show that unsupervised classification based approaches perform

better than signal processing based approaches and HMM based approaches.

The second part of the thesis focuses on significance of linear prediction residual
for acoustic-phonetic boundary detection in continuous speech. Alternate features
extracted from LP residual (excitation based features) are explored to improve

the performance of boundary detection.
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CHAPTER 1

Segmentation of speech signal

Speech segmentation can be described as a process of identifying boundaries in
the speech signal and labeling each of the speech segments between two adjacent
boundaries with a symbol. This process of identifying boundaries and labeling,

can be addressed at various levels of details such as:

e Speech / non-speech segmentation: This is a task of detecting the begin and
end of speech in the audio signal. Apart from speech, an audio signal may
also contain non-speech data such as music, noise, silence etc. It is important
to segment the audio data into speech / non-speech segments, as it acts as
pre-processing step for many speech systems such as speech recognition,
speaker recognition, etc.,. Output of this process is the boundaries between

the speech and non-speech segments in an audio signal.

e Phrase segmentation: Phrase is a group of words functioning as a single
unit in a sentence. This process is the task of detecting acoustic phrases
in a speech signal. It is often observed that pauses in the speech signal are
good indicators of acoustic phrasal boundaries. However, not all acoustic
pauses correspond to acoustic phrasal boundaries. Hence, the task here is
to detect acoustic pauses in a spoken utterance which correspond to phrasal

boundaries.

e Voiced / unvoiced segmentation: This is a task of identifying the voiced
(quasi-periodic signal) and unvoiced (non-periodic signal) regions in the
speech signal. The task here is to detect the boundaries between voiced

and unvoiced segments and label these segments as voiced or unvoiced.
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e Word segmentation: Word is one of the smallest meaningful unit, comprising
of sequence of phones or syllables. It is a task of detecting the boundaries

of a word in a speech signal.

e Syllable segmentation: Syllable is a unit of organization for a sequence of
phonemes which should at least have one voiced phone. It is a task of
detecting the boundaries of syllables in a speech signal and labeling these

speech segments with its respective syllables.

e Acoustic-Phonetic segmentation: Phone is a smallest, acoustic unit of pro-
nunciation. It is the link between the speech signal which is continuous and
the phoneme which is just a discrete, abstract cognitive concept bound by
language constraints. Acoustic-phonetic segmentation is a task of detect-
ing the boundaries of phones in a speech signal and labeling those speech

segments with phones.

1.1 Acoustic-phonetic segmentation

In order to perform acoustic-phonetic segmentation of speech automatically using
machine, we have to first understand the processes involved in manual phonetic
segmentation of speech done by humans. As described in motor theory by Liber-
man et. al. and multi-cue model by , human beings are capable of recogniz-
ing phones using only printed spectrograms that display the speech signal along
the dimensions of time, frequency and amplitude axes. This process of manually
segmenting the speech into acoustic-phonetic units by humans is termed as hu-
man spectrogram reading. These techniques employed in spectrogram reading are
useful in designing the algorithms for machines to perform speech segmentation.
The seminal paper on spectrogram reading [29] describes the manual segmenta-

tion approach of Victor Zue, and the analysis of his approaches. It was found


http://www.cvisiontech.com

Acoustic-Phonetic
Boundary Detection

Segment Boundaries

Ll
Acoustic-Phonetic

Segment Labelling

Segment Labels

L

-

Figure 1.1: Block Diagram of acoustic-phonetic segmentation of speech.

Y

that he was able to identify more than 97% of all phonetic segments in continuous
speech. Victor Zue used a two-pass method for reading spectrograms; in the first
pass, he identified the boundaries of acoustic-phonetic segments and in the second
pass he identified the phones in each segment with some segment boundary ad-
justments. Boundary identification was done primarily by locating the points of
spectral change and shape changes in intensity. Some boundaries were determined
based on relative local duration; for example, two adjacent stop closures can be
identified as two phones even without change in a spectral information, because
the combination of both stop closure is significantly longer than the duration of

a single stop closure. Changes in formant frequencies (such as dip in the first
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frequency or a decrease in formant amplitude) were used by him to identify tran-
sition within a sonarent region. In some cases, such as liquid-vowel transitions, no
boundary was marked until the second pass. Once the speech has been initially
segmented, each segment was assigned a phonetic label. Label assignment was
done based on (a) knowledge of unique spectral patterns for a phone, (b) knowl-
edge of co-articulatory effects, and (¢) constraints imposed by English phonology.
Even for highly complex sounds such as plosives, he was able to identify and
classify plosives with great accuracy based on the characteristic patterns of the

manner and place of articulation.

Just like manual acoustic-phonetic speech segmentation performed by Vic-
tor Zue, automatic acoustic-phonetic speech segmentation without using phonetic

transcription, can also be divided into two phases:

e Acoustic-phonetic boundary detection: In this phase, the boundaries of
acoustic-phonetic units in speech signal are automatically detected. This

phase is independent of language, phonetic transcription and phone-set.

e Acoustic-phonetic segment labeling: In this phase, each segment is labeled
with a phone symbol. The choice of the phone set may be dependent on

language and the text transcription if available for the utterance.

1.2 Issues in acoustic-phonetic boundary detec-

tion

In this thesis, our work is mainly focused on the first phase of acoustic-phonetic
speech segmentation, i.e., approaches for acoustic-phonetic boundary detection in
a speech signal without using any phonetic transcription. The issues involved in

this process are described below.
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1. Effect of phone duration variability on acoustic-phonetic bound-
ary detection: At the physical level, the rate of speech is governed by
the inertia of the articulators. The body of the tongue moves relatively
slowly, and the rate of sonarent phones is limited by the rate at which the
tongue moves. The lips and tongue can move faster and so plosive sounds
occur over a much shorter time interval. In addition to durational variation
due to phone differences, vowel duration may change by a factor of eight,
depending on speaking rate, syntax and stress. The factors that influence
the phone duration while speech production and speech perception result in
fairly complex models. A preliminary model proposed by Klatt for speech
synthesis had seven factors that influenced the duration structure of sentence
and these factors were accounted by eight rules. A simpler model proposed
by Van Santen is able to account for 86% of the variance of vowel durations
only in a large corpus of manually segmented speech . This concludes that
phone duration structure in different conditions of speech is highly complex

and difficult to understand and build models.

2. Effect of co-articulation on acoustic-phonetic boundary detection:

Co-articulation is the effect that one phone has on its neighboring phone,
which is manifested as a smooth change in formant frequencies from one
phone to the next as shown in Fig This smooth transition between
phones is one of the main factors that makes it difficult to determine the ex-
act location of phonetic boundary. Ohman [7], proposed a model to handle
co articulation in VCV utterances using a vocal tract shape based informa-
tion. Even though this model was successtul on VCV utterances, it had
its limitations in handle co-articulation effects in CVC utterances. In the
model proposed by Lofqvist, speech segments have a overlapping ”dominance
functions” that control the articulators, with one dominance function per ar-

ticulator. These dominance functions can differ in time offset, duration and
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Figure 1.2: The co articulation effect on two boundaries in the word "yard” i.e.,

boundary between /y/ & Jaa/ and Jaa/ & /r/ can be observed in

shaded region of the above spectrogram.
magnitude, giving relatively more or less weight to articulators associated
with a given speech segment. Although this model is successful in modeling
visual speech, it is not obvious how this model could be used directly in
current speech segmentation systems, in which the articulators are the best
parameters that one can use. There were several such studies and they con-
cluded that co-articulatory patterns are not explained adequately by any of

the theories or models. This concludes that co-articulation is highly complex

and difficult to understand and build models.

Significance of source features for acoustic-phonetic boundary de-
tection: As described in production and perception models, present tech-
niques use acoustic features like vocal-tract or perceptual based features only
throwing away the other information in the speech signal. So, as described in
Victor Zue’s analysis, new features have to be explored in-order to improve

the performance of acoustic-phonetic boundary detection.
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1.3 Issues addressed in this thesis

The focus of this thesis is acoustic-phonetic boundary detection in a speech signal.
These approaches mainly rely on the acoustics only and is not constrained by the
phonetic transcription of an utterance, and hence the task is to find the acoustic
event in the speech signal that marks the change in the phonetic boundaries. These
approaches can be broadly classified into supervised and unsupervised approaches.

These methods are thus language independent.

Unsupervised approaches such as , B] use some form of peak-picking algo-
rithm to detect the acoustic-phonetic boundaries. This does not have any training
phase and hence no training data is required. Unlike unsupervised approaches,
supervised approaches such as a discriminative classifier, a model is trained
using some training data and is used to detect the boundary frames of a test speech
signal without using any phonetic transcription. Following are different modules

that are addressed in this work:

1. A supervised discriminative classifier approach Youngjoo Suh and
Youngjik Lee, proposed a discriminative classifier approach using multi-layer
perceptron on a single speaker database, which consisted of three phases:
The pre-processor utilizes a sequence of 44 order feature parameters for each
frame of speech and manually labeled data to prepare the input data to
the next phase. Multi-layer perceptron (MLP) has an input layer with 176
nodes, one hidden layer and an output layer with one node and the value at
the output node gives an estimate of the phonetic boundary for the present
frame. Post-processor decides the positions of phonetic boundaries using
MLP output value. In Suh and Lee , this approach was applied on a
single speaker Korean database. In the present work, we adapt a similar
approach to a multi-speaker database, and compare it with signal process-
ing and forced-alignment based approaches for acoustic-phonetic boundary

detection.
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2. Comparison of different approaches Other than the supervised /unsupervised
acoustic-phonetic boundary detection approaches, there are some other ap-
proaches which can be used for boundary detection, but require phonetic
transcription along with the speech signal to perform the task. HMM,
DTW based speech segmentation approaches are some of such approaches
which segment the speech signal into phonetic segments, hence obtaining
the acoustic-phonetic boundaries. In order to check the performance of the
above adapted approach , a comparative study on different approaches
such as unsupervised group-delay function (GDF') based boundary detection
approach and HMM based speech segmentation approach and the results are

provided in chapter 3.

3. Unsupervised discriminative classifier approach As the approach pro-
posed by Youngjoo Suh and Youngjik Lee is a supervised approach, it
requires manually labeled data to train the MLP classifier. But it is difficult
and tedious to obtain a precise and sufficient amount of data to train. Hence
we propose an unsupervised approach, to train the discriminative classifier
model to perform the acoustic-phonetic boundary detection. Initially, an un-
supervised peak-picking approach is applied on the training data to obtain
an initial acoustic-phonetic boundaries. Discriminative artificial neural net-
works (ANN) classifier was trained using automatically obtained boundaries

by signal processing approaches.

4. Significance of excitation features for acoustic-phonetic boundary
detection
Present state-of-art approaches mostly use perceptually motivated features
like MFCC or Filter based features such as LPCC or filter-bank based ap-
proaches which basically try to model the formant tracking information. But
these features fail at some situations such as boundaries between unvoiced

stop bursts / unvoiced fricatives (eg., /k-s/), two unvoiced fricatives (eg.,
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Figure 1.3: An example of boundary where either of the adjacent phones do not
have formant tracks such as between /k/ and /s/, where perceptual
and vocal-tract based features fail to detect the boundary.

/ch-s/) etc., where there is no formant track information at all as shown
in Fig So, there is a need to explore different features which are inde-
pendent of formant tracking for the task of speech segmentation. Most of
the presently used acoustic features try to capture perceptual or vocal-tract
characteristics completely throwing away the source features like LP resid-
ual based features. Even though, Markel et. al shows that LP residual
spectrum is almost flat, some of the previous works on speaker verification
Q, speech coding etc., showed that LP residual has potential to improve
the performance in their respective works. This motivated us to explore LP
residual based features for the task of acoustic-phonetic boundary detection

in speech signal.

1.4 Contributions

The contributions of this thesis can be summarized as follows:

9
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e A framework for supervised and unsupervised ANN based, acoustic-phonetic

boundary detection approach is developed.

e A comparative study between some of the start-of-art approaches which fall
under different categories such as supervised / unsupervised, force-aligned
etc in comparison with the above described approaches are reported. This
study showed that, supervised ANN based approach performed almost as

good as supervised, forced-aligned approaches.

e Significance of source characteristics in speech for the task of acoustic-
phonetic boundary detection in speech signal is analised. This analysis
helped in proposing that, excitation based features can be used as com-
plimentary evidence along with filter based features to obtain a better seg-

mentation performance.

1.5 Organization of thesis

The rest of the thesis is organized as follows:

In chapter 2, an overview of different acoustic-phonetic boundary detection
approaches such as manual and automatic approaches with their limitations were
described in detail. Different automatic acoustic-phonetic boundary detection
approaches, forced-alignment based approaches, both supervised and unsupervised

approaches were discussed in detail.

In chapter 3, a detailed description of the supervised classification based
acoustic-phonetic boundary detection and the proposed unsupervised approach
were described. This chapter ends with the comparison and analysis of the different

baseline approaches with the above two approaches is reported.

In chapter 4, we have described the motivation and the procedure for ex-

10
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ploring the excitation based features for the task of acoustic-phonetic boundary
detection. This chapter concludes with the comparison and analysis of different
features such as LPCC and HECC using supervised ANN based acoustic-phonetic

boundary detection approach.

Finally in chapter 5, the conclusions that can be drawn from the thesis are
outlined along with the limitations of the work in the thesis and the possible

directions for future work.

11
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CHAPTER 2

Approaches for acoustic-phonetic boundary

detection

In this chapter, we will report different approaches for acoustic-phonetic boundary
detection in continuous speech. Broadly, boundary detection in continuous speech
can be classified into manual and automatic approaches based on the amount of
human intervention in doing the task. If the task is performed solely by the human
annotators, then it is called as manual acoustic-phonetic boundary detection. On
the other hand if the task is performed automatically performed by machines
without any human intervention, then it is called as automatic acoustic-phonetic

boundary detection.

In this review chapter, several approaches for manual and automatic acoustic-
phonetic boundary detection are described along with their limitations. Finally,
we will describe the need for new approaches and features for acoustic-phonetic

boundary detection.

2.1 Manual acoustic-phonetic boundary detec-

tion

Manual acoustic-phonetic boundary detection is a process of identifying the pho-
netic boundaries in speech by manually examining cues from spectrogram, energy
and pitch. This process is described as human spectrogram reading. It is often ob-
served that, no two human annotators can identify the phonetic boundaries exactly

same. As a result, manual speech segmentation is usually reported as inter-labeler
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agreement, with one set of manual boundaries chosen as nominally correct, and
the other set of boundaries measured in relation to the first set. Following are a

few studies on manual boundary detection:

Cosi et al. reported a manual segmentation performance of about 6 msec
mean deviation, 55% agreement within 5 msec, and 93.5% agreement within 20

msec on 10 [talian continuous speech utterances sampled at 16 kHz sampling rate.

Ljolije et al. evaluated a manual segmentation task on 100 Italian utter-
ances from two human transcribers and found 80.8%, 92.9% and 96.8% agreement

within 10, 20 and 30 msec respectively.

Wesenick and Kipp reported an average agreement levels of 63%, 73%,
87%, and 96% within 0 msec (perfect correspondence), 5 msec, 10 msec and 20
msec respectively. Annotators used in this study were all graduate students in
phonetics, and all had received an intensive training session. As a part of this
training, a number of conventions were established to ensure consistency among
the annotators. One such rule was to always set a segmentation boundary where
the values of speech changed from negative to positive. This is one of the reasons
for the best performance reported for human consistency on the task of phonetic

segmentation.

Leung and Zue reported an agreement of 80%, 87% and 93% within 10
msec, 15 msec and 20 msec on a database of five phonetically balanced sentences,

recorded at 16 kHz and annotated by two human annotators.

Cole et al. reported an inter-annotator agreement for five languages i.e.,
English, German, Mandarin, Spanish and Hindi from OGI Multi-lingual speech
corpus. There were two major changes when compared to previous works: (a)
It was done on 8 kHz telephone-band speech to check the channel effects. Inter-
annotator agreement by native US English annotator on US English data was

found to be 79% within 10 msec which is marginally lower than the value reported

14
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by Leung. Hence showing that the channel conditions have minimal effect on
manual segmentation. (b) A part of the annotation was performed by non-native
annotators to check the annotation consistency between native and non-native
annotators. To perform this analysis, a German database was annotated by two
native and two non-native annotators. The inter-annotator agreement between
native annotators was about 63% and 79% agreement within 5 msec and 10 msec
respectively, and between two non-native annotators it was about 69% and 81%

within in 5 msec and 10 msec which is comparable to the former.

Hosom et al. reported an inter-annotator agreement of about 81.7% and
93.5% agreement within 10 msec and 20 msec on 50 TIMIT sentences annotated
by two annotators. For evaluation, they (a) merged glottalized sounds such as
/a/ (a glottalized sounds are the sounds produced with some important event (a
movement or a closure) of the glottis.) (b) did not evaluate boundaries between
stop closures and silences (as any such boundary is placed arbitrarily). These

results correspond well with the previous works by Cosi, Ljolije, Leung and Cole.

In order to check how consistency of annotation by the same annotator and
to measure properly how fast it is possible to work, the manual segmentation and
labeling of about two minutes of the speech data was performed by Kvale .
Manual annotation was done two times by the same annotator with a gap of three
months between the two annotations. Kvale reported that the agreement between
the two sets of segment boundaries was 63% and 96.5% within 5 msec and 20
msec respectively and there were very minimal labeling errors of about 0.5%. On
the other hand, it took 135 minutes to segment and label 748 segments, i,e. 5.5
phones per minute. A summary of performances reported by the above works is

shown in Table

In summary, there is a fairly consistent agreement among human annotators
for continuous speech, even across language and channel conditions. Agreement

between two annotators and between two annotations of the same annotator are
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Table 2.1: Comparison of different manual acoustic-phonetic boundary detection

performances.
Previous Language No. of |  No. of | Agreement % with 7(ms) <
Works (samp. rate kHz) | Utts. | Annotators | 0 ‘ 5 ‘ 10 ‘ 15 ‘ 20 ‘ 25 ‘ 30
Leung [17] English (16) 5 2 - | - |80|87]93| - | -
Cosi [14] Italian (16) 10 3 - B85 - | - |94 - -
Wesenick [16] | German (16) 64 3 63738719396 - | 99
Ljolije [15] Italian (16) 100 2 -] - |81 - ]93] - | 97
English (8) 10 2 - 67|79 - | - | -] -
Mandarin (8) 10 2 - TLH83 | - | - | -] -
Spanish (8 10 2 - 53T - -] -] -
Cole [1§] Girman ((8)) 10 2 - 16379 - | -] -] -
German (8) 10 2 (NN) - 68|81 - |- -] -
Hindi (8) 0 | 2(NN) |- er|9l- |- -] -
Hosom [3] English (16) 50 2 - 161(82(89(94|95| 97
Kvale [19] English (16) 2 min 1 - |63|88(94|97|98| -

almost similar (but not same). This highlights the point that it is not possible
to obtain perfect annotation, even by the same annotator. Hence this shows that
manual boundary detection is a tough and time consuming job. There is an
average agreement of 94.17% within 20 msec for the measured manual agreements
, with a maximum of 97% within 20 msec for highly trained specialists using a set
of rigorous and well defined conventions. One can obtain highly accurate phonetic
segmentation using manual annotation, but it has many limitations as described

below.

2.1.1 Limitations

e The manual intervention in this process is extremely time consuming and
tedious which drastically increases the time required to obtain the phonetic

boundaries.

e As mentioned by Cosi et al. , Torkkola and Van Erp and Bover ,

it is almost impossible to reproduce the manual segmentation results, due to
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the variability of human visual and acoustical perceptual capabilities. Also,
it is difficult of establish a clear common labeling strategy. Consequently,

the manual segmentation procedure is implicitly inconsistent.

e This approach has to be done by highly trained human annotators who are

difficult and costly to obtain.

e If a new database have to be segmented, then all the processes of this ap-

proach have to be repeated by human annotators.

2.2 Automatic acoustic-phonetic boundary de-

tection approaches

As mentioned earlier, if the acoustic-phonetic boundary detection is performed
automatically by a machine without any human intervention, then it is called as
automatic phonetic speech segmentalion. Boundary detection approaches can be
broadly classified into three types. They are signal processing based approaches,
classifier based approaches and force-alignment based approaches. This section
deals with different types of approaches for automatic acoustic-phonetic boundary
detection in continuous speech and provides an overview of some of the previous

works in each of these types.

2.2.1 Signal processing based approaches

These approaches generally use the combination of signal processing techniques
and peak-picking methods to perform the task of acoustic-phonetic boundary de-
tection. Mostly these approaches fall in unsupervised category as they don’t re-

quire any manually labeled data. Some of these approaches are discussed below:

17


http://www.cvisiontech.com

Wilpon et al. has proposed an unconstrained segmentation procedure
which is based on measuring the spectral variations over time by computing the
spectral variation contour. First step in obtaining spectral variation contour is by
computing the distortion between consecutive frames on some spectral represen-
tations such as linear prediction coeflicients (LPC) or cepstral coefficients using
Itakura-Saito distance or Fuclidean distance. Second, spectral variation contour is
obtained by computing the stationarity of the signal at each frame as the average

of the distortion over the frames around it.

Sharma and Mammone , proposed a ”"Blind” speech segmentation proce-
dure which allows a speech signal to be segmented into sub-word units without
the knowledge of any transcription. This procedure involves two phases. First is
to finding the optimal number sub-word segments in the speech signal. Second is
to find the optimal location of sub-word segment boundaries. So, initially they
estimate the range of the number of segments [Kin, Kpmar]. Number of syllables
in a speech segment was considered as minimum number of segments in speech
signal (K,:,). Number of syllables in speech signal was found by using Con-
vex Hull method. Maximum number of segments in speech signal (K.) is
estimated by using a spectral variation function (SVF). Then for every k in this
range, they have performed level building dynamic programming (LBDP) based
speech segmentation for k-segments and computed k-cluster optimality criterion
(Qk) using normal decomposition method. The optimal number of sub words K|
is found as: K, = argmazi=EmeQ,. Finally, segment boundaries are obtained

by performing DP-based segmentation for K sub words.

Anna Esposito and Guido Aversano @], proposed a segmentation algorithm,
that carries out the phone-level segmentation using a bottom-up approach. This
is based on the detection of spectral instability in multiple frequency bands. Ac-
cording to results reported in this work, the algorithm gives better performance

than other methods of the same class of approaches. A part of their work was
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on the analysis of the relations between segmentation performance and their de-
pendence from the algorithm’s parameters. They found that these approaches are

very much dependent on the parameters for better performance.

Dusan and Rabiner , developed an approach which extracts 10 dimensional
mel-filter cepstral coeflicients (MFCC) for every 10 msec and computes a spectral
transition measure (STM) to capture the spectral rate of change in time. Since the
spectral rate of change usually displays peaks at the transition between phones,
such a measure is used to detect the phone boundaries. Once STM is obtained
at every frame, next step is to detect the boundaries using peak picking method
and remove the spurious peaks using post-processing methods. They reported
their analysis on TIMIT train-set and the algorithm has deleted about 15.4% and
inserted about 28.2% of boundaries. They also reported that of the correctly
detected boundaries i.e., 84.6%(100 - 15.4), there was an agreement of 70%, 89%

and 95% with in 10 msec, 20 msec and 30 msec respectively.

Estevan et al. , proposed an unsupervised maximum marginal clustering
(MMC) based approach for phonetic speech segmentation. MMC algorithm is
applied on a sliding window of width 18 mel-filter cepstral coefficients (MFCC)
vectors. Based on the similarity of the MFCC vectors in this window, each MFCC
vector is clustered into two clusters, ignoring the time order of MFCCs. Then
Euclidean distance between the mean of two clusters for each window is computed
to obtain a contour in time. Then a peak-detection algorithm is applied to obtain
the phonetic boundaries. They reported a correct detection rate (CDR) of 67.9%

and under segmentation rate of 1.4% within 20 msec on TIMIT test-set.

Ladan Golipour and Douglas O’Shaughnessy , presented an unsupervised
and unconstrained approach for phone-level speech segmentation. Their goal was
to recognize the locations of main energy changes in frequency over time using
STFT of speech signal and sub-band analysis, which can be described as phone-

level boundary. They employed the modified group-delay function to achieve a
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more clear representation of the locations of boundaries and smooth out undesired
fluctuations of the signal. They reported a performance of 87% correct boundary

detection and an error of 6.6 % extra boundaries on a part of TIMIT test-set.

2.2.1.1 Limitations

e One of the key limitation to these signal processing approaches is that, the
most of the signal processing based approaches are highly sensitive to the
parameters used and hence are less robust, as observed by [|9]|. For example,
the delta energy contour of a speech signal have many peaks, of which some
are boundaries and the rest are spurious peaks. A small change in the
peak cut off threshold, can change the performance of boundary detection

drastically.

2.2.2 Force-alignment based approaches

Force-alignment based acoustic-phonetic boundary detection is an approach wherein
the speech signal is aligned with its corresponding phonetic transcription. So these
approaches are constrained by the phonetic transcription of an utterance to obtain
the boundaries and hence require phonetic transcription. These approaches per-
form acoustic-phonetic speech segmentation, i.e., both acoustic-phonetic boundary
detection and acoustic-phonetic segment labeling at the same time. Hence these
approaches differ from other approaches in two ways. Firstly, it requires phonetic
transcription of the utterance as the input for alignment and secondly, it will give
the segment boundaries as well as the segment labels in the same step instead of
two different steps as shown in Fig In these type of approaches, the number,
the identity, and the order of the phonemic units are known a-priori. The accu-

racy or performance of these approaches mainly depend on the choice of utterance
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transcription available, and segmentation procedure employed. The rest of the

section deals with these variations and their limitations.

2.2.2.1 Utterance transcription

Even though the segmentation of the speech data is a task performed at phonetic
level (Barry and Fourcin, 1992), the transcription of an utterance that is submitted

to the system can be one of the following levels (Barry and Fourcin, 1992; Kvale

1993):

1. A citation, canonical or standard phonemaic transcription: This represents
the concatenation of the standard pronunciations of the words contained in
the uttered sentences. It is a sequence of phones which considers neither

assimilations nor coarticulations effects in speech signal.

2. A phonotypical or text-to-phone phonemaic transcription: This is obtained by
the concatenation of the standard pronunciation, with the consideration of

the context of the words. This takes care the word junction phone variation.

3. An auditory phonemic transcription: As a word can have multiple pronun-
ciation, using only standard pronunciation may not obtain the exact tran-
scription. This transcription is obtained by listening carefully to the speech
signal. It still consists of the phones which are actually perceived by the

listener.

4. An audio-visual or manual-labeling phonetic transcription: This transcrip-
tion however is a sequence of acoustically motivated sound segments, called
phones. These phones have relatively stable changing acoustic-phonetic
properties. These are identified by an audio-visual (spectrogram) inspec-
tion of the speech signal manually. This can be considered as the most

precise representation of the speech signal.
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Table 2.2: Describes different types of transcription for a given orthographic rep-
resentation, resources required for each type and an example.

| Transcription Type | Example | Resources Required |
Orthographical "romantic gift” -
Canonical /t/ jow/ /m/ [ae/ /n/ /t] /ih/ /k/ Pronunciation
o7 Tt oy Jaaf Tof T T Contest b
. r/ Jow/ /m/ Jae/ /n/ /t/ /i ontext base
Phonotypical /g/ /ih/ /1] /t/ letter to sound rules
. /t/ jax/ /m/ Jae/ /nx/ [ix/ /k/ Manual
e T o o o o e Sl
. r| |ax| [m] |ae| nx| [ix] [kel Manual
Manual-labelling le] [ib] [F] [ecl] [¢] annotation

Table [2.2]shows different types of transcriptions that may arise from a particu-
lar orthographical representation, resources required for each type and an example
for each type. Examples for each type are extracted from the TIMIT database
. From Table [2.2] we can observe that, descending order of difficulty to obtain
transcription is as follows: Manual-labeling ;= Auditory ;, Phonotypical ; Canon-
ical ; Orthographical. Hence among the phone level transcriptions, canonical is

easiest and manual-labeling is toughest to obtain.

2.2.2.2 DTW-based approaches

Dynamic time warping (DTW), is a dynamic programming algorithm that aligns
two sets of features in time using set of reference features and a distant metric, so

that the error between the two features is minimized.

Svendsen and Soong used DTW to align the input speech with speaker in-
dependent phonetic templates obtained from spectral average of different speakers
phonetic templates. They reported an agreement of 32%, 72% and 92% wthin 15

msec, 30 msec and 45 msec.

Falavigna and Omologo also aligned input speech with phonetic proto-
types, but used spectral variation function to emphasize changes in signal. They

reported an agreement of 61% within 20 msec.

e
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Leung and Zue developed a system for automatic alignment of phonetic
transcriptions with continuous speech. The speech signal is first segmented into
six broad phonetic classes using a non-parametric pattern classifier. Second, using
a knowledge-based dynamic programming algorithm, the sequence of broad classes
is aligned with the phonetic transcriptions. These broad classes provide reliable
segments for more detailed segments and refinement of boundaries. Finally, this
initial time alignment serves as anchor points for subsequent detailed phonetic
alignment utilizing a set of heuristic rules. The system was evaluated on three
speakers (2 male and 1 female) read speech. Results were approximately 75% and

90% agreement within 10 msec and 20 msec respectively.

In summary, this approach requires a TTS or a speech templates with bound-

aries. Inspite of all these, the results were not as good as manual boundaries.

2.2.2.3 HMM-based approaches

Rapp noted that because ”the task if phone alignment can be considered as simpli-
fied speech recognition, it is natural to adapt a successful paradime of automatic
speech recognition, namely HMMs for phonetic segmentation” . So, automatic
phonetic segmentation can be performed within the HMM framework by constrain-
ing the grammar network in an HMM phone recognizer to only recognize the given
phone sequence. ”Recognition” is obviously performed with perfect accuracy, but
in doing the recognition search we also determine the most likely state sequence,
and this gives us the phone boundaries. The phone boundaries are provided as the
time instances of the model transitions by tracing back the optimal path found
by the Viterbi algorithm. Often this operation is called forced alignment. A
number of studies have investigated using a state of art general purpose speaker
independent / dependent speech recognizer to perform the alignment. Some of

these approaches are described below.

Ljolije and Riley , built a three-state HMM system that has different types
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of phonetic models, depending on the availability of training data such as tri-
phone models, quasi-triphone models and monophone models. The HMM uses
full-covariance Gaussian probability density function to estimate the state emis-
sion probability, a Gamma distribution duration model, and 10 msec frame shift.
Two types of models were trained: first using the manual alignments in the TIMIT
database, and second using both manual alignments and Viterbi re-estimation of

the alignments. In either cases, they found 80% agreement within 15 msec.

Dalsgaard, Andersen, Berry and Jorgensen ,, used a self-organizing

neural network (SONN) to estimate the probabilities of distinctive phonetic fea-
tures. For example, phone /s/ was defined by the vector [front back mid round
dent velar frication], where each of the distinctive features may have the value
+1, 0 or -1 depending on whether it is present, not relevant or absent. These
distinctive features were subjected to principle component analysis to determine
the most relevant features for phonetic classification. These principle components
were used to model phonetic likelihoods with Gaussian probability density func-
tions, and then Vitterbi search was applied to these likelihoods to align the speech.
When evaluated on EUROMO corpus using 15 principle components this system
yielded an agreement of 66.5%, 77.5%, and 52.0% with 20 msec on Danish, English

and Italian languages respectively.

Brugnara et al. , , developed an HMM force-alignment system which
was trained using the TIMIT manual labels as an initial segmentation. They used
spectral variation features in addition to the standard cepstral-domain features,
which resulted in a 2% relative reduction in error. They evaluated this system on
TIMIT system on TIMIT test-set, and reported an agreement of 75.3%, 84.4%
anf 88.9% within 10 msec, 15 msec and 20 msec respectively. They also compared
this system to an identical system trained without initialization from the man-
ual alignment information, and found that the system trained using the manual

alignments had a 50 % reduction in error compared to the system trained without
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manual alignment.

Kvale , developed a two phase segmentation algorithm. First segment the
speech into acoustically similar segments by using sequence-constrained vector
quantization (SCVQ). SCVQ is a special case of VQ which is constrained so that
all the vectors in a cluster are contiguous in time. Using this method, they gen-
erated about 2.5 times as many segment boundaries as phonetic boundaries. In
second phase, a three state mono phone single mixture HMM with skip state is
trained on each phone using EUROMO corpus (16 kHz read speech male and fe-
male speakers in different languages). Then, during HMM segmentation, Viterbi
search was constrained by the condition that a state transition is only allowed at
the hypothesized segment boundaries. Results on the English speaker showed an
agreement of 82.3% within 20 msec. This system yielded an agreement of 86.1%,
82.3%, 84.5% and 86.4% with 20 msec on Danish, English, Italian and Norwegian

languages respectively from EUROMO corpus.

Rapp trained a forced-alignment system for German using HTK toolkit
35]. He used a 10 msec frame shift and reported an agreement of 84% within 20

msec on Kiel Read Speech Corpus..

Pauws, Kamp and Willems trained an HMM system using a three-step
process in order to avoid the initialization of their training with manual alignments.
Their system was trained and evaluated on 8 kHz Dutch isolated word database
containing 827 words spoken by a single speaker. In the first step, the speech was
segmented into three broad phonetic classes, namely silence, voiced and unvoiced,
using energy in different bands, the zero crossing rate, and the spectral slope.
This step had an agreement of 82.05% with in 20 msec of the manual broad
phonetic boundaries. Given this segmentation, the next step was to use sequence-
constrained vector quantization (SCVQ) within each broad phonetic class to align
the phones which resulted in an agreement of 70.37% within 20 msec. In the final

step, HMM was trained to recognize each phone, with the initial segmentation
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taken from the second-step results. It used frame shift of 5 msec, six states per
phone for all phones except bursts, which had 2 states per phones, hence enforcing
a minimum duration of 10 msec for bursts and 30 msec for others. Performance
of this system was 89.5% agreement within 20 msec. In a comparative study,
this hierarchical system was compared with a forced-alignment HMM system that
was initialized with manual segmentation and another system that was initialized
randomly or a linear system with equal-duration segmentation. These systems had
an agreement of 96.0% and 76.14% within 20 msec. It should be noted, however,
that as all these systems are trained and tested on single speaker data, they cannot

be compared with speaker-independent alignment systems.

Wesenick, and Kipp implemented an HMM system to use in cases where
only word-level transcription is available. This system performed simultaneous
alignment of the canonical dictionary pronunciation and several pronunciation
variants. The HMM system used context-independent models with between three
and six states per phone and 10 msec frame shift. The HMM system was trained
and evaluated on the PHONODAT-II corpus of German speech, and was initial-
ized with manually-aligned data. The post-processing refinement adjusted the
boundaries within a 10 msec window using simple time-domain techniques gave

an agreement of 84% in 20 msec.

Wightman and Talkin developed an HMM-based system called the "the
Aligner”, with the acoustic model training and Viterbi search implemented us-
ing HTK Toolkit . It uses a 10 msec frame shift and five Gaussian mixtures
per state state to estimate the observation emission likelihoods. The system was
trained using TIMIT labels as an initial segmentation. In evaluation of their sys-
tems, they did not use the TIMIT phonetic sequence directly, but they mapped the
forced-alignment phones to the TIMIT phone sequence. Performance of this sys-
tem on the TIMIT test-set using manually obtained transcript was approximately

80% agreement within 20 msec.
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Pellom , used a HMM forced aligmnet based segmentation approach with
variety of enhancement algorithms for segmenting the noisy speech. The system
used a 5 msec frame shift, 5 state mono phone HMMs, 16 GMMs per state, Gamma
distribution transition probabilities and gender dependent models. When phone-
level transcriptions are not available, the system generates pronunciation using
CMU dictionary and word junction modeling. The system was trained on TIMIT
train-set that had been down-sampled to 8 kHz and evaluated on the TIMIT
test-set (8 kHz clean speech), the NTIMIT corpus (telephone-band speech) and
the CTIMIT (cellular-band speech) using various noise reduction techniques. He
reported an agreement of 85.9%, 74.9% and 63.7% within 20 msec for TIMIT,
NTIMIT and CTIMIT respectively.

Hosom [3] described a baseline forced-alignment system and a proposed system
with several modifications to this baseline system for speaker-independent phone
alignment. The baseline system was an HMM/ANN hybrid which computes prob-
ability estimates of observations using an Artificial Neural Network (ANN) instead
of a Gaussian Mixture Model (GMM). They used a 13 dimensional mel-frequency
cepstral coeflicients with their delta coefficients. Depending on the nature of the
phone, number of states for each phone were decided. So, they used 451 states to
represent these 61 phonetic and sub-phonetic units. While training of ANN for
HMM/ANN hybrid, the probability of an observation given a state was estimated
using a 3-layer ANN trained for each state. The ANN had as input features a
context window of five frames, with frames at -60, -30, 0, 30, and 60 ms relative to
the center frame. The network thus had an input layer of 130 nodes (13 + 13 fea-
tures per frame and 5 frames), a hidden layer of 300 nodes, and an output layer of
451 nodes. The proposed system implements three modifications to the baseline
system: (1) The feature set includes, in addition to the baseline systems cep-
stral features and normalized log energy (computed with a 100-ms window), four
additional energy-based feature streams; (2) The system uses, in addition to prob-

abilities of each phone-based state given an observation, probabilities of a state
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transition given that observation; and (3) Instead of computing context-dependent
phone probabilities directly, the system computes the probabilities of distinctive
phonetic features (such as manner, place and height of a phone). The probabilities
of these features are then combined to obtain phone probabilities using Massaro’s
fuzzy-logic model of perception (FLMP). Performance of the baseline system on
the test partition of the TIMIT corpus is 91.48% within 20 ms, and performance

of the proposed system on this corpus is 93.36% within 20 ms.

Toledano et al. , proposed a statistical correction procedure for HMM based
phonetic aligner to compensate for the systematic errors produced by context-
dependent HMMs and the use of speaker adaptation techniques is considered to
increase the segmentation precision. A general framework is proposed for the
local refinement of boundaries, and the performance of several pattern classifica-
tion approaches. This resulting system was able to increase the performance of
a baseline HMM segmentation from 27.12%, 79.27%, and 97.75% of agreement
within 2 msec, 20 msec, and 50 msec respectively to 65.86%, 96.1%, and 99.31%

in speaker-dependent mode.

Mporas et al. , has proposed fusion scheme for combining multiple phonetic
boundary predictions which are obtained through various segmentation engines.
They have used 112 HMM based speech segmentation engines, which differ in
the setup of HMMs and speech parameterization techniques. Best performing on
TIMIT corpus among these was a three state, two Gaussian per state, context-
independent HMM based segmentation using Human Factor Cepstral Coeflicients
(HFCC) with an agreement of 68.38% and 79.41% within 15 msec and 20 msec
respectively. This present fusion technique in combination with support vector

regression (SVR), improved to 82.28% and 88.18% respectively.

In summary, the reported systems represent numerous refinements on the stan-
dard HMM procedure, but in all cases the basic process remains the same, namely

estimating phonetic likelihoods at each frame, and then searching through these
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likelihoods with a constrained Viterbi search to determine the phonetic align-
ment. Direct comparison of the results from these systems is not possible, as even
the system evaluated on TIMIT corpus, there are many variations such as HMM
setup, frame size, frame shift, number of phones used, sampling rate of the speech
signal, etc. If, however, we assume that the performance difference due to these
variations in tuning of the parameters, features used etc., Thus, we can conclude
that the performance of HMM systems on TIMIT corpus ranges between 80%
and 94% within 20 msec. Apart from these variations, all the HMM systems re-
quire phonetic transcription (manual / canonical) and some times even the manual

segmentation to train the systems.

2.2.2.4 Limitations

1. The main limitation of TTS/DTW based algorithms is that they are very
much depend on the quality of the synthesizer. A good synthesizer requires

good segmented speech data and hence the approach itself is controducting.

2. One of the main reason limitation of HMM systems is that it requires a good

transcription for both training and testing, which is very difficult to obtain.

2.2.3 Classification based approaches

In the present approach, acoustic-phonetic boundary detection is performed by
using pattern classification techniques. Speech signal can be represented as the
sequence of frames of which some are boundaries and the rest are non-boundaries.
The core idea of this approach is to classify all frames in the speech signal into
two classes i.e., boundary / non-boundary frames. Let x is a frame in the speech
signal, B denote the boundary class and N B denote the non-boundary class, then

this approach estimates p(B/x) and p(NB/x). If p(B/x) > p(NB/x) then z is
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a boundary frame else x is a non-boundary frame. These approaches fall in the
supervised / unsupervised unconstrained approaches where the segmentation is
carried out using some models trained without using phone transcription. There

are a few approaches in this area, apart from the work reported by Suh et. al.

1. b

Youngjoo Suh and Youngjik Lee , proposed an approach using multi-layer
perceptron, which consisted of three parts: preprocessor, MLP-based phonetic
segmentor and post processor. The preprocessor utilizes a sequence of 44 order
feature parameters for each frame of speech, based on the acoustic-phonetic knowl-
edge and manually labeled data. The MLP has an input layer with 176 nodes,
one hidden layer and an output layer with one node. The output value from out-
put node decides whether the current frame is a phone boundary or not. Post
processing decides the positions of phone boundaries using output of MLP. They
reported an agreement of 84%, 87 % within 5 msec and 15 msec and an insertion

of 9% on a single speaker Korean read speech database.

Keshet et al. proposed a support vector machine (SVM) based discrimi-
native learning procedure. This approach used manually segmented boundaries
and their labels to train the data. The alignment function was devised to map the
input acoustic and symbolic (phone) representations of the speech utterance along
with the target alignment (phone start times) into an abstract vector space. A
specific mapping into the abstract vector-space which utilizes standard speech fea-
tures (e.g. spectral distances) as well as confidence outputs of a frame wise phone
classifier was employed. Building on techniques used for large margin methods
for predicting whole sequences, our alignment function distills to a classifier in
the abstract vector-space which separates correct alignments from incorrect ones.

This system had an agreement of 80.0% and 92.3% within 10 msec and 20 msec.
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2.2.3.1 Limitations

e One of the key limitation to this approach is that it require good amount of

manually segmented data to train the discriminative classifier models.

2.3 Need for new approach and features

Among all the approaches discussed in this chapter, HMM based approaches out
perform others. But there are three major limitations in such HMM based sys-
tems: firstly, these HMM based systems require exact, manually obtained phonetic
transcription which is very difficult to obtain. On the other hand, the canonical
phone transcript can be obtained very easily using dictionary look-up, but the
performance will go down because of the phonetic mismatch between the tran-
scription and the speech signal. A simple analysis was performed to check the
degree of mismatch between the canonical and manually obtained phonetic tran-
scription of TIMIT train and test data, in order to understand the gravity of
the problem. This can be analyzed by aligning both the transcripts using simple
string matching based dynamic programming algorithm and capture the number
of phone insertions, deletions and substitutions by canonical phone transcript over
manually labeled phone transcript. Table shows that while canonical phone
transcript matches with manual phone transcript 84% of times, but there is a
phone error rate (PER) of about 28% over the latter on both TIMIT train and
test sets. Second, when dealing with non-native speech data, non-native pronunci-
ation will be different and thus have phone insertions, deletions and substitutions
due to mis-pronunciations. In addition to this, non-native speech may contain
even the phones which are not present in the native English language. This puts
the barrier on using the native HMM models itself for non-native speech seg-

mentation. Third, in order to overcome the previous issue, and still use HMM
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Table 2.3: Accuracy, Phone Error Rate, Substitutions, Insertions, and Deletions
of phones by canonical phone transcript over exact phone transcript
using TIMIT corpus.

| Data | Acc. | PER | Sub. | Ins. | Del. |

Train | 83.9% | 27.1% | 6685 | 5625 | 1612
Test | 83.7% | 27.7% | 19146 | 16225 | 4205

models, one has to build a non-native HMM models which requires huge amount

of non-native speech data for training.

In order to overcome the above issues, our proposal is the following. Signal
processing based approach can be used for acoustic-phonetic boundary detection
in continuous speech without using transcription. It can be seen from the previous
studies that the parameters and thresholds used in such approaches are sensitive
and can effect the performance to a large extent when used on other databases. To
overcome this issue, we propose to use classification based approaches by training
a classifier on the boundaries obtained by signal processing approaches. Thus
bu combining the signal processing and classification based approaches, we have

avoided the need for transcription as well as manually annotated boundaries.

Another limitation of the existing approaches is that the spectral features such
as mel-filter cepstral coeflicients (MFCC), filter-banks, linear prediction cepstral
coeflicients (LPCC) etc., are used as features for acoustic-phonetic boundary de-
tection. But these spectral features fail at some situations such as boundaries
between unvoiced stop bursts / unvoiced fricatives (eg., /k-s/), two unvoiced frica-
tives (eg., /ch-s/) etc., where there are no formant track information at all. So,
there is a need to explore different features which are independent of formant

tracking for the task of speech segmentation.
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2.4 Summary

In this chapter an overview of different approaches such as manual and automatic
methods for acoustic-phonetic boundary detection of continuous speech are dis-
cussed. We can observe from the manual boundary detection limitations that even
though they perform better than automatic approaches, they are very costly, not
reusable and inconsistent, which conforms that automatic techniques are must for
acoustic phonetic boundary detection. Automatic boundary detection approaches
can be broadly categorized into signal processing, model and forced-alignment
based approaches. Main advantage of signal processing based approaches is that
they neither require any kind of transcription nor any training, but they are totally
dependent on the threshold parameters which makes these approaches little unsta-
ble to use on different databases. This instability can be rectified by using classifier
based approaches, which also do not require phonetic transcription but requires
manually labeled data to train the models which is a bottle neck at training phase.
Force-alignment based approaches such as DTW, requires a Text-to-Speech system
or recorded prompt of the utterance and its manual segment boundaries that has
to be segmented in order to perform the segmentation of the multiple repetitions
of the same utterance and so its usage is very restricted. Among the automatic
boundary detection approaches, high performance was obtained by HMM based
force-alignment approaches but it requires manually labeled phonetic transcrip-
tion which is the main bottle neck for this approach both at training as well as
testing phase. In order to overcome the limitations such as instability for signal
processing based approaches, manual boundaries for classifier based approaches
and manual phonetic transcription for force-alignment based approaches, we are

exploring for a new approach.
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CHAPTER 3

Classification based acoustic-phonetic boundary

detection

Acoustic-phonetic speech segmentation is a process of boundary detection and seg-
ment labeling. In boundary detection phase, the boundaries of acoustic-phonetic
units in speech signal are automatically detected independent of language, tran-
scription and phone set. In labeling phase, each segment is labeled with a phone
symbol. Traditional approaches of acoustic-phonetic boundary detection use signal
processing methods or employ supervised classifiers. Signal processing based ap-
proaches typically rely on peak-picking algorithms on temporal trajectories which
operate independent of language and transcription . However, signal processing
approaches are sensitive to parameters used and are less robust than supervised
classifiers. On the other hand, supervised classifiers require hand labeled data to
train classification models. The process of obtaining hand-labeled data is not only
difficult but also laborious. In this chapter, unsupervised classification approach
for acoustic-phonetic boundary detection approach is proposed by combining sig-
nal processing and classification based approaches. In this approach, first step
is to obtain acoustic-phonetic boundaries using signal processing based
methods. These boundaries are then used to train boundary detection

classifier.

A comparison of unsupervised classifier, supervised classifier, signal processing
and HMM based forced-alignment approaches are performed. The result show
that the unsupervised classifier performs better than signal processing and HMM

based forced alignment approaches, while supervised classifier out performs others.
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3.1 Signal processing based acoustic-phonetic bound-

ary detection

Signal processing approaches generally use the combination of signal processing
techniques and peak-picking methods to perform the task of acoustic-phonetic
boundary detection. Mostly these approaches fall in unsupervised category as
they don’t require any manually labeled data. Rest of the section describes the
two signal processing based approaches i.e., mean spectral smoothing (MSS) and

group-delay function (GDF') based approaches in detail.

3.1.1 Mean spectral smoothing based approach (MSS)

Most of the signal processing approaches are based on predicting acoustic changes
that occur at the phonetic boundaries. These acoustic changes at the phone
boundaries can be interpreted as difference in the distribution of the two adjacent
phones. Difference between the two adjacent speech segment distributions will be
high when the difference is measured at phone transitions and will be least when

they are measured within same phone.

In order to implement this algorithm, we have to choose a statistical param-
eter that can capture the distribution with minimal amount of data, a measure
to compute the difference between the distributions, that is compatible with the
chosen statistical parameter. Finally we have to choose the feature on which this
algorithm has to be applied to get a better performance. As mean is a first order
moment, it required less amount of data to represent a distribution when compared
to other higher order moments such as standard deviation, skewness etc., we are
choosing mean as the statistical parameter to capture the distribution. Regard-
ing measure to compute the difference between the distributions, there are many
measures such as Euclidean distance, City distance etc., but when performance

of this algorithm was tested on a small subset of TIMIT train-set, Fuclidean dis-
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tance was out performing others. Hence we choose to use Euclidean distance as
the measure for computing the distortion between distributions. We choose Mel-
Filter Cepstral Coefficients (MFCC generated using frames of 10 msec frame size
and 5 msec frame shift) as a feature for algorithm, as it is one of the highly used

acoustic feature in many speech processing systems.

Following is the pseudo code of MSS approach:

e Step 1: Compute the mean MFCC of the n frames to the left (p;) and

right (@) of i*" frame in the speech signal.

)= 3 @ and gl = L3z (3.1)
j=i-n Jj=t

Where x; is a 13 dimensional MFCC vector of 4% frame in a speech signal
and n is the number of frames to the left and right which is taken as five

here.

e Step 2: Compute the Euclidean distance between the left and right distri-

bution means of i frame in the speech signal

D(i) = | > lneli k) — pa(i k) (3.2)

K
k=1
Where K is the dimensionality of the mean vectors which is same as that of

dimension of MFCC vectors.

e Step 3: Repeat step 1 and 2 for all the frames in the speech signal to obtain
D for all i.

e Step 4: Once D is computed for all i we obtain a distribution distortion
contour as a function of time. All the peaks in this contour correspond to
highly distorted frames and hence most likely phonetic boundaries. So, we

have to apply a peak picking algorithm to get the segment boundaries. This
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peak picking is performed by computing first derivative of DD and all the
frames at which it is changing from positive to negative as the difference in

the distributions and hence the phone boundaries.

VD=-D (3.3)

boundary fVDGE—-1)>0& VD(i) <0
B(i) = (34)

non — boundary  Otherwise

3.1.2 Group-delay function based approach (GDF)

GDF-based boundary detection is also an example of signal processing based ap-
proach which focuses on acoustic cues to detect the transient behavior at the phone
boundaries as shown in the Fig Brief description of this work is presented

here and more details can be found in

0-8000 Hz

GDF

0-500 Hz _\_) Segment
x(t) Smooth FFT S5(w,n) [se0re0me GDF ] OR Boundaries
| Spectrogram oo LGDF 1 operation |
GDF 4‘_'
2386-8000 Hz G DF

Figure 3.1: Block diagram of GDF based phonetic speech segmentation.
e Speech signal is divided into frames with a frame size of 8 ms and frame shift
of 4 ms and a 512 point FFT is applied on each frame to obtain X (w,n).

e Power Spectrum P(w,n) is computed using real and imaginary components

of X(w,n) and it is smoothed using median filtering to obtain S(w,n).

e Compute the gradient of S(w,n) to obtain a measure for the change in
the energy of each frequency during the time of utterance. These energy

changes are summed over in 5 different frequencies i.e., 0-8000Hz, 0-500Hz,
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500-1420Hz, 1420-2386Hz and 2386-8000Hz to obtain different Y (n) for each
band.

As modified group-delay function was used to derive significant information
such as peaks in the spectral envelop, it is applied on each Y (n) separately

to obtain boundaries using equation .

Yir(n)Zr(n) + Yr(n)Z;(n)|*
S(n)?

(3.5)

Ty (n) = Sign

An "OR” operation is performed on the boundaries obtained by different

bands to obtain final boundaries.

3.2 HMM based acoustic-phonetic speech seg-

mentation

In this section, we are describing the forced-alignment based acoustic-phonetic

boundary detection approach. These approaches are termed as acoustic-phonetic

speech segmentation approach as these approaches obtain the segment boundaries

and segment labels simultaneously. Forced-alignment is the technique employed

by most of the HMM based speech segmentation approaches. These approaches

require phonetic transcription to perform speech segmentation which is combined

process of obtaining segment boundaries and segment labels. There are two kinds

of phonetic transcription s that can be used for HMM based speech segmentation.

o Manual phonetic transcription : This type of transcription is obtained by

manually transcribing the speech signal by a human annotator.
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e Canonical phonetic transcription : This type of transcription is obtained by
using word pronunciation dictionary lookup for each word in the sentence

and concatenating them.

Depending on the type of transcription used for segmentation, we can classify

HMM based segmentation approaches into following two types:

3.2.1 HMM-based segmentation using manual phonetic tran-

scription

In this approach, manual phonetic transcription is forced aligned with speech
signal to obtain segment boundaries. As these approaches use manual phonetic
transcription for training and segmenting, there will be no boundary deletions and
insertions. But, obtaining manual phonetic transcription is tedious and expensive
task. Previous works by Brugnara et. al. and Hosom [3] are some of the exam-
ples of such works, where they have used manual boundaries and manual phonetic
transcription to train the HMM models on TIMIT train-set and segmented the

TIMIT test-set using manual phonetic transcription .

3.2.2 HMM-based segmentation using canonical phonetic

transcription

As the manual transcription is expensive, the alternative is to use canonical pho-
netic transcription for speech segmentation. Problem with such transcription is
that one cannot get exact phonetic sequence of the speech utterance and hence
there will be insertions, deletions and substitutions of phones in the phonetic tran-
scription . These phone insertion, deletion and substitutions will have a direct
effect on the boundary detection as HMM forced-alignment based approach use

canonical phonetic transcription . So, before analyzing the speech segmentation
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Table 3.1: Accuracy, Phone Error Rale, Substitutions, Insertions, and Deletions
of phones by canonical phone transcript over exacl phone transcript
using TIMIT corpus.

|Data| Acc. | PER | Sub. | Ins. |De1. |

Train | 83.7% | 27.7% | 19146 | 16225 | 4205
Test | 83.9% | 27.1% | 6685 | 5625 | 1612

performance, we have to analyze the similarity between the manual and canoni-
cal phone transcripts and errors in canonical phone transcription . This can be
analyzed by aligning both the transcripts using simple dynamic programing and
computing the number phone insertions, deletions and substitutions by canonical
phone transcription over manual phone transcript Table shows that 83.7% of
the canonical phone transcription matches with manual phone transcription and

former has a phone error rate (PER) of 27.7% over the latter.

In order to evaluate the acoustic-phonetic boundary detection approaches with
HMM-based approaches using canonical phonetic transcription , two HMM based
approaches were developed on the same data and using the same phone set where
ever needed, so that they can be directly compared and analyzed. Following are

the detailed descriptions of HMM training, and two HMM based approaches:

3.2.2.1 Training HMM Models

The main advantage of using HMM models for speech segmentation is that it is
built using extensive knowledge and infrastructure of speech recognition. Just as
in speech recognition, HMMs for speech segmentation are also trained using the
standard expectation-maximization (EM) algorithm. State sequence © is gener-
ated from canonical phone transcript and observation sequence O is obtained by
parameterizing the speech signal. Speech parametrization is performed by com-
puting a feature vector for every 5 ms using a 10 ms Hamming window and a

pre-emphasis coefficient of 0.97. The feature vector used for HMM-based segmen-
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tation is a 12 Mel-Frequency Cepstral Coefficients (MFCCs) with Cepstral Mean
Normalization (CMN) and normalized log energy, as well as their first and second
order differences yielding a total of 39 components. To compute the likelihood
function, state sequence © is considered as hidden data. Thus in order to obtain
a maximum likelihood estimate A of the model parameters, we must calculate
the conditional expectation of the likelihood given a current set of parameters A.

Objective function Q(\, A) has to be maximized in successive iterations:

QAN =D P(O,01A) log P(O,0|)) (3.6)
0co

Even though both speech recognition and speech segmentation use HMMs, how-
ever, it is important to realize that the goals of both the tasks are different. Hence
these differences are reflected in the topology of HMM models. Past research
have indicated that context-independent models are preferred over context-
dependent models and almost no improvement beyond two Gaussian per state for
speech segmentation task. HMM topology of each phone is context-independent,
5 state sequential, left-to-right without any skip-state and observation probability
distribution of each state is characterized by 2 mixture Gaussian. HMM based

segmentation is implemented using HTK toolkit .

3.2.2.2 Speech segmentation in force-alignment mode (HMM-FA)

It is an approach, which assumes that phonetic transcription of the speech signal
is known. In the present case as we are not using manually labeled phonetic tran-
scription , we are generating the canonical phonetic transcription by concatenating
the pronunciation of each word from canonical pronunciation dictionary. Figure
3.2]shows an example of concatenated phone state sequence used for HMM forced-
alignment based phonetic speech segmentation. The corresponding concatenated
phone HMM models are force-aligned with the parametrized observation sequence

of speech signal to compute [log(P(O|0;)] for every ¢ and Viterbi search is used to
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find the optimal segment boundaries.

lay/ fer/

Figure 3.2: Topology of phone state sequence used in HMM-FA based phonelic
speech segmentation.

3.2.2.3 Speech segmentation in phone-loop mode (HMM-PL)

It is an unconstrained model based approach, which does not require any phone
transcription . Assuming all phones are equally likely, the topology of the this
approach is shown in Fig HMM models are obtained using the same training
procedures described in training HMM models for HMM-FA based speech seg-
mentation. Log likelihood of all states for each observation vector is computed
as [logmax]_, P(O|0;)] (where T is total number of phone models) and Viterbi

search is used to find the optimal segment boundaries.

Figure 3.3: Topology of phone stale sequence used wn HMM-PL based phonelic
speech segmentation.

Even though the above two approaches i.e., HMM-FA and HMM-PL based
approaches are speech segmentation approaches which output the segment bound-
aries and segment labels at the same time, we have compared the other boundary

detection approaches by only considering the segment boundaries.
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3.3 Discriminative classification based acoustic-

phonetic boundary detection

Signal processing based approaches search for boundaries without using any tran-
scription where as HMM based approaches, search for boundaries using acoustic-
phonetic transcription . But both the approaches search only for acoustic-boundaries
in a speech signal. On the other hand, classification based approaches search for

both boundary as well as non-boundary regions without using any transcription .

As described in the above approaches, present algorithm is also based on acous-
tic changes as a criterion for phonetic boundary detection without using any tran-
scription. We have developed a framework wherein manually or automatically
obtained segment boundaries (such as MSS, GDF) are used to train a boundary
/ non-boundary classifier without any trial and error analysis as in signal pro-
cessing based approach. As this approach involves training a classifier using some
machine learning technique, it can learn the different segment boundary patterns

from multiple instances in the training data.

To train the boundary / non-boundary classifier an appropriate machine learn-
ing technique has to be selected. There are many ML techniques which can be
used to train a classifier such as artificial neural networks (ANN), support vector
machines (SVM), classification and regression tree (CART) etc,., But in the scope

of this chapter we choose to use artificial neural networks (ANN)

Artificial Neural Network (ANN) models consist of interconnected processing
nodes, where each node represents the model of an artificial neuron, and the
interconnection between two nodes has a weight associated with it. ANN models
with different topologies perform different pattern recognition tasks. For example,
a feed-forward neural network can be designed to perform the task of pattern
mapping, whereas a feedback network could be designed for the task of pattern

association. A multi-layer feed forward neural network is used in this work to
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build a classifier which can classify each frame in the speech signal into boundary

/ non-boundary frames using acoustic features as input.

Figure[3.4/shows the block diagram of supervised ANN based acoustic-phonetic
boundary detection. This is basically divided into three stages: first step is to
prepare the data to train the classifier, next step is to train an ANN classifier and

final step is to use this boundary detection framework to segment the speech using

ANN classifier.

Training s 1
Speech Data | Feature X = DX o X Xy
Extraction

Manual / Automatic
Segment Boundaries Y; =[a,b] | ANN Classifier
Training

~ R Segmentation Segment
. X =
Speech Signal M Eeaire ¢ ANN ve=labd Acoustic Score Boundary Range Boundary | | Boundaries
Extractlon Classifier Alx)=a.-b, Detection Location >

Figure 3.4: Block diagram of ANN based acoustic-phonetic boundary detection.

3.3.1 Preparation of input / output data

Most of the current boundary detection approaches use features that represent
spectral information usually wrapped to emphasize perceptually relevant aspects
such as Mel-Filter cepstral coeflicients (MFCC). For a given speech signal, 13

dimensional MFCC are extracted with frame size 10 msec and frame shift 5 msec.

In order to train an ANN classifier, class labels (boundary / non-boundary) for
every frame are required. Class labels are obtained from the manually /automatically
marked boundaries in the TIMIT train-set. Using manual boundaries, all the fea-
ture vectors at the phone boundary frames are labeled as examples of boundary
class. As all the frames between any two adjacent boundaries are non-boundary
frames, there will be huge imbalance between the number of frames of each class
in the training data, which could bias the classifier. In order to overcome this im-

balance in the training data for two classes, for every pair of adjacent boundaries,
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only the frame which is in the middle of the two adjacent boundaries are selected

as examples of non-boundary class.

Once the labels are assigned to the frames, the next step is to decide input
and output vector format to train the classifier. Let x; denote the feature vector
extracted at frame f, then the input to ANN is an augmented feature vector
& =[xy, .., %, .., 2y]. The value of [ denotes the number of neighboring
feature vectors appended to @;. Given &, the corresponding class label y, = [a; b
is created, where a; and b; are boundary and non-boundary evidence respectively
for frame ¢ whose values depend on the output target function used for training

the network.

In our work, [ is taken as 5, so each feature vector is a concatenation of 11
frames. Total dimension for each input vector to ANN is 143 (11 frames x 13
coefficients). Hidden and output layer target function used for training an ANN
classifier is tangential (N) function. As output layer target function is tangen-
tial, output vector y, is [l -1] and [-1 1] for boundary and non-boundary frames

respectively.

3.3.2 Training a classifier

An ANN is trained to classify the MFCC of speech signal into boundary / non-
boundary class labels, i.e., if G(2;) denotes the ANN mapping of @, then the

error of mapping is given by € = >, ||y, — G(@&,)|]*. G(&;) is defined as

G(&:) = g(g(w®g(wVa,))), (3.7)

where

3(0) = 9, g(9) = a tanh(3 9). (3.8)
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Here w®, w® represents the weight matrices of hidden, and output layers of
ANN respectively. The values of the constants o and § used in fanh function
are 1.7159 and 2/3 respectively. A generalized back propagation learning is used
to adjust the weights of the neural network so as to minimize ¢, i.e., the mean
squared error between the desired and the actual output values. Selection of
initial weights, architecture of ANN, learning rate, momentum and number of
iterations are some of the optimization parameters in training an ANN . Once
the training is complete, we get a weight matrix that represents the function
between the spectral features of a speech signal and their class evidences. Such a
weight matrix can be used to classify a feature vector from the speech signal into

boundary / non-boundary class labels.

3.3.3 Supervised and unsupervised classifiers

As discussed above, ANN classifier can be trained using manually or automatically
generated acoustic-phonetic boundaries. In the rest of the thesis, the approach
using manual boundaries to train the classifier is termed as supervised classifi-
cation approach (SC) and the approach using automatic boundaries for training
the classifier is termed as unsupervised classification approach (UC). Automatic
boundaries are typically obtained from signal processing based methods such as
MSS / GDF. These signal processing methods do have errors in their boundary
detection. Hence a unsupervised classifier (UC) is typically trained using noisy

training data.

3.3.4 Detection of acoustic-phonetic boundaries from clas-

sifier output

The proposed framework for phonetic speech segmentation can be divided into

three main phases, i.e., computing frame-level acoustic score, detection of boundary
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regions and location of boundary.

3.3.4.1 Frame-level Acoustic Scores

Feature vectors are extracted from the speech signal for each frame ¢ as described
in Section [3.3.2l The corresponding augmented vector &, is given to the ANN
classifier to obtain boundary/non-boundary evidences. Let d; and by are the pre-
dicted boundary and non-boundary evidences respectively by the ANN classifier.
Sign of d; and b can be both positive, both negative and one positive and other
negative and their values can range between -1 and +1, unlike a; and b; used
while training which always have opposite signs and values can be only 41 or -1.

Different cases and their implications are as follows:

e Case 1: Both a; and 6t are positive
As both the evidences are positive, it implies that the frame @; is both
boundary as well as non-boundary. This can be resolved by using the actual
values of ¢; and b}. If |G| > |6t|, i.e., predicted evidence of &; being classified
as boundary is greater than classified as non-boundary, hence it can be

classified as boundary, else it can be classified as non-boundary.

o Case 2: Both ¢; and 6t are negative
As both the evidences are negative, it implies that the frame @; is neither
boundary nor non-boundary. This can be resolved by using the actual values
of a; and b}. If |ay] < |6t|, i.e., predicted evidence of @; being classified as
boundary is greater than classified as non-boundary, hence it can be classified

as boundary, else it can be classified as non-boundary.

e Case 3: a; is positive and by is negative
As a; is positive and by is negative, it implies that the frame @; can be
classified as boundary. The actual values of a; and by are still useful as they

can be used as confidence measure of &, being classified as boundary.
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e Case 4: a; is negative and by is positive
As a; is negative and by is positive, it implies that the frame @; can be
classified as non-boundary. The actual values of a; and b; are still useful
as they can be used as confidence measure of @; being classified as non-

boundary.

In order to incorporate all the above cases in a simple form, equation is
used where A(&;) represents the frame level acoustic score. In general, range of
A(&y) is between -2 and +2. For cases 1 and 2, it ranges between -1 and +1, for
case 3, it ranges between +1 and +2 and for case 4, it ranges between -2 and -1.

Once A(&;) is computed for all &;, we obtain an acoustic score contour (A).

A(y) = dp — by (3.9)

3.3.4.2 Detection of Boundary Region:

Most of the times, it is not possible to pin point the boundary at once. So, in order
to over come this issue, we have employed a two phase method in which first phase
is used to roughly detect the region where the boundary can be detected and in
second phase exact position of boundary marked. The main task of this phase is
to identify the regions in the speech signal where the boundaries are likely to occur
using an acoustic score contour (A). Once we obtain the acoustic scores, next step

is to obtain the frame level classification which can be obtained by equation

boundary it A(@) >0
C(t) = vt (3.10)

non — boundary Otherwise

where C(1) stands for class label of (™ frame in the speech signal. But some
unexpected patterns can be found in C such as t* frame is non-boundary and

t — 1% and t + 1** frames are boundaries, which means that the duration of that
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phone segment is just 5 msec which is highly unlikely. This is mostly because
of incorrect classification by ANN classifier. This can be seen as spurious peaks
and valleys in acoustic score contour (A). In order to remove these spurious peaks
in A, an n-point linearly weighted mean smoothing is applied to smooth out the
spurious peaks and valleys. In this case we have applied 5-point linear weighted

mean smoothing to obtain a smooth acoustic score contour A.

Aldey) = 2 im1 f(%é_@;((g)wl)/z)ﬁ)

(3.11)

where

i ifi<(n+1)/2
fi) = (3.12)
n—i+1 ifi>(n+1)/2

Once we have the smoothed acoustic score contour (A), next step is to ob-
tain boundary regions This is the segment of speech signal, where there is a high
likelihood of phonetic boundary or the phone transition region. The region of con-
secutive boundary frames without any non-boundary frame is defined as bound-
ary region, which can be interpreted as a part of smooth acoustic contour where
A(it) >0 V t. If 1, and j, denote the begin and end frames of a boundary region
q, it has to satisfy the condition B(tq,J,) =1 and B(y — 21, 3, + 22) < 1, where

21 and 22 are positive integers, and B(t, J4) is defined in the following equation

By, 34) = (3.13)

3.3.4.3 Location of Boundary

After the boundary regions are detected, exact location of boundary in each of
these regions has to be located. Once the number of boundary regions are decided,

number of boundaries are also fixed as only one boundary from each of these
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boundary regions are marked as phonetic boundary. Among the frames in each
region ¢, the frame with highest acoustic score is marked as boundary frame using

equation (3.14), where %q is the index of the boundary frame from region q.

{iz} = argmax {A(a) }e,, (3.14)

3.4 Evaluation criteria

The performance of speech segmentation is evaluated using the following five met-
rics, essentially by comparing the predicted boundary with the manually marked
boundary in the speech signal. If (; denote the time stamp of the manually
marked boundary 7 in the speech signal, then a region of tolerance ¢; is defined as
(Gi—(G—¢Ci1)/2) <€ < (G+(Gr1—¢)/2). For every i, if there exists a predicted
boundary ¢ with its time stamp denoted by ¢;, such that ¢; is within ¢;, then i is
considered as correct boundary. If there are more than one predicted boundary
within ¢; then one of the predicted boundaries which is nearest to (; is considered
as correct boundary, and the rest are considered as inserted boundaries. If there

is no predicted boundary within ¢;, then ¢ is considered as deleted boundary.

RMS FError: It is the root mean square of the deviations between the manual

and its nearest correct boundaries.

Agreement Percentage (AGR): It is the percentage of correct boundaries with
a tolerance (absolute deviation) of less than 7 ms over the total number of correct

boundaries.

Boundary Error Rate (BER): It is defined as the summation of insertion (INS)
and deletion (DEL) percentages. Here, the INS percentage is computed as number
of insertions over the total number of manual boundaries, and the DEL percentage

is computed as number of deletions over the total number of manual boundaries.
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Performance of boundary detection is better when RMS, DEL, INS & BER
are low and AGR is high.

3.5 Results and discussions

In this section, we describe database used, different experiments performed to
analyze the performance of the supervised and unsupervised ANN based acoustic-

phonetic boundary detection approaches.

Database used:

The TIMIT corpus (a joint effort between MIT, Texas Instruments and SRI)
contains read speech from 630 speakers from eight dialect regions of the United
States. The sentences were designed to be phonetically rich and were recorded
with a Sennheiser noise canceling, head-mounted microphone in a quiet environ-
ment. The speech was digitized at 16 kHz with 16-bit resolution. The corpus
contains waveform data, text transcription s, canonical pronunciation dictionary
and manually segmented and phonetic labels. TIMIT corpus has been labeled
manually with 60 phones (excluding pause) out of which only 54 phones are used
in the pronunciation dictionary, as remaining six phones are rarely used allophones.
Hence we are using only 54 phones and rest of the six phones are mapped to their
respective alternative allophones. Each speaker recorded ten utterances of which
two sentences were common across all the speakers, finally containing 6300 utter-
ances in the database. Of these 630 speakers, 460 speakers are used for training
and 168 are used for testing. But, all the experiments in this chapter are trained
on 3696 (TIMIT train-set) files from the training partition of the TIMIT corpus
(excluding "SA” files) and the results are reported on 1344 (TIMIT test-set) files
from the testing partition of the TIMIT corpus (excluding "SA” files) as used in
, so that our results can be comparable to that of previous works.

Performance of different approaches:
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In this section we are comparing different approaches that are described till now.
Table[3.2(a) shows the performance of HMM-based speech segmentation approaches
using manual phonetic transcription built by Brugnara et. al. and Hosom
and a classification approach by Joseph et. al E on TIMIT test-set. As these
approaches use manual phonetic transcription for training and segmenting, there
will be no boundary deletions and insertions. So, when AGR scores are compared,
except for 7 < 10ms, SC and UC without using any phonetic transcription are
performing better than , and almost as good as , .

Table 3.2(b) shows that SC performs better than other approaches. It is un-
derstandable as SC is trained using manual training data. We can also observe
that, UC performed better than MSS and GDF, even though the initial bound-
aries to prepare ANN data for SC is obtained from MSS. This shows that, the
ANN training was able to discriminate between the correct and wrong boundaries

generated by MSS inorder to build a better model.

From Table we can also observe that SC out performs HMM-PL and
HMM-FA and UC out performs HMM-FA.

Table shows that ANN based approach not only out performed GDF,
HMM-PL and HMM-FA based approaches, but also performs as good as con-
strained approaches using ezact phone transcription except for 7 < 10ms.
When performances of SC (supervised ANN based approach), MSS (unsupervised
heuristic approach) and UC (unsupervised ANN based approach) are compared, it
is obvious that SC over performed MSS and UC, as it is trained using the manually
segmented data. But more interesting part of this study is that inspite of using
the erroneous training data obtained from MSS, UC has improved the acoustic-
phonetic boundary detection BER by 3.9% over MSS performance. This shows
the significance of classification based approaches for acoustic-phonetic boundary

detection. It also shows the feasibility of unsupervised classification approaches

for acoustic-phonetic boundary detection.
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28

Table 3.2: Agreement percentage (AGR) for different tolerance (1) values, mean deviation (RMS), deletion percentage (DEL), Insertion
percentage (INS) and boundary error rate (BER) of MSS, GDF, SC, UC, /, [@/, [@/, HMM-FA and HMM-PL. In this work,
we have considered BER as the first priority for evaluation and then AGR and RMS.

Training Testing AGR % with 7 <
Approach Manual Phonetic Phonetic 10ms | 20ms | 30ms | 40ms | RMS(ms) | DEL | INS | BER
Boundaries | Transcription | Transcription

Brugnara [1] Yes Manual’ Manual’ 74.6 | 88.8 | 94.1 | 96.8 - - - -

a | Joseph [2] Yes Manual® Manual 80.0 | 92.3 | 96.4 | 98.2 - - - -

Hosom [3] Yes Manual Manual 79.30 | 93.36 | 96.74 | 98.22 - - - -
MSS NA? NA? No 49.24 | 89.62 | 96.41 | 98.46 13.1 16.80 | 16.71 | 33.51
b GDF NA? NA? No 42.97 | 88.56 | 96.31 | 98.27 114 24.51 | 12.3 | 36.81
SC Yes No No 59.10 | 92.18 | 97.39 | 99.06 9.3 13.91 | 7.81 | 21.72
ucC No No No 49.83 | 89.80 | 96.41 | 98.44 11.3 23.28 | 6.33 | 29.61
. HMM-FA No Canonical® Canonical’® 55.85 | 82.51 | 94.76 | 98.19 15.2 10.75 | 19.97 | 30.72
HMM-PL No Canonical® No 51.82 | 81.71 | 94.89 | 98.16 15.7 17.33 | 9.75 | 27.08

! Manual phonetic transcription refers to the transcription obtained manually by a human annotator.

2NA refers to no training is required.

3 Canonical phonetic transcription refers to the transcription obtained automatically using pronunciation dictionary.
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3.6 Summary

In this chapter, we have described different signal processing methods, such as
MSS and GDF based approaches, HMM methods such as HMM-FA and HMM-PL
based approaches and classification methods such as SC and UC based approaches.
When performances of MSS, GDF, SC and UC are compared, it is obvious that
SC over performed MSS, GDF and UC. But the more interesting part of this study
is that inspite of using the erroneous data obtained from simple MSS for training
UC approach, BER of UC approach is reduced by 3.8% over MSS. This implies
that ANN was able to identify and nullify the effect of some of the error patterns

in the MSS output while discriminative training.

A comparative study was employed between acoustic-phonetic boundary detec-
tion without using any transcription and the HMM force-alignment based works
, , which used manual phonetic transcription on the same TIMIT train
and test. Our observation was that SC performed as good as those HMM based
approaches and UC performed better than one of the systems. As manual phonetic
transcription is expensive, comparison with HMM-based approach using canonical
phonetic transcription were employed. Among, HMM-FA and HMM-PL, HMM-
PL out performed. This is mainly because of boundary insertions, which is directly
reflected from the observation made from table[3.1]that canonical phone transcrip-
tion has more number of phone insertions. We observed that SC is better than
HMM-FA and HMM-PL, but UC was better than only HMM-FA. Finally, our ex-
periments on INE and TEL databases show that the SC and UC based approach
trained on TIMIT database could be used to segment non-native English and Tel-
ugu speech data. Hence showing that when manual phone transcription is not
known, it may be better to use a SC based approach and if the manual boundaries

are not present, then it is better to use a UC based approach.
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CHAPTER 4

Significance of excitation based features for

acoustic-phonetic boundary detection

This work investigates the significance of excitation based features for the task
of boundary detection in continuous speech. In this work, we have compared the
boundary detection performance of excitation based features with filter based fea-
tures (linear prediction cepstral coefficients). It is typically known that excitation
based features are useful to detect voiced-unvoiced or unvoiced-voiced segment
boundaries. Our experiments and analysis done in this work demonstrate that
excitation based features contain information about voiced-voiced and unvoiced-
unvoiced segment boundaries along with voiced-unvoiced and unvoiced-voiced seg-

ment boundaries.

4.1 Significance of LP residual

The excitation-filter model of speech production consists of a filter that is excited
by either a quasi periodic train of impulses or a random noise. Linear Prediction
(LP) analysis is one of the most common techniques used to estimate the parame-
ters of the filter. In LP analysis, the sample s(n) is estimated as a linear weighted

sum of past p samples. The predicted sample §(n) and its error r(n) is given by

§(n) == ags(n — k), (4.1)
k=1

r(n) = s(n) — 4(n) = s(n) + Y _oxs(n — k) (4.2)
k=1
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where p is the order of the prediction, a;, 1 < k < p is a set of LP coefficients
(filter parameters) which characterizes the vocal tract and r(n) is also called as

LP residual (excitation) which characterizes the vocal folds.

In tasks such as speech recognition, speaker recognition and speech segmen-
tation, it is well known that the filter parameters are widely used , , ,
. On the other hand, it is often assumed that r(n) is an uncorrelated noise,
possess a flat spectrum and hence may not be useful for the above tasks . Some
researchers often summarize the whole residual in just one number representing

pitch [46]. But it is shown that residual carries complimentary information to

filter parameters 13].

It is important to understand that the information contained in the residual
depends on LP order p. In practice, LP order of 12 — 16 is assumed to be good
enough to capture the shape of the vocal tract for speech signal sampled at 16 KHz
48]. If p is small (< 4), then the LP residual contains most of the information
present in the speech signal, and if p is very large, then the LP coefficients contains
most of the information present in the speech signal . It is this property
of LP model which makes the LP residual a complementary information to LP

coefficients.

Our work provides a study on excitation based features for acoustic-phonetic
boundary detection in continuous speech. To our knowledge such investigation
has not been known so far. Fig[4.1(b) is a narrow-band spectrogram of residual
which shows that residual is a good feature for detecting voiced /unvoiced regions
and pitch estimation. But the boundaries between stop release, voiced pair (/b/-
/r/, Jt/-/aa/, Jt/-/ih/); vowel, semi-vowel pair (/r/-/ih/, /aa/-/r/); stop release,
fricative pair (/k/-/s/) etc., are not clear. On the other hand Fig (c) is
a wide-band spectrogram of residual. Though, it does not contain any pitch

information, boundaries such as voiced, nasal pair (/ax/-/n/, /n/-/ao/, /er/-/n/,

/n/-/ix/); stop release, voiced pair (/b/-/r/, /t/-/aa/, /t/-/ih/); stop closure,
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voiced/unvoiced pair (/tcl/-/t/, /s/-/tcl/, /1/-/tcl/) can be visually perceived in

the spectrogram.
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Figure 4.1: (a) Speech signal, (b) Narrow-band spectrogram with 30 ms frame size
and 1 ms frame shift and (c) Wide-band spectrogram with 4 ms frame
size and 1 ms frame shift of 16" order LP residual and all are marked

with manual phone boundaries.

To study whether the visually observed segment boundaries could be auto-
matically detected from a residual, we computed the temporal changes in the
spectrogram as follows. Let S(n,w) and X (n,w) denote the spectrogram (two
dimensional signal) of a speech signal s(n) and residual signal r(7) respectively
which are smoothed using 4-by-4 median filter. Here 1 < n < F', where I is the

total number of frames.
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9 log X (1, w)

5, (4.4)

dOESY

w

Fig shows the spectrogram and temporal changes of speech signal s(7) and its
residual 7(7n), where peaks in s'(77) obtain the maximum temporal changes in those
regions and hence segment boundaries. We can observe that most of the peaks that
are present in s'(7) obtained from a speech signal, are also present in /() obtained
from a residual signal. This indicates that the residual signal does contain some
information about segment boundaries. Hence, a detailed study is conducted to

explore the significance of LP residual for acoustic-phonetic boundary detection.
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Figure 4.2: (a) Spectrogram of speech signal, (b) s'(n) obtained from speech signal,
(¢) Spectrogram of residual signal, (d) v’ (n) obtained from residual
stgnal and all are marked with manual phone boundaries.
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4.2 Extraction of features from speech signal

A pre-emphasized speech signal is decomposed into a sequence of overlapping
frames with 10 ms frame size (IV samples) and an overlap of 5 ms to obtain filter

parameters oy, and excitation parameters r(n) using equations & (4.2).

4.2.1 Filter based features

One of the important filter based representation of speech is linear prediction
cepstral coefficients (LPCC). The cepstrum of a signal is computed by taking a
Fourier (or similar) transform of the log spectrum. In the case of linear prediction
cepstral coefficients, the required spectrum is the linear prediction spectrum which
can be obtained from the Fourier transform of the filter coefficients. However, it
can be shown that the required cepstra can be more efficiently computed using a

simple recursion given below:

In o2, m =20
m—1 ]f
oty = Jont 2 (1 )em s 1Sm (15)
— | CkAm—k, m>p
m
k=1

where 0? is the gain term in the LPC model, m is number of cepstral coefficients,

and p is LP-order.

4.2.2 Excitation based features

LP residual is represented using Hilbert envelope of the residual signal. Significant
excitation instants in LP residual correspond to glottal closure instants (GCI)
which exists only in voiced segments. Hence such information could be helpful in

identifying a boundary between voiced and unvoiced phones with better accuracy.
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However, GCI in a residual have large error around the instants which can be
reduced by obtaining the Hilbert envelope of the residual as shown in Fig .

The analytic signal r,(n) corresponding to r(n) is given by
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(d)

Time (ms)

Figure 4.3: (a) Speech signal s(n), (b) LP residual r(n), (¢) Hilbert Transform of
residual ,(n), (d) Hilbert envelope of residual he(n).

ra(n) = IDFT[Ry(w)] (4.6)

where

—jR(w), O0<w<m
Rip(w) = (4.7)

JR(w), -1 <w<0
Here R(w) is the Fourier transform of 7(n) obtained by using equation and
IDFT denotes the inverse discrete Fourier transform. Hilbert envelope he(n) of
the analytic signal r,(n) is given by equation (4.8). Once the Hilbert envelope
is obtained, amplitude spectrum is estimated by applying Fourier transform on
he(n) using and its cepstrum is estimated by using on the obtained

spectrum, where

he(n) = [ra(n)] = \/r?(n) + r3(n) (4.8)
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N—1
| He(w)] = | Y he(n)e 72N (4.9)
=0
1 N—1
v(m) = — > In|Ho(w)]e>™ /N, ¥m € [1, M) (4.10)
w=0

Figl4.4lshows the spectrograms of different features that are used in our exper-
iments. In all the experiments, a 16" order LP analysis is performed to extract 17
dimensional LPCC. Hilbert envelope of 16 order LP residual is used to compute

15 dimensional HECC.
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Figure 4.4: Spectrogram of (a) Speech signal, (b) LP-Spectrum, (c) Hilbert enve-
lope of 16" order LP residual and all spectrograms are marked with
manual phone boundaries.

4.3 Acoustic-phonetic boundary detection

Acoustic-phonetic boundary detection can be performed using signal processing
based approaches, HMM-based approaches or Classification based approaches as

described in the previous chapter. Of all these approaches, classification based
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approaches out perform other approaches. Among these classification based ap-
proaches, supervised classification based approach (SC) performed better than
unsupervised classification based approach (UC). Hence, we are employing super-
vised classification based approach (SC) to perform the experiments on different
features. As described in the previous chapter, classification for SC was performed
using artificial neural networks (ANN). Training phase of SC involves two phases:
1) Preparation of input / output data; and (2) Training ANN classifier using the
above data. Boundary detection using SC involves the following three phases: (1)
Obtaining acoustic scores of all frames in the speech signal using ANN classifier
output; (2) Detection of boundary regions in speech signal; and (3) Location of

boundaries in the speech signal. For details, please refer to the section

4.4 Results and discussion

All our experiments are conducted on TIMIT corpus, which is recorded in a clean
environment at 16 KHz sampling rate and has been labeled manually using 61
phones. Excluding "SA” files, this corpus has 3696 training files and 1344 testing
files . In all the experiments reported in this work, the value of [ is fixed to be 5,
i.e., a context of five frames to the left and right are used to create the augmented
feature vector ;. Table shows the performance of acoustic-phonetic boundary
detection for different features referred in section Here LPCC and HECC
are obtained from 16" order LP analysis. The performance of acoustic-phonetic
boundary detection is measured using boundary error rate (BER) and agreement

percentage (AGR). For details, please refer to the section
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Table 4.1: ANN configurations and performance of boundary detection for differ-
ent feature sets. + in 1°¢ row denotes the concatenation of two feature
sets. In 3™ row L denotes linear activation and N denotes nonlinear
tangent actiwation and the value indicate the number of perceptrons in
the particular layer of ANN. 5" — 9" rows show the agreement percent-
age of correctly predicted boundaries using different features for different
tolerance (1) values.

| | LPCC | HECC | LPCC+HECC |
Feature Dimention 17 15 32
ANN Configuration | 187L 37N 2N | 165L 33N 2N 3521 70N 2N

RMS (ms) 11.7 12.9 9.9

10ms 54.19 48.57 56.32

20ms 89.69 86.24 91.26

AGR 30ms 96.55 94.61 96.91

40ms 98.66 97.69 98.76

50ms 99.38 98.90 99.48

DEL % 20.55 17.95 13.26

INS % 7.92 11.82 8.36

BER % 28.47 29.78 21.62

Table 4.2: Performance on C0’s of LPCC, RCC and HECC of 16" order LP
analysts. ANN configuration used to train these features is 11L SN

2N.
| [LPCC | HECC |
RMS (ms) 137 16.4
AGR % (r =20ms) | 85.62 | 79.05
BER % 4048 | 41.33

4.4.1 Usefulness of residual in detecting voiced-voiced and

unvoiced-unvoiced boundaries

CO0 of LPCC and HECC basically represent the log energy of the speech and the
residual signals respectively. Fig shows that CO contours of LPCC and HECC
of 16!" order LP analysis, which look similar except that CO of LPCC is smoother
than that of HECC. Table shows that the performance of acoustic-phonetic
boundary detection using only CO of LPCC and HECC. From this table we can
observe that even though there is an observable difference in RMS and AGR%

between LPCC and HECC, there is almost no change in BER%. When the re-
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Time {Frame Index)

Figure 4.5: C0 contour of (a) LPCC, (b) HECC, of 16" order.

Table 4.3: Grouping of all phones into different broad phonetic classes.

| Class | Class Description | Phones

| Voiced / Unvoiced |

NAS |Nasal eng, m, n, ng, nx Voiced

SV Semivowels Lr,w,y Voiced
aa, ae, ah, ao, aw, ax, ax-h,

VOW | Vowels axr, ay, eh, el, em, en, er, ey, Voiced
ih, ix, iy, ow, oy, uh, uw, ux

VC | Voiced Closure bel, dcl, gcl Voiced

VF Voiced Fricative dh, hv, jh, v, z, zh Voiced

VS Voiced Stop b,d, dx, g Voiced

UVC |Unvoiced Closure |kel, pcl, tcl Unvoiced

UVF | Unvoiced Fricative |ch, f, hh, s, sh, th Unvoiced

UVS | Unvoiced Stop k p,gt Unvoiced

spective BER performance of LPCC and HECC in Table and Table are
compared, the improvement of 11.55% (40.48% to 28.47%) by LPCC and improve-
ment of 12.01% (41.33% to 29.78%) by HECC suggest that the contribution of

higher order cepstral coefficients of LPCC and HECC are very similar.

In most of the previous works, energy of the residual, which is proportional
to CO is used to detect the boundaries between voiced/unvoiced regions. When
results in Table[4.2land Tablel4.1]are compared the changes in BER of HECC from
41.33% to 29.78%, AGR% (within 20 msec) of HECC from 79.05% to 86.24% and
RMS of HECC from 16.4 msec to 12.9 msec show that the higher order cepstral

coefficients of HECC contain information required for acoustic-phonetic boundary

detection.
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Table 4.4: Boundary deletion percentages of each class pair (CPDFEL) is computed
for LPCC & HECC. Shaded cells correspond to class pairs for which
HECC performed better. Of these shaded cells, class pairs with x corre-
sponds to either voiced-voiced or unvoiced-unvoiced and class pairs with
I corresponds lo either voiced-unvoiced or unvoiced-voiced.

[Class [NAS SV VOW| VC VF VS [UVC UVF UVS]
# Class Pairs| 72 288 1804 [ 352 313 42 | 566 362 102 |
NAS~— LPCC [86.11 30.56 9.26 |44.32 26.84 47.62 (3852 249 18.63
HECC  7500% 33.33 12.80 | 46.88 TG 26109%|56.18 525 26.47
# Class Pairs| 120 97 3915 | 219 115 40 | 152 189 51 |
SV TPCC  [10.83 4021 40.23 | 6.85 4.35 17.50|2.63 1.59 11.76 |
HECC  |20.83 [32:90* 37.20%| 5102" | 1043 25.00 | 3.95 6.35 [302%
# Class Pairs| 3499 2444 1286 | 1639 2016 599 | 2574 2255 413 |
VOW  LPCC [11.23 60.72 4751 | 3.60 6.15 2521295 1.06 19.85
HECC | 12.00 HOIS*M120% 21625 15.72 22054% |2156% 6.56 [I7UsH|
# Class Pairs| 46 58 65 357 1795 58 123 ]
\Y@ LPCC  [30.43 690 10.77 784 16.27 517 0.81 |
HECC  |36.96 31.03 24.62 | NA [GB8 O86%| NA 517 0.00F|
# Class Pairs| 71 162 2162 | 177 102 201 155 48 |
VF LPCC [1831 8.64 16.65|14.60 21.57 846 3742 417 |
HECC  [BHE* 17.90 25.21 |[TERETIOBTY NA |GHT 31610008
# Class Pairs 411 2196 38 52 |
VS — IPCC | 36.25 45.31 | 63.16 i 63.46 ’
HECC NA @577 42.00%| NA 7368 NA | NA GLSIT NA |

# Class Pairs| 47 61 41 91 151 556 3254
UVC ™ LPCC [46.81 14.75 7.32 330 2.65 594 4.21
HECC |28.76F 29.51 17.07| NA 6.59 (2657 | NA 3455 4.27

# Class Pairs| 27 309 2453 | 134 37 T4 112 51
UVF ™~ TPCC [1481 1.62 1.26 | 3.73 18.92 801 33.93 7.84
HECC |ILIH 7.12 477 0755 16:22F NA |[401*] 34.82 [6.007

# Class Pairs 847 3043 304 31
UVS ™~ LPCC 531 14.79 76.32 2258
HECC NA 1299 1660 | NA NA NA | NA [F3.03712.90°

In order to investigate the different types of boundaries captured by excitation
based features other than voiced-unvoiced / unvoiced-voiced boundaries, a detailed
analysis of boundary deletion is performed. To analyze the boundaries between
each phone pair, a matrix of 61 phones against 61 phones is required, which is a
large matrix and hence difficult to comprehend. In order to overcome this problem,
we have grouped phones into nine broad phonetic classes as shown in Table
Thus the boundary deletions are computed only for 81 class pairs instead of 3721
(61 X 61) phone pairs. Table shows the boundary deletion percentages of

each class pair (CPDEL) for LPCC and HECC. CPDEL is computed using the
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equation . A smaller value of CPDEL indicates a better acoustic-phonetic

boundary detection performance.

# Deleted Class Pairs
# Class Pairs

CPDEL = X 100 (4.11)

Out of these 81 class pairs, 16 class pairs in this table are marked as "NA” (Not
Analyzed) as the number of examples for these class pairs is less than 20. So, only
the remaining 65 class pairs were analyzed. Of these 65 class pairs, the acoustic-
phonetic boundary detection performance of 36 class pairs (marked with * and
I) was better using excitation based features (HECC) than filter based features
(LPCC). The acoustic-phonetic boundary detection performance of the remaining
29 class pairs was better using LPCC. In this table there are nine cells which
indicate the performances between same class pairs such as NAS-NAS, VF-VF,
UVC-UVC etc. We can observe that of these nine same class pairs, five perform
better using HECC (NAS-NAS, SV-SV, VOW-VOW, VF-VF, UVS-UVS), one
perform better using LPCC (UVF-UVF) and the remaining three are NA (VC-
VC, VS-VS, UVC-UVC). Of the 36 class pairs for which excitation based features
(HECC) performed better than LPCC, 14 class pairs (markers with I) are voiced-
unvoiced / unvoiced-voiced boundary class pairs and the remaining 22 class pairs
(marked with %) are voiced-voiced / unvoiced-unvoiced boundary class pairs. The
above observations show that excitation based features (HECC) has potential to

detect the boundaries even in voiced-voiced / unvoiced-unvoiced class pairs.

4.4.2 Complimentary nature of residual features

From the Table[4.4]we can observe that, even though LPCC performs better than
HECC, when both are combined at feature level (LPCC+HECC) and an ANN
network is trained using the concatenated feature vectors, then resulting models
perform better than both LPCC and HECC i.e., the performance of LPCC+HECC
is 21.62% BER, 91.26% AGR% (within 20 msec), and RMS is 9.9%. Hence this
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show that excitation (HECC) and filter (LPCC) based features are complimentary

in nature for the task of acoustic-phonetic boundary detection.

4.5 Summary

In this work, we have investigated the significance of excitation based features rep-
resented by linear prediction residual for the task of acoustic-phonetic boundary
detection. We have shown that the features extracted from LP residual con-
tain useful information about the phone boundaries in speech signal. It was also
observed that the excitation based features contain information about voiced-
voiced and unvoiced-unvoiced segment boundaries along with voiced-unvoiced and
unvoiced-voiced segment boundaries. Moreover, the evidence provided by the LP
residual features were found to be of complementary in nature to vocal tract fea-
tures. Further investigations has to be performed for extraction of better features
from residual signal and better ways of combining the filter and excitation based

features.
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CHAPTER 5

Conclusion

Acoustic-phonetic boundaries of a speech signal can be detected using manual
or automatic approaches. As mentioned in chapter 2, manual approaches have
the following drawbacks: (1) Highly accurate, but tedious and time consuming;
(2) Agreement between two annotations or between two annotators of the same
signal are almost same but not same; These drawbacks of manual boundary detec-
tion, drives the need for automatic approaches. The automatic approaches can be
broadly divided into (1) Signal processing approaches: These approaches do not re-
quire either the training data or the phonetic transcription. But these approaches
are highly sensitive to parameters used. (2) Forced-alignment based approaches:
These approaches require phonetic transcription and a training data to train the
models like HMMs. These HMM based approaches obtain high accuracy bound-
ary detection but they are dependent on the correctness of phonetic transcription.
These approaches may also require manual boundaries to train the models. (3)
Classification based approaches: These approaches obtain acoustic boundaries by
employing boundary / non-boundary classifier on each frame to detect the bound-
ary regions and apply a post processing techniques on these boundary regions to
obtain location of boundaries. There are a few such approaches and even these
approaches are supervised and hence require manual boundaries and sometimes
even manual transcription. The limitation of this approach is that it requires a
good amount of manually segmented data to train the classifier. In this thesis, we
have explored signal processing methods such as mean spectral smoothing (MSS)
and group-delay function (GDF') based approaches for acoustic-phonetic bound-
ary detection. Apart from this, we have also explored HMM forced-alignment

(HMM-FA) and HMM phone-loop (HMM-PL) based approaches using canonical
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transcription. We have developed a framework wherein manually or automatically
obtained segment boundaries are used to train a boundary / non-boundary clas-
sifier. Once the classifier is trained, (1) Frame level acoustic scores are computed
using classifier output; (2) Boundary regions are detected and ; (3) Boundaries
are located. Supervised classification approach (SC) use manual boundaries to
train the classifier. Unsupervised classification approach (UC) use the automatic
boundaries generated by signal processing approaches such as MSS and GDF to
train the classifier. A comparative study of all these approaches show that the
classification based approaches outperform other approaches. Among these clas-
sification based approaches, SC performed better than UC. This can be justified

as SC is trained on clean data where as UC is trained on noisy data.

Most of the present systems use traditional filter based features such as MFCC,
filter-banks, LPCC etc., for acoustic-phonetic boundary detection ignoring the
excitation based features. So, we have explored the significance of excitation based
features for acoustic-phonetic boundary detection. This was motivated from the
previous work by Markel et. al [12], which shows that even at comparatively high
LP orders, the spectral flatness of the residual signal is not zero, concluding that
the LP residual obtained using optimal LP-order has some information that can
be used for speech processing. This observation was exploited and put to use
by many researchers for the task such as voice activity detection (VAD), speaker
recognition etc. Some of our spectrogram visualizations and observations hinted
that there are cues even for phonetic boundary information in the residual. In
this process, experiments were conducted on linear prediction cepstral coefficients
(LPCC) and Hilbert-envelop cepstral coefficients (HEC) using supervised ANN
based acoustic-phonetic boundary detection. We have shown that the features
extracted from LP residual contain useful information about the phone boundaries
in speech signal. It was also observed that the excitation based features contain
information about voiced-voiced and unvoiced-unvoiced segment boundaries along

with voiced-unvoiced and unvoiced-voiced segment boundaries. Moreover, the
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evidence provided by the LP residual features were found to be of complementary

in nature to vocal tract features.

5.1 Future work

e Robustness: A large amount of work has to be done to make the classifi-
cation based approaches and excitation based features more robust, so as to
improve the performance not only with the clean speech, but also in highly

coarticulated speech, and noisy speech.

e Unsupervised boundary detection: The performance of unsupervised
approach is still not as good as SC. Nothing or very little can be done
to improve the signal processing approach output, but major improvement
has to come from the second phase, where it should be able to discard the

erroneous classification samples and use only the correct once.

e Phonetic labeling of speech segments: Once the speech is segmented
into phonetic segments, the next task is to label the segments with appro-
priate phonetic labels. This task can be basically defined as the task of

classifying the segments into phonetic units.
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