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ABSTRACl- 
Spreading activation neural networks have been 

proposed in literature. This paper proposes a directed 
spreading activation neural network model which 
performs a large number of early vision tasks. It is shown 
how directed two-dimensional(2D) diffusion followed by 
detection of local maxima can effectively perform feature 
extraction, feature centroid determination and feature 
clustering all on multiple scales in a purely data-driven 
manner. The feature map, which is the result of this 
directed spreading activation process can be used in 
learning and recognition of 2D object shapes from their 
binary patterns invariant to &ie transformations. 

I. INTRODUCTION 
Visual pattern recognition involved in reading 

writtedprinted characters or distinguishing shapes is easily 
accomplished by human beings, but when it is attempted 
to design information processors that can do the same thing 
it presents signiscant difficulties. Since human beings do 
this task effortlessly a number of researchers have 
attempted to model the visual neural system of the brain. 
Various models of neural systems are reported in the 
literature for the problem of visual pattern recognition. It 
is now a widely-held view that visual perception is based on 
two interrelated processes[RYBAK 911: parallel 
processing of visual information carried out automatically 
by mechanisms determined by neuronalorganization of the 
retina, lateral geniculate nucleus, and visual cortex; and 
sequential processing related to image recognition 
mechanisms that are controlled by attention. In the first 
process, detector properties of single neurons and local 
neuron nets are of primary importance. In the second eye 
movements are considered to be of importance. Through 
these movements, the most informative parts of the image 
are sequentially projected onto the fovea for finer 
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processing. 

Experimental research on vertebrate visual 
systems has revealed various structural and functional 
mechanisms to support this theory. [HUBEL n] reported 
that in the visual cortical areas, there are multilayer 
organizations of largely identical cells and these layers are 
further divided into calm. The complexity of cells varies 
across layers, indicating functionally distinct roles. An area 
separate from the visual cortex, the superior collidus, 
seems to  be  concerned with directing eye 
movements[BREITMEYER 861. The retina has a 
high-resolution fovea at its center to which any area in the 
field of vision can be directed by physical movements. The 
attention seems to be concentrated near the fmtion point. 
It appears from human eye-motion studies that there are 
other advantages to integrating eye movements into a 
computer vision system, such as a mechanism to obtain 
information about spatial relations and translational 
invariance. This active processing approach to visual 
processing simplifies the spatial cognition problem. 

Evidence for rapid diffusion like phenomena can 
be found in the brightness and color domains of stabilized 
image experiments. Compelling evidence is provided by 
[YARBUS 671 experiments, in which color from tke 
surrounding rapidly fills regions in which stabilized imagt.i 
have faded. This type of effect has motivated [Cohen 841 to 
postulate a diffusion layer ("fding-in-syncytium") as an 
essential component of their feature contour system. 

[SEIBERT 891 proposed that diffusion 
enhancement can be used as a low-level computational 
model in building a neural network vision system. This 
model is used for learning and recognizing two- 
dimensional (2D) binary patterns invariant to location, 
orientation, and scale. In their model, the processing is 
divided into layers, each of which may encompass many 
levels of neuron- like processing cells. The activation is 
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spread from the low- level feature detectors to the adjacent 
regions, where activity interaction occurs. In this way 
corners along edges, high curvature points and line-end 
features are located from low-level in a completely 
data-driven manner. The result at this point is a retinotopic 
map of features (feature map). Depending on the time 
elapsed the spreading activation layers will localize 
centroids in small local areas or larger, more global areas. 
The centroids may be used as fmtion cues to drive rapid 
eye/camera movements (saccades), spatial relation cues 
for learning and recognizing hierarchies of components or 
invariant featural representation of objects. 

Spreading activation is essentially an averaging 
process. When the input pattern is directly presented to the 
spreading activation layers, as time progresses the 
activation values of the individual neurons reflect the 
averaging process which takes place over two- dimensional 
space. This kind of averaging is unconstrained i.e., there is 
no limiting factor for the spreading of activation in both 
time and space. The local maxima formed as time 
progresses, give rise to vaiious features and feature 
clusters. However, as there is no constraint in the 
spreading, it is very difficult to determine upriori when to 
stop the spreading process and identify the feature or the 
feature cluster. When spreading is not stopped at 
appropriate time, the peaks which are formed during the 
spreading slowly drift away towards the global centroid. To 
overwme this problem the feature map instead of the 
direct input pattern, is considered as input for spreading. 
[SEIBERT 891 has proposed location of quasi-static points 
during the spreading activation process as a temporal event 
for determination of feature clusters. This quasi-static 
points method cannot be adopted to feature extraction 
directly as the feature maxima tend to move faster towards 
the global centroid. So the spreading activation is used 
directly on the input pattern for locating only the corners. 
The feature map is formed only using the corner locations 
and is used for subsequent processing. But the lines, 
curves of different curvatures and edge termination points 
which are missed are very useful and significant for the 
higher stages of invariant pattern recognition system. 
Moreover when the eye/camera movement is used to 
identify the features located at the maxima points, the lines 
and contour termination points will be missed. 

The drawback of the current model's inability to 
detect the lowlevel features like line segments, corners, 
curves and contour termination points correctly as part of 
the lowlevel feature extraction can be attributed to mainly 
the unconstrained nature of spreading both temporally and 
spatially. This paper proposes directed spreading model 

which constrains the spreading spatially. The spreading 
takes place in specific predetermined directions and the 
directions specified by the input pattern. The directed 
spreading activation model detects the lines of different 
lengths, curves of different curvatures and edge 
termination points in a purely data-driven manner. 

The non-stationary nature of the feature maxima 
is mainly due to the lateral influence of the adjacent feature 
maxima. The line peaks and the peaks of the corners may 
be considered as complementary features. Since the 
spreading is unconstrained these complementary feature 
peaks spread quickly and become nonstationary. To avoid 
this lateral influence it is necessary to separate these 
complementary features. In this directed spreading 
activation model there are two surfaces which work 
parallely and locate complementary features. One layer of 
neurons are sensitive to lines of different orientations and 
the other layer of neurons are sensitive to curves of 
different curvatures and contour terminations. 

Section 11 introduces the directed spreading 
activation model and section I11 shows how directed 
spreading activation can be used for feature extraction, 
feature clustering and feature centroid detection. Section 
IV presents a neural network model for directed spreading 
activation. 

11. DIRECTED SPREADING ACTWATION 
Let us consider a region R and an activation 

function A(R) defined over it at an initial time to. The 
function A(R) is a binary valued function at to, either L, 
or 0, corresponding to locations where the pixels are 'on' 
in theinputvisualpattern.The activationcandiffuselocally 
through the region either uniformly or nonuniformly 
according to the classical diffusion equation: 

_ -  &I - 6 .  [ k(R) . d A ( R ) ]  ---- (1) 
dt 

where k(R) accounts for the density and 
conductivity of the region. If k(R) is a constant then the 
spreading is uniform throughout the region. When k(R) is 
a function of direction then the activation spreading takes 
place in specified directions. If the total activation is held 
constant, then the locations with initial activation Lt begin 
to lose activation, while adjacent locations begin to gain 
activation. Due to superposition, areas near activation-rich 
locations gain activation more quickly than areas far from 
the activation-rich locations. Activity spreads as the time 
progresses from b until a global activitymrurimum emerges 
indicating the geometric centroid of the features. At an 
intermediate time various local maxima can be detected. 
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Maxima detection is a problem which is well 
addressed in both calculus and neural networks paradigms. 
The activation distribution in the diffusion layer defies a 
surface over a 2D plane. Extrema of activity are found in 
areas of positive Gaussian curvature of the surface. 
[GROSSBERG 731 has shown that maxima can be 
computed in a neural network by self-activation and 
competition. Using lateral inhibition, each element 
suppresses all others with a strength proportional to its 
activation, while feeding back excitatory activation to itself. 
This is accomplished using an on-center/off-surround 
recurrent receptive field for each element. Among other 
emergent properties, this type of network enhances the 
contrast[GROSSBERG 731 of the activity distribution, or 
in the extreme case leaves only the maximally activated 
element on. 

Ill. FEATURE DETECTION BY DIRECTED 
SPREADING OF ACTIVATION 

Unconstrained spreading activation followed by 
maxima detection can be used to detect features like 
corners (high-curvature points along contours) and 
contour intersections. But this fails to detect the contour 
terminations and s t r w t  lines. This is due to the inherent 
nature of k(R), the conductivity function which is constant 
throughout the region. If k(R) depends on the direction, 
ie. if the spreading takes place in specific directions, this 
can lead to detection of lines as features and the centroid 
of the lines are also located. 

In the directed spreading activation system 
proposed in this paper there are three layers(Fig. 1) each 
with different characteristic k(R). The first layer L1 has 
k(R) defmed for specific dirdions and spreading takes 
place only in these directions. Hence it locates the 
centroids of the lies. The second layer receives its input 
from first layer and the input binary pattern. In the second 
layer the spreading activation takes place in the direction 
specified by the activation values of the adjacent neurons. 
So the conductivity function k(R) of the region is directed 
purely by the data. This second layer detects curve 
centroids of all curvatures and contour terminations. Since 
the spreading in these two layers is spatially constrained 
there is no lateral influence between peaks, hence these 
peaks are always stationary and the movement is restricted 
to the directions specified within a layer. In the third layer 
the k(R) is kept constant and hence it behaves like the 
normal spreading activation layer reported in the 
literature. Third layer detects the feature clusters by 
locating the quasi-static points. These three layers along 
with their maxima detectors together locate centroids of 
lines, curves, corners and contour terminations in a purely 

data-driven manner which can be used for eye/camera 
movement. 

W. MULTILAYER NEURAL MODEL FOR DIRECTED 

SPREADING ACTIVATION 
The configuration of the directed spreading 

activation layers is shown in Fig.1. The first layer L1, 
consists of two dimensional array of hypercolumns. These 
hypercolumns receive their input from the input binary 
pattern. Each hypercolumn consists of a number of 
directional detector neurons as shown in Fig.2. All the 
directional detector neurons are totally connected and 
these links have a small negative value. Hence when the 
input is presented each hypercolumn act like a 
"winner-take-all" network as shown in Fig.3. All the 
directional detectors belonging to a hypercolumn receive 
their input from a fixed window of the input pattern. 
Adjacent hypercolumns receive their input from a 
overlapping windows. 

The general structure of the directional detectors 
is essentially the same as that of the S-cells of Neocognitron 
proposed by [FUKUSHIMA 821. Each directional 
detector has two types of cells, excitatory cells (ECs) and 
the inhibitory cells (ICs) that occur in pairs. Each pair 
receives the same input set. The ICs have fixed excitatory 
weights with values such that the output of the ICs is 
proportional to the mean intensityvalue over the input. The 
activation function of theICs that produces thismeanvalue 
is a simple weighted sum: 

v, = C, ( i )  I ( i )  
I 

where the Ci(i) values are determined by a function that 
decreases monotonically with distance from the center of 
the connectable area and sums upto 1. The mean value VI 
is used as inhibition to the paired EC, which generates'an 
outt)ut according to the equation: 

where the weights al and bl are modifiable weights, r 
represents the eflicacy of the inhibitory synapse, and the 
transfer function is a piecewise linear function according 
to: 

The functionality of directional detectors is 
summarised in Fig. 4. 

The directional detectors which have the same 
directional sensitivity, of neighboring hypercolumns are 
connected by a link. The directed spreading takes place by 

565 

Q 1992 IEEE 

Authorized licensed use limited to: INTERNATIONAL INSTITUTE OF INFORMATION TECHNOLOGY. Downloaded on September 2, 2009 at 12:11 from IEEE Xplore.  Restrictions apply. 



Singapore ICCS/ISITA '92 

these links. Hence the k(R) defined for L1 is sensitive to 
the direction. The outputs of the layer L1 are connected to 
the maxima detector. This network is a simple 
on-center/off-surround network to detect maxima. Each 
one of the maxima detector cell suppresses the neighboring 
neurons according to its activation and feeds back 
excitatory activation to itself. 

The second layer L2, also consists of 
two-dimensional array of neurons. These cells are 
connected to a l l  their neighbors by Links. Each neuron 
receives its activation from the input and the first layer 
according to the following equation: 

L2x,y=Ix,y-L1x3y, 

where L2 xy, Iqy is the activation value fed to the 
neuron of L2 5y is the input binary pattern and L1, is the 
activation values of L1. From the equation it is clear that 
the second layer receives complement of the fust layer 
output over the input binary pattern. Since the first layer 
detects all the lines and diffuses them, the second layer 
receives activations at corners, curves of all curvatures 
other than straight lines and contour terminations. In layer 
L2, the spreading takes place between only the active 
neighboring neurons. So the corner, curve and contour 
termination centroids are enhanced. The output of L2 is 
fed to the maxima detector and the maxima detector 
locates the enhanced peaks of L2. 

Rapid eye-movementsfsaccades) driven by the 
bottom-up cues play an important role in the establishment 
of spatial relations. The absolute and relative positions of 
the peaks located by L1 and L2 of this system can be 
considered as bottom-up cues for the eyelcamera 
movement to establish the spatial relationships. The peak 
strength shows the length OL a line or a curve at that 
position. The 'on' pixels around the fmed window of the 
peak is useful for identification of the feature at the peaks. 
Figure 5a represents the input binary image. Figures 5b-5f 
represent the outputs of different layers of directed 
spreading activation layers. 

The third layer U, receives its input from both the 
maxima detectors of first two layers. This forms the feature 
map which can be fed for recognition to higher layers. In 
this layer the conductivity of the region k(R) is constant. 
Hence the diffusion takes place in all directions. As the 
diffusion progresses quasi static maxima are formed. These 
quasi-static maxima identifies the centers of the feature 
clusters. Eventually global maxima are formed 
representing the geometric centroid of various feature 
clusters. 

V. CONCLUSION 
Spreading activation layer reported in the 

literature has been used for feature clustering, boundary 
completion and fixation point generation. In this paper we 
have shown a new directed spreading activation model. In 
this model the layers have the capability to detect the low 
level features like line segments, corners, curves of 
different curvatures in a purely data driven manner. The 
feature map generated by this directed spreading 
activation can be used to direct the eye/camera movement 
to detect fine features at that location. 
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Fig.2 Layer one Hypercolumn input 
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Fig. 5(f) Feature Map for the input patterrl 
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